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ABSTRACT

Abstract of Thesis presented to UFSC as a partial fulfillment of the
requirements for the degree of Doctor in Automation and Systems

Engineering.

DESIGN OF SWITCHING STRATEGIES WITH
APPLICATIONS IN PHOTOVOLTAIC ENERGY

GENERATION
Tiago Jackson May Dezuo

December / 2014

Advisor: Alexandre Trofino Neto, Dr..
Area of Concentration: Control, Automation and Systems.
Number of pages: 199

This work presents control strategies and stability analysis for switched sys-
tems with a proposed application to photovoltaic energy generation systems.
The conditions are based on Linear Matrix Inequalities (LMIs).
Initially, a general description of the photovoltaic systems is presented cov-
ering the following aspects: the modeling of a photovoltaic array, some com-
mon connection topologies, the main objectives, techniques for maximizing
the generated power, among other informations. This content is necessary for
the control design method proposed in this work.
Next, a design technique for the stabilization of affine switched systems is
shown. The methodology used is based on the Lyapunov’s theory for sta-
bility of systems, describing sufficient conditions for the proposed switching
rule design in the form of LMIs and solving them using existing software
packages. In the sequel, the switching strategy is extended for a class of
nonlinear systems of great interest, especially for the control of photovoltaic
systems. This class is composed of systems containing sector-bounded non-
linearities. Furthermore, a method for stability analysis of switched systems
is proposed, extending the class of switched systems analyzed by the current
literature. Numerical examples illustrate all the approaches developed.
At the end, the application of the nonlinear control techniques to photovoltaic
generation systems is presented. The main objectives considered are the
tracking of the maximum power generation, with robustness to variations of
the input parameters of the photovoltaic array, and the delivery of only active
power to the grid. Finally, simulation results demonstrate the applicability



of the methodology for the control of this type of system, evidencing the
compliance of the stated objectives.

Keywords: Switching rule. LMI. Photovoltaic generation. MPPT.
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PROJETO DE ESTRATÉGIAS DE CHAVEAMENTO
COM APLICAÇÕES NA GERAÇÃO DE ENERGIA

FOTOVOLTAICA
Tiago Jackson May Dezuo

Dezembro / 2014

Orientador: Alexandre Trofino Neto, Dr..
Área de Concentração: Controle, Automação e Sistemas.
Número de Páginas: 199

Durante a última década, a tecnologia de sistemas fotovoltaicos tem mostrado
potencial para se tornar uma das principais fontes de energia para o mundo,
com crescimento contínuo e robusto, mesmo em tempos de crise econômica
e financeira. Visando ampliar o aproveitamento da energia gerada e até
mesmo reduzir os custos do sistema, o projeto de técnicas de controle efi-
cientes apresenta grande importância para este tipo de sistema. Em sistemas
fotovoltaicos o controle é realizado através de conversores de potência, que
são sistemas chaveados. Por este motivo, o foco principal deste trabalho
é a apresentação de estratégias de controle e análise de estabilidade para
sistemas chaveados com uma proposta de aplicação para sistemas de geração
de energia fotovoltaica. As condições de projeto e análise são todas baseadas
em desigualdades matriciais lineares (LMIs).

Inicialmente, uma descrição geral dos sistemas fotovoltaicos é apresentada,
contendo a modelagem de um arranjo fotovoltaico, algumas topologias
comuns de conexão, os principais objetivos, técnicas para a maximização
da potência gerada, dentre outras informações necessárias para o projeto da
técnica de controle proposta para este sistema.

Na sequência é mostrada uma técnica de projeto de estratégias de chavea-
mento, cujo objetivo principal é garantir estabilidade e desempenho de
sistemas comutados. A metodologia usada é baseada na teoria de estabili-
dade de Lyapunov, de modo a descrever condições suficientes para o projeto



da lei de chaveamento em forma de LMIs e resolvê-las usando pacotes com-
putacionais existentes. O método se aplica à classe de sistemas chaveados
onde cada subsistema tem um campo vetorial afim e considera-se uma lei de
chaveamento baseada no máximo entre funções auxiliares. A estabilidade do
sistema em malha fechada é garantida mesmo se modos deslizantes ocorram
em qualquer superfície de chaveamento resultante do projeto. Os resultados
são apresentados para os casos de realimentação completa e realimentação
parcial dos estados do sistema.

Em seguida, uma das principais contribuições da tese, a proposta de uma
extensão da lei de chaveamento para uma classe de sistemas chaveados não
lineares é apresentada. O sistema pode conter não linearidades dependentes
do estado limitadas em setor, como é o caso da não linearidade existente
no modelo de painéis fotovoltaicos. As funções não lineares podem conter
também parâmetros incertos, contanto que a função permaneça dentro dos
limites do setor dado para toda a faixa de valores de interesse do parâmetro.
Além disso, condições de projeto de leis de chaveamento independentes do
equilíbrio são fornecidas e, portanto, neste caso a técnica se torna robusta
a mudanças no ponto de operação desejado. Por fim, considerações sobre
limitar a frequência de chaveamento são discutidas.

A aplicação das técnicas descritas anteriormente para topologias comuns
de conexão de sistemas fotovoltaicos é apresentada em seguida. Alguns
dos desafios superados são a presença de referências variáveis, não lineari-
dades limitadas em setor e medição parcial de estados no mesmo sistema.
A aplicabilidade da metodologia para controlar o sistema fotovoltaico é
ilustrada através de simulações baseadas em um exemplo numérico usando
parâmetros de um sistema real. Como resultado requisitos importantes são
satisfeitos, como o rastreamento do ponto de máxima potência e robustez
com relação aos parâmetros incertos do painel fotovoltaico. Para a obtenção
da robustez foram derivadas equações para determinar um setor que contem
a não linearidade para quaisquer valores dos parâmetros. As dificuldades
e perspectivas para o caso mais complexo (conexão com a rede elétrica)
também são apresentadas.

Motivado pela falta de técnicas de análise de estabilidade de sistemas sec-
cionalmente afins contendo modos deslizantes na literatura atual, condições
LMI suficientes para resolver este problema são propostas, resultando em
outra importante contribuição da tese. As condições são baseadas em uma



função de Lyapunov composta pela combinação convexa de funções quadráti-
cas diferentes para cada região do sistema. As condições propostas incluem
o importante caso onde o ponto de equilíbrio está localizado na fronteira
entre subsistemas afim. Adicionalmente, condições suficientes para análise
independentemente da parametrização das superfícies de chaveamento são
derivadas, isto é, a superfície de chaveamento pode ser desconhecida neste
caso. A nova técnica leva a uma metodologia unificada para a análise de
estabilidade de sistemas seccionalmente afins e de sistemas chaveados afins
com uma superfície de chaveamento previamente projetada.

Esta tese é organizada em sete capítulos, quatro apêndices e referências. O
Capítulo 1 tem o objetivo de contextualizar e motivar de forma breve o as-
sunto da tese. O conhecimento básico sobre sistemas fotovoltaicos necessário
para a aplicação proposta no documento é concentrado no Capítulo 2. O
Capítulo 3 apresenta uma técnica de projeto de uma lei de chaveamento
para o controle de sistemas chaveados com campos vetoriais afim. Esta
técnica serve de base para as principais contribuições teóricas desta tese,
apresentadas nos Capítulos 4, 5 e 6. No Capítulo 4, é apresentado o projeto
de leis de chaveamento para sistemas chaveados contendo não linearidades
limitadas em um setor, enquanto o Capítulo 5 apresenta a aplicação desta
técnica para o controle de sistemas fotovoltaicos. No Capítulo 6, um método
para análise de estabilidade de sistemas seccionalmente afins é introduzida.
Exemplos numéricos são utilizados para ilustrar todas as contribuições da
tese em seus respectivos capítulos. Algumas conclusões são discutidas no
Capítulo 7, incluindo uma lista de sugestões para trabalhos futuros. Por fim,
três apêndices demonstram o equacionamento de ferramentas de circuitos
elétricos trifásicos utilizadas na tese e um apêndice apresenta resumos das
publicações geradas pelo autor durante o período de doutorado.

Palavras-chave: Estratégia de chaveamento. LMI. Geração fotovoltaica.
MPPT.
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1 GENERAL INTRODUCTION

1.1 Presentation

Switched systems is a designation for an extensive class of control
applications (MORSE, 1997). In general terms, this class of applications com-
prises all the dynamical systems that undergo structural changes over time due
to the presence of distinct stages of operation or the presence of restrictions
in certain system variables for safety or physical limits of the device. Sys-
tems containing devices that act as “logical switches” that are controlled by a
switching logic by connecting or disconnecting elements of the system (e.g.
relays and thyristors) are typical examples of switched systems. Switched
systems can be seen as a particular class of hybrid systems (LIBERZON, 2003)
or variable structure systems (DECARLO; ZAK; MATTHEWS, 1988). For each
position of the switches (on or off) the mode of operation of the system is
different, with different properties and structure. The switches are controlled
by a switching logic whose role is to define when each switch must be turned
on or off, thus defining the mode of operation of the system. The design of
this switching ‘rule’ is a crucial step for the correct operation of the controlled
system. This task, however, is not trivial and several studies have been con-
ducted focusing on the development of design techniques that provide min-
imum guarantees of performance and robustness. The following references
provide a good overview of the problem: (LIBERZON; MORSE, 1999), (LIBER-
ZON, 2003), (DECARLO et al., 2000), (BOLZERN; SPINELLI, 2004), (LIN; ANTSAK-
LIS, 2005), (EL-FARRA; MHASKAR; CHRISTOFIDES, 2005), (SUN; GE; LEE, 2002),
(SUN, 2006), (COLANERI; GEROMEL; ASTOLFI, 2005), (XU; ZHAI; HE, 2008).

Numerous applications can be classified as switched systems. As
examples we can highlight the urban traffic control (PAPAGEORGIOU et al.,
2003), chemical processes (MHASKAR; EL-FARRA; CHRISTOFIDES, 2005) and
the power electronic circuits containing electronic switches, such as convert-
ers and inverters (SHIEH; SHYU, 1999), (SIRA-RAMÍREZ, 2003). The converters
are widely used in various applications, including automotive, shipbuilding,
aerospace and computer industries, for DC/DC converters, as well as the trig-
gering of induction machines (motors and generators), for DC/AC converters.
One area of significant use of converters and inverters is in power generation
through renewable sources such as photovoltaic energy, for instance. Obtain-
ing electricity from solar energy has been a major research topic in the last
decades, due to its high reliability and decreasing cost, in addition to being an
abundant and clean source of energy (BUSQUETS-MONGE et al., 2008), (HUANG
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et al., 2006). Among the renewable energy sources, the photovoltaic genera-
tion has a great advantage with regard to maintenance. This is due to the fact
that this system is purely electrical, not containing moving mechanical parts,
unlike wind turbines or solar thermal generation.

Over the past decade, the technology of Photovoltaic (PV) systems
has shown potential to become one of the main energy sources for the world
(BLAABJERG et al., 2011), with continuous and robust growth, even during
times of economic and financial crisis. It is expected that this growth will
continue in the coming years as the global awareness about the advantages
of the PV systems increases. At the end of the year 2010, the global cu-
mulative installed capacity for photovoltaic generation was near to 40GW
and one year later, it was 70GW. In 2012, around 100GW were already in-
stalled globally, which could produce 110TWh of electricity per year (EURO-
PEAN PHOTOVOLTAIC INDUSTRY ASSOCIATION (EPIA), 2013). This amount of
energy is enough to cover the annual power demands of more than 30 million
households. The exponential growth in installed capacity can be observed1 in
Figure 1 and a forecast for the next years is presented in (EUROPEAN PHOTO-
VOLTAIC INDUSTRY ASSOCIATION (EPIA), 2013).

Brazil has a great potential for photovoltaic generation, exhibiting
a high daily average rate of solar radiation, which ranges between 14 and
20MJ/m2 (ANEEL, 2005)2, depending on the region. However, the country
is not among the leading producers of solar energy, since only recently in-
centives by the government agencies have grown for implantation and tech-
nological development in the area of renewable energies. To get an idea,
the installed capacity in the entire American continent in 2013 was around
13.5GW (EUROPEAN PHOTOVOLTAIC INDUSTRY ASSOCIATION (EPIA), 2014a),
which is less than 10% of the worldwide total.

Although around 75% of the photovoltaic systems installed on the
planet are connected to the electrical distribution grid (YUAN; ZHANG, 2006),
solar generation is also an excellent option for stand-alone systems, such as
electric vehicles, satellites and space stations, among others. In fact, one can
realize that this form of generation has vital importance for space systems,
after all, this is the only viable and safe option. There are unmanned satel-
lites that use generation of energy from radioactive materials, but in manned
space stations, the containment of these materials and the crew in a small
space becomes risky, as in the case of the International Space Station (ISS),

1Acronyms used in Figure 1: Rest of the World (ROW); Middle East and Africa (MEA); Asia
Pacific (APAC).

2Recall that 3.6MJ/m2 are equivalent to 1kWh/m2.
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Figure 1: Evolution of global cumulative installed capacity 2000-2013.
Source: EPIA (EUROPEAN PHOTOVOLTAIC INDUSTRY ASSOCIATION (EPIA),
2014b).

(LUQUE; HEGEDUS, 2003, p.782). In space systems, it is common that the best
use of solar energy received is performed by tracking the position of the sun
and then reorienting the solar panels. Examples of control of solar generation
for small satellites can be found in (PETER; AGARWAL, 2010), (CHEN; CHEN,
2010).

Due mainly to the large number of PV systems connected to the grid,
to determine the Maximum Power Point (MPP) possible to be generated by
the PV array is usually an essential goal for this type of system. As such,
many methods for Maximum Power Point Tracking (MPPT) have been de-
veloped and implemented. These MPPT techniques vary in complexity, re-
quired sensors, convergence speed, cost, range of effectiveness, hardware im-
plementation, popularity, and other aspects (ESRAM; CHAPMAN, 2007). Such
methods, as well as the overall control of the system, are performed using
power electronic converters.

The converters are a key technology for PV systems (BLAABJERG et al.,
2011), hence the development of this area relies on research to improve both
the structure of the converters and the control techniques applied to them, in-
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creasing their efficiency and reducing the system costs. The reference (GOET-
ZBERGER; HOFFMANN, 2005) presents the costs of the system in a general
manner and some other reasons for price reductions over time. Usually, the
control techniques for switched systems do not act directly in controlling the
position of the switches of the converters, the techniques only generate a de-
sired reference waveform (or average value) to an element that performs Pulse
Width Modulation (PWM), as in (YAN; UTKIN; XU, 2007) for instance. An-
other type of control of switched systems is the one that directly determines
the position of the switches through a specific switching rule. Some existing
switching rule design techniques are based on the Lyapunov stability theory
(LIBERZON, 2003), as in (BOLZERN; SPINELLI, 2004) and (TROFINO et al., 2011),
for instance.

A difficulty for designing switching rules is the occurrence of slid-
ing modes (UTKIN, 1992), which may destabilize the system if not properly
treated, but it is necessary for maintaining the stability of several important
applications, as the power converters, for instance. The existence of sliding
modes is a challenge even for the stability analysis of Piecewise Affine (PWA)
systems, such as the switched affine systems with a given state-dependent
switching rule. The problem of stability analysis for hybrid and switched
affine systems has received considerable attention over the past two decades.
Several approaches to construct Lyapunov functions and provide sufficient
conditions for stability are now available in the literature, see for instance
the surveys (DECARLO et al., 2000), (LIBERZON, 2003). Considering the case
of switched affine systems, the use of Piecewise Quadratic (PWQ) Lyapunov
functions is an interesting approach to reduce conservativeness compared to
a quadratic Lyapunov function. However, it is a common misunderstanding
in the literature to believe that if there is a continuous PWQ function that is
positive definite and decreasing with time along each vector field of a PWA
system then the system is stable, see (SAMADI; RODRIGUES, 2011) for details.
Even Piecewise Linear (PWL) systems composed exclusively by stable sub-
systems can become unstable in the presence of a sliding mode (SAMADI;
RODRIGUES, 2011), (JOHANSSON, 2003).

The methodologies proposed in this thesis consider the control and
stability analysis based on Lyapunov functions and the switching rules de-
sign are expressed in the form of a Linear Matrix Inequality (LMI). Due to the
flexibility in treating problems of mixed nature and the availability of power-
ful software packages for solving LMI problems, they have been widely used
to solve problems of robust control and filtering. In the context of linear un-
certain systems, several important results are available in (BOYD et al., 1994).
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However, much work remains to be done in order to extend these results to
switched and nonlinear systems, in special to renewable energy generation
systems.

1.2 Objectives

Within the presented context, the main objective of this work is the
development of new control techniques and stability analysis methods for
switched systems complying with the following requirements:

• the designed control system must present minimum requirements for
robustness with respect to parameter variation (in particular solar en-
ergy received and temperature of the solar panel);

• the design technique developed must be flexible for extension to other
classes of systems with nonlinear functions of the states and uncertain
parameters or with saturation and hysteresis and for the inclusion of
minimum guarantees of performance (such as guaranteed cost or atten-
uation of the input-output gain, H•);

• the technique developed must be able to lead to switching strategies
with guaranteed tracking of constant or sinusoidal references, either in
the situation where all states are available from measurement or in the
most critical (and more realistic) situation where only part of the states
is available;

• the technique developed must have potential for applications in pho-
tovoltaic power generation with the maximization of the generated
power;

• the design technique developed should use LMIs as it provides flexi-
bility in the treatment of mixed problems, advantages due to convexity
properties and the possibility of having powerful software packages for
numerical solution;

• the stability analysis technique should be used to check stability of
switched systems even with the occurrence of sliding modes.

In this thesis, the results related to switched systems obtained during
the Ph.D. program and some prospects for further research will be presented.
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Most of the switched systems to be considered are the ones present in photo-
voltaic generation systems, such as the power converters, although the tech-
niques are general enough to be applied to any type of switched system. The
theoretical results are verified through simulations using models and param-
eters that reproduce the actual application conditions. General characteristics
of the proposed method and connections with other related methods are pre-
sented in Section 3.3.

This work is a continuation of earlier research conducted by the au-
thor of this thesis, the thesis supervisor and other collaborators, regarding the
application of robust control techniques for switched systems. In addition to
the presentation of the new results about the control of switched systems, this
thesis also contains the application of the results to photovoltaic generation
systems. In the sequel, a brief history of some of the previous work of the
team is described.

The reference (COUTINHO, 2006) describes preliminary attempts to de-
sign a switched control system for induction motors via LMIs, while (DEZUO,
2010) presents a new technique including conditions for stability in the pres-
ence of sliding modes for the induction motor. However, in both cases it was
not possible to obtain numerical solutions that would enable a conclusion
regarding the application of the methods at the time. The reference (ASS-
MANN, 2008) presents a study on switching strategies for variable structure
systems. Results for the control of a step down voltage converter (Buck) con-
sidering full state feedback of states and also output feedback were obtained.
In (SCHARLAU, 2013), conditions that guarantee stability of the system even
under sliding mode dynamics are proposed. This reference shows good re-
sults achieved by the team regarding the control of induction motors and wind
generation systems.

1.3 Description of chapters

This thesis is organized in the following chapters:

• Chapter 2: describes the photovoltaic systems in a general manner, pre-
senting the modeling of a photovoltaic array, usual connection topolo-
gies, objectives for the system, techniques for maximizing the power
generation, among other information of which prior knowledge is es-
sential for the design of control techniques for this type of system.

• Chapter 3: here a method is proposed to design switching rules that
drive the state of switched dynamical systems to a desired equilibrium



1.3 Description of chapters 43

point. The method applies to the class of switched systems where each
subsystem has an affine vector field. The proposed method considers
a switching rule using the ‘max’ composition of auxiliary functions.
The results are given in terms of LMIs and ensure global asymptotic
stability of the reference tracking error dynamics even if sliding modes
occur in any switching surface of the system. The switching rules are
based on full and partial state measurement. The motivation for using
the proposed method, advantages, limitations and connections with re-
lated methods are presented and, at the end, two examples are used to
illustrate the approach.

• Chapter 4: proposes an extension of the switching rule design tech-
nique from the previous chapter for a class of nonlinear switched sys-
tems. The system may contain state-dependent sector-bounded nonlin-
ear functions. These functions may also contain uncertain parameters
as long as the function stays inside the given sector bounds for the range
of parameter values of interest. Moreover, a method for designing the
switching rule that is independent of the equilibrium is also provided
and, therefore, the technique becomes robust to changes in the desired
operation point. Finally, some considerations about limiting the switch-
ing frequency are discussed. Two examples are used to demonstrate the
results.

• Chapter 5: contains the application of the techniques described in the
previous chapters to two of the most common connexion topologies
of a photovoltaic system. Some of the overcome challenges are the
presence of variable references and sector-bounded nonlinearities in
the same setup. The applicability of the methodology to control the PV
system is illustrated through simulation results based on a numerical
example using real system parameters. As a result, important require-
ments are achieved, such as the MPPT and robustness with respect to
the uncertain parameters of the PV array. The issues and perspectives
for the more complex case (connection to the utility grid) are presented
next.

• Chapter 6: offers new sufficient conditions for stability analysis of
PWA systems. The conditions are based on a convex combination of
PWQ Lyapunov functions and are given in terms of LMIs. The method
verifies exponential stability of the state dynamics even in the pres-
ence of non-destabilizing sliding modes. The conditions can handle
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the important case where the equilibrium point is located at a boundary
between affine subsystems. Additionally, sufficient conditions for sta-
bility independently of the parameterization of the switching surfaces
are derived, that is, the switching surface may be unknown in this case.
The new method presented in this chapter leads to a unified methodol-
ogy for stability analysis of PWA systems and switched affine systems
with a previously designed switching surface. Four examples are used
to illustrate the approach.

• Chapter 7: presents the main conclusions and some prospectives for
continuation of the work.
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2 PHOTOVOLTAIC GENERATION SYSTEMS

2.1 Introduction

The photovoltaic cell is a device that converts solar energy into electric
energy through the photovoltaic effect. Solar cells are widely used in terres-
trial and space applications. In general, it is desired that the cells operate
at their maximum power point, which varies according to the panel temper-
ature, level of incoming radiation and other effects caused by aging of the
panel (DURGADEVI; ARUSELVI; NATARAJAN, 2011).

The mathematical model of a PV array is based on theoretical equa-
tions that describe the operation of photovoltaic cells, which can be obtained
by using an equivalent circuit of the cells. The control of a PV system and
the treatment of the power generated are achieved through voltage converters
arranged in one of several different topologies, isolated or grid-connected,
and some of these topologies can be seen in (KJAER; PEDERSEN; BLAAJBERG,
2002).

This chapter is focused on the presentation of a basic theoretical back-
ground, exploring mainly the following aspects: mathematical model of the
array and its current-voltage characteristic, connection topologies of the con-
verters, MPPT methods and other auxiliary tools necessary for the controller
design. Moreover, some preliminary concepts related to switched systems
will be presented. The objective is to contextualize the reader regarding the
properties, characteristics and tools used in the analysis of switched systems
through a brief review of the main studies published on the subject. Initially,
the characteristics and properties that distinguish the class of switched sys-
tems will be addressed, followed by the different types of switching. Also,
the structure of a switching rule based control system will be addressed.

2.2 PV system

The simplest (idealistic) model of a photovoltaic cell consists of a cir-
cuit containing a current source in parallel with a diode (BLAABJERG et al.,
2011), (KJAER; PEDERSEN; BLAAJBERG, 2005). In a more precise model, non-
idealities represented through resistors in series and in parallel are considered,
as shown in Figure 2.

Deriving the equation for the circuit of Figure 2, considering the non-
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Figure 2: Equivalent circuit of a photovoltaic cell.

ideal diode model, leads to (VILLALVA; GAZOLI; FILHO, 2009)

icell = iph � ir
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The symbols on the Equations (2.1)-(2.4) represent the quantities de-
fined below.

Variables:

• Vcell - voltage at the output terminals of a cell;

• icell - current at the output terminals of a cell;

• iph - photocurrent;

• ir - reverse saturation current of the cell;

Constants (provided in a datasheet or determinable):

• Rs - series resistance of the cell;

• Rp - parallel resistance of the cell;
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• e - electron charge (1.6⇥10�19 C);

• h - quality factor of the p-n junction;

• k - Boltzmann constant (1.38⇥10�23 J/K);

• Tr - temperature of reference (298K, i.e. 25oC);

• Gr - radiation intensity of reference (1000 W/m2);

• isc - short circuit current per module;

• Voc - open circuit voltage per module;

• g - temperature coefficient of isc;

• irr - reverse saturation current of reference;

• Eg - energy band gap of silicon (1.1 eV);

Input parameters:

• T - temperature of the cell, in Kelvin;

• G - intensity of the solar radiation received, in W/m2.

Note in Equation (2.1) that the variable icell cannot be isolated to have
its value determined algebraically, but it is possible to apply the Newton’s
method to determine the value of icell in only a few iterations for a given volt-
age Vcell and input parameters T and G. Therefore, it is possible to determine
the characteristic I-V of the cell by using Equation (2.1). For the simulations
presented in this thesis, the algorithm for determining the value of icell uses
the Newton’s method in the same way presented in (CASARO, 2009), whose
operation is shown to be suitable and fast.

A full PV array, or panel, consists of a given configuration of photo-
voltaic modules in series (Ms - number of modules in series) and in parallel
(Mp - number of modules in parallel), where each commercial module con-
sists of a number Ns of cells in series.

Consider Vpv and ipv as, respectively, the output voltage and the output
current of the entire PV array. To compute ipv based on the values of Vpv, T
and G, similar to the way it was previously done for icell , simply replace

Vcell =
Vpv

NsMs
, (2.5)
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in the Equation (2.1) and ipv is then given by

ipv = Mpicell , (2.6)

as it can be deduced for the illustrative PV array in Figure 3.

Figure 3: Illustrative diagram of a photovoltaic array.

Using Equations (2.5) and (2.6), it is possible to write a more general
version of the Equation (2.1) that applies to an array with any number of
modules and cells, which is

ipv = Mpiph �Mpir
✓

exp
✓

e

hkT

✓
Vpv

MsNs
+

ipvRs

Mp

◆◆
�1

◆
. (2.7)

Thus the PV array can be represented by a voltage-controlled current
source, as shown in Figure 4.

Note the capacitor C added to the output of the PV array in Figure
4, which is necessary because the current source requires a closed circuit to
function properly. The presence of C also serves to prevent the direct con-
nection between the current source (which forces the current to change in-
stantaneously) and the input inductor of some types of converters that can be
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Figure 4: Equivalent circuit of a photovoltaic array.

coupled to the output of the array. Moreover, the voltage on C can be treated
as a state variable, which facilitates the control of the voltage of the PV array.

2.2.1 I-V characteristic

Using the Equation (2.7) it is possible to plot the I-V characteristic
curve of the array (or of a module or a cell), whose common waveforms are
shown in Figure 5(a) as well as the location of the MPP. With the same data
it is possible to trace the curve P-V , shown in Figure 5(b), where Ppv = ipvVpv
is the power provided by the array and the MPP is also indicated.

The polycrystalline module KC200GT from the manufacturer Ky-
ocera, which contains 54 interconnected photovoltaic cells, was used in all
the simulations presented in this document. The catalog data for this module
in the Standard Test Conditions (STC), i.e. T = 25oC and G = 1000 W/m2,
are shown in Table 1. Considering only 1 module, the curves of Figure 6
show the influence of the variation of T and G on the I-V curve.

Usually the parameters Rs and Rp are not given in the datasheet of the
PV modules, but they can be obtained through the given data according to
the method presented in (CASARO, 2009) or estimated as in (ATTIVISSIMO et
al., 2012).

2.2.2 Architectures of photovoltaic systems

There are several possibilities of converter topologies for applications
in the photovoltaic power generation (HUANG et al., 2006), (KJAER; PEDERSEN;
BLAAJBERG, 2005), (HAEBERLIN, 2001), (SCHIMPF; NORUM, 2008), and the
choice of a suitable connection structure is one of the main research topics
related to the subject. Some of the factors that may influence the choice of
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Figure 5: (a) I-V characteristic curve. (b) P-V curve. In both cases, the data
of the Table 1 was used with only 1 photovoltaic module.
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Parameter Value
Voltage Vpv in MPP 26.3V
Current ipv in MPP 7.61A

Open-circuit voltage (Voc) 32.9V
Short-circuit current (isc) 8.21A

Temperature coefficient of isc (g) 3.18⇥10�3A/oC
h 1.2
Rs 5mW
Rp 7W

Table 1: Data of the KC200GT photovoltaic module.

the topology of the converters are the cost, the physical space available and
mainly how the PV system is used: stand-alone or connected to utility grid.
This section presents some of the topologies in order of structural complexity,
citing some of its advantages and disadvantages. For the topologies contain-
ing converters between Direct Current (DC) and Alternating Current (AC),
only the most usual case where the load or grid is in a three-phase AC con-
nection is considered here.

The reference (TEODORESCU; LISERRE; RODRÍGUES, 2011, p.27) lists
general control objectives for the structure with connection to the grid.
Among them, the main objective considered in this thesis is the achievement
of energy efficiency via MPPT. Other possible control objectives include
the operation with unitary Power Factor (PF) through synchronization with
the grid, the anti-islanding (see Section 2.2.4), the imposition of limits on
the Total Harmonic Distortion (THD), stability under variations in the grid
voltage, detection of partial shading of the panel, and auxiliary functions for
the grid as harmonic compensation and reactive power compensation.

In this thesis, the following will be treated: the design of a control
technique for some of these topologies, aiming to explore the possibilities of
partial state measurement; robustness to variations in the input parameters and
in the desired operation point; and the achievement of the control objectives
previously mentioned.

2.2.2.1 Local topology without converters

Topologies without converters, such as shown in Figure 7 applied to
charging a battery (without grid connection) or feeding a load, although pos-
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Figure 6: (a) I-V curves for several levels of solar radiation G (T = Tr =
25oC). (b) I-V curves for different temperatures T (G = Gr = 1000 W/m2).
The MPP of each curve is indicated by the symbol •.

sible, are almost not used due to their disadvantages. Their only benefit is
the low cost. As disadvantages, note that the voltage at the terminals of PV
array is fixed to be equal to the voltage of the battery (if it is the case); it is a
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system that only operates in open loop. Thus, it is not possible to attain the
required voltage for the MPP unless the voltage of the battery coincides with
it, but there is still no robustness with respect to T and G. In addition, in case
the battery is replaced with a load, it is not possible to adjust the voltage on
it. The operating point would be determined by the intersection between the
characteristic curve I-V and the load line (COELHO; CONCER; MARTINS, 2009),
as shown in Figure 8, whose slope is the inverse value of the load resistance.

Figure 7: Local topology without converters.

2.2.2.2 Local topology with a DC/DC converter

The topology shown in Figure 9 is the most appropriate to treat local
DC loads or battery charging. With this structure, it is possible to maintain
the output voltage Vo at a constant value, which is usually desirable in the
case of having a local load. Even if there is a battery in the output, which
keeps Vo fixed, it is still possible to use the DC/DC converter to regulate Vpv,
thus performing MPPT to raise the energy efficiency of the system.

It should be noted that the choice of a proper DC/DC converter is
of great importance for making the MPPT possible. In general, the step-
down (Buck) converters or the step-up (Boost) converters are chosen for being
simpler and less expensive. However, when the goal is to perform MPPT
these converters may not be suitable in some cases. Consider that in steady
state Vo will have a fixed desired value. When using the Buck converter, we
have that Vpv � Vo; when using the Boost converter, we have Vpv  Vo. It is
easy to realize that if the voltage Vpv needed to reach the MPP in steady state
is not within the ranges specified above for the respective converters, it is
not possible to perform the MPPT and thus the system operates with reduced
efficiency (HU; MA; LIN, 2008).

Because of the previously exposed reasons, the best type of converters
to ensure the realization of MPPT are the converters that can do both step-
down and step-up operations, such as the Buck-Boost, Ćuk, Sepic and Zeta
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Figure 8: I-V characteristic curve (blue) and load line (red). The data of the
Table 1 was used with only 1 photovoltaic module and the load considered
was R = 2W. The operating point is denoted by the symbol •.

Figure 9: Local topology with a DC/DC converter.

(COELHO; CONCER; MARTINS, 2009).
The topology presented in Figure 9 has several practical applications

in autonomous systems, such as power generation for the electronics of satel-
lites or space stations, for instance. These components typically operate with
small values of voltage, allowing the use of the converter Buck as in (PETER;
AGARWAL, 2010). Another application using this topology can be found in
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(CHIU; OUYANG, 2011).

2.2.2.3 Grid-connected topology without a DC/DC converter

The topology presented in Figure 10 is connected to the load or grid in
three-phase AC and thus the use of DC/AC converters, as the Voltage Source
Inverter (VSI), is required. This layout has the advantage of economy of
hardware in relation to the structure that will be presented in the next section,
for not having an additional DC/DC converter. As a disadvantage we can
cite the greater complexity introduced in the design of the control techniques,
which must perform both the MPPT and the synchronization with the grid on
the same converter.

Figure 10: Grid-connected topology with a DC/AC converter only.

The Figure 10 also shows the need for a low-pass filter1 between the
grid and the output of the inverter in order to reduce the harmonic compo-
nents present in the output waveform of the converter (basically formed by
steps) and adapt it to the sinusoidal wave of the grid. The filter also has the
interesting feature of allowing the control of the currents flowing into the grid
by making these as state variables of the system (currents in the inductors of
the filter). This single stage topology with connection to the three-phase grid
can be seen in (BLAABJERG et al., 2011), (YAZDANI; DASH, 2009). An exam-
ple with connection to a single-phase sinusoidal grid can be seen in (CIOB-
OTARU; TEODORESCU; BLAAJBERG, 2005). Among the most common filters,
the LCL (inductor-capacitor-inductor) filter is employed to achieve decreased
switching ripple with only a small increase in filter hardware as compared to
the ripple of the L or LC filter (MARANDI; SOWMYA; BABU, 2012), (SANDEEP;
MURTHY; KULKAMI, 2014).

A detailed description of various types of DC/AC converters can be
found in (MARTINS; BARBI, 2008) and their components and applications in
(BOSE, 2002), (BOSE, 1996).

1The inductive component used in this type of filter is commonly known as “choke coil”.
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2.2.2.4 Grid-connected topology with a DC/DC converter

The Figure 11 presents the most common topology in the literature,
which is due to its main advantages: (i) control of MPPT held in the DC/DC
converter and synchronization with the grid performed in the DC/AC con-
verter, separately; (ii) the possibility of MPPT for any Vo, as long as the
proper choice of the DC converter is made, as commented in Section 2.2.2.2.
This topology also presents the filter between the inverter and the grid for the
same reasons as in Section 2.2.2.3. This system configuration can be seen in
(TEODORESCU; LISERRE; RODRÍGUES, 2011, p.27), for instance.

Figure 11: Grid-connected topology with both DC/DC and DC/AC convert-
ers.

In practice, most topologies require an energy storage element be-
tween the DC/DC and the DC/AC converters, which also decouples the out-
put of the DC/DC converter from the input of the DC/AC converter (MOHAN;
UNDELAND; ROBBINS, 2003).

2.2.3 MPPT techniques

The goal of performing MPPT is present in most of the available refer-
ences on control of photovoltaic systems, which demonstrates the importance
and necessity of research in this direction and the reason why there are sev-
eral techniques for MPPT available nowadays, with 19 of them presented in
(ESRAM; CHAPMAN, 2007). In general, these techniques consist of simple im-
plementations which serve to generate a reference to Vpv at each instant of
time, until this reference becomes the one that occurs at the MPP.

The MPPT techniques are necessary because when the radiation in-
tensity G or the temperature T vary, the curves I-V or P-V also change which
causes the MPP to change its I-V coordinates, as shown in Figure 6.

Note that, by replacing ipv from (2.7) in Ppv = ipvVpv, we get

Ppv = MpiphVpv �Mpir
✓

exp
✓

e

hkT

✓
Vpv

MsNs
+

ipvRs

Mp

◆◆
�1

◆
Vpv (2.8)
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and recalling that the MPP occurs in the only peak of the characteristic curve
P-V presented in Figure 5(b), we have that the MPP occurs when

∂Ppv

∂Vpv
= ipv +Vpv

∂ ipv

∂Vpv
= 0. (2.9)

However, (2.9) is clearly not a simple equation to be treated, as T and G are
unknown and the equation must be solved for Vpv, which cannot be isolated.
The MPPT techniques are developed in order to circumvent this difficulty.

One of the simplest MPPT techniques is known as Constant Voltage
(CV) and is based in Figure 6(a). Note in that figure that the voltage Vpv at
MPP remains almost constant (around 70% to 80% of the open circuit voltage
Voc) for a wide range of radiation values, and thus it is reasonable to adopt
V re f

pv to be equal to 75% of Voc, that is, a constant reference. Nevertheless,
this technique fails when there is temperature variation, as can be seen in
Figure 6(b).

Another straightforward technique, but one that solves the preceding
problem, is known as Perturb & Observe (P&O). This technique is used in
conjunction with the control method proposed in this thesis and thus it will
be explored in more detail. A miscellaneous of other MPPT techniques, com-
parisons between them and efficiency tests can be found in (DE BRITO et al.,
2010). In the same reference, the technique that obtained the highest effi-
ciency index is the one known as b method from (JAIN; AGARWAL, 2004),
which consists of treating the Equation (2.9) via an intermediate variable b

through changes of variables.
In Section 2.2.3.1 a P&O algorithm (available in the literature) that

generates references for the voltage variable is presented, while in Section
2.2.3.2 a P&O algorithm is proposed with the purpose of generating refer-
ences for the current variable. This second algorithm was developed espe-
cially for the needs of this work, but it is general enough for the joint ap-
plication with other control techniques that operate based on the error of the
current variable of the PV system.

2.2.3.1 Voltage P&O algorithm

In the Voltage P&O MPPT algorithm, a small perturbation is intro-
duced at each iteration to change the reference for the voltage Vpv in order to
force the operating point to move closer to the MPP. This algorithm compares
the power measured in the current iteration with the power of the previous it-
eration to determine the direction of the next disturbance (ARMSTRONG; HUR-
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LEY, 2004), (JAMRI; WEI, 2010). Based on the P-V characteristic presented in
Figure 5(b), if the power increases due to the disturbance then the next dis-
turbance will remain in the same direction. If the operating point exceeds the
peak power, the power shall decrease and then the direction of the disturbance
is reversed.

When the MPP is reached, the operating point oscillates around the
peak power (ARMSTRONG; HURLEY, 2004) because the algorithm disturbs the
reference continually reversing direction at each iteration. To keep a small
variation in the power, the size of the perturbation is kept small, although it
causes slower system responses during transients. Therefore, there is a com-
promise between the precision and the speed of convergence of the algorithm.

The algorithm of this MPPT technique can be seen in the flowchart of
Figure 12, where the output of the algorithm is V re f

pv .

Figure 12: Flowchart of the P&O algorithm for voltage control.

In summary, the algorithm of Figure 12 implies in subtracting an small
amount DV re f

pv from V re f
pv if it is observed that variations in power and voltage
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have opposite signs or in adding DV re f
pv to V re f

pv if it is observed that the vari-
ations have the same sign, with respect to the previous disturbance in V re f

pv .
The value of DV re f

pv is chosen a priori, typically around 1% of the maximum
variation that can occur in Vpv (which assumes values between 0 and Voc).

Another popular version of the P&O algorithm has as its output the
duty cycle d to be imposed on the system through PWM. In this version,
the algorithm increases Dd in d, if the variations of voltage and power have
opposite signs or decreases Dd in d otherwise (JAMRI; WEI, 2010). The value
of the variation Dd of the duty cycle is also typically chosen as 1% of the
maximum possible variation in d (which ranges between 0 and 1). For this
thesis, we opted for the version with V re f

pv as output for compatibility with the
method proposed here, that does not use PWM.

2.2.3.2 Current P&O algorithm

This algorithm is based on the P-I characteristic of the arrangement,
which has a similar shape to the curve P-V of Figure 5(b). Likewise, ob-
serving the signs of the variations in Ppv and ipv when a small perturbation
is applied to ipv, we can infer on which side of the MPP curve the operation
point is and what action should be taken to bring it closer to the MPP. Thus
the algorithm to make changes in the reference for the current (ire f

pv ) is exactly
the same as shown in Figure 12, simply by replacing V by i, as shown in
Figure 13.

MPPT algorithms that generate references for the current of the PV
array are less common in the literature, and they are present only in cases of
current feedback control. An example is the MPPT algorithm proposed in
(TAN; GREEN; HERNANDEZ-ARAMBURO, 2005) that, in addition to generating
the current reference, uses perturbations Dire f

pv with variable amplitudes, aim-
ing at a faster convergence of the algorithm to the MPP and less oscillation in
the power after the MPP is achieved.

2.2.4 Grid model

The grid-connected systems presented in this thesis consider the util-
ity grid voltage as a pure sinusoidal wave and constant amplitude, i.e. Vg =
A sin(wt). In the case of a balanced three-phase grid, the voltages in each
phase (Vga, Vgb, Vgc) have the same amplitude and a phase shift of 120o

between them. This model represents an approximation of the actual grid,
because the grid voltage may not behave as a pure sinusoidal wave, some-
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Figure 13: Flowchart of the P&O algorithm for current control.

times containing harmonic components that could not be ignored (BENAVIDES,
2007).

Furthermore, in the real grid, undesirable phenomena such as “island-
ing” may occur. Islanding is a condition that can occur in grid-connected PV
systems in which a portion of the grid that contains both load and generation
is isolated from the rest of the network. All generation sources over which the
electrical system has no direct control, such as grid-connected PV systems,
should have an anti-islanding system, that is, an inverter that is able to detect
the islanding condition and to stop energizing the lines while subject to the
islanding. This phenomenon is undesirable because it can damage consumer
equipment, interfere with the restoration of normal power distribution from
the electrical system, and create risks to workers of transmission lines main-
tenance for causing the phases to remain energized when it is assumed they
are disconnected from all energy sources (IEEE STANDARDS, 2000). A survey
about islanding detection methods can be found in (BALAGUER et al., 2008).
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2.2.5 Coordinate transformations and reference frames

The dynamic equations of the inverter-grid system can be written di-
rectly in a three-phase coordinate basis, however, the representation is usu-
ally done in two-phase coordinates to simplify the model. When the control
technique is based on a biphasic system of coordinates, the coordinate trans-
formation that perform the conversion between three-phase and two-phase
are necessary in order to adapt the variables of the three-phase system to the
control block.

Another transformation of interest is the one that causes the biphasic
coordinates to be at a certain rotating reference frame. One of the major ad-
vantages of this is being able to choose a specific reference frame that makes
the representation of the state variables to be constant in steady state. More-
over, with two-phase coordinates in a synchronous reference frame the imple-
mentation of a synchronization method between the variables of the inverter
and the grid is simplified.

2.2.5.1 Coordinate transformation from three-phase to two-phase

The Clarke’s transformation, or ab0, given in Equation (2.10) can be
used to transform three-phase variables into two-phase variables, with the
characteristic of preserving the amplitude and the frequency of the three-
phase variables. In this work, it will be considered the ab transformation,
ignoring the 0 component because of the assumption that the system is bal-
anced and therefore this component is always zero.
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In Equation (2.10), f
a

, f
b

and fa, fb, fc are components of a generic vector
variable f represented in the two-phase ab and the three-phase abc coordi-
nates, respectively. The zero coordinate is null in balanced three-phase sys-
tems and thus the quantities will be represented only as f

ab

, i.e. without the
0 component in the notation for convenience. Finally, the pseudo-inverse of
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The deduction of the Equations (2.10), (2.11) as well as the orientation of the
coordinate systems used can be found in Appendix B.

2.2.5.2 Reference frame transformation from stationary to syn-
chronous

In the case of the photovoltaic systems studied in this thesis, the state
variables that are sinusoidal in steady state are the grid voltage and the current
delivered to the grid by the DC/AC converter. As shown in Section 2.2.4, the
grid voltage has a constant frequency (w) and the switching in the inverter
must be such that, in steady state, the current delivered must have the same
frequency w and be in phase with the grid voltage, in order to obtain unitary
power factor. The conversion between the reference frames is accomplished
through the Park’s transformation (BARBI, 1985) shown in Equation (2.12),
for which the deduction and orientation of the Cartesian axes are shown in
Appendix C.


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In Equation (2.12), fd , fq and f
a

, f
b

are components of a generic variable f
respectively represented in the synchronous dq and stationary ab reference
frames. In the same equation, f is the angular position of the rotating syn-
chronous reference frame with respect to the stationary frame.

The inverse of (2.12) is given by

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The deduction of Equation (2.13) can also be found in Appendix C.
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It is intended to synchronize the reference frame to the grid and, there-
fore, it must rotate with a constant angular velocity w , that is, f = wt and f

must be equal to the angular position of sinusoidal waveform of the voltage of
the grid. Note that while w is known, it is still necessary to measure the grid
voltage to determine its angular position f at each instant of time. The next
section is devoted to present a method that provides this synchronization.

2.2.6 Grid synchronization

The control of the DC/AC converters (inverters and rectifiers) con-
nected to the grid requires a synchronization block that provides the angular
position of the grid at any instant of time. This synchronizer must also be
suitable for the conditions of the power grid, in order to be immune to sev-
eral possible interferences, such as harmonics, voltage amplitude variations
between phases, frequency variations, measurement noise, among others. If
the operation of the synchronizer is not appropriate, then there may be degra-
dation of the converter operation and even instability (DA SILVA, 2004). This
section describes a vector synchronization method based on the voltage vector
of the grid.

As in vector control algorithms in general, the case of the control tech-
nique for DC/AC inverters presented in this document requires knowledge of
the angular position of the grid voltage at each instant of time. This informa-
tion is used in the synchronization of the waveforms of the output current of
the converter to the grid voltage, in order to obtain unitary power factor and
thus deliver only active power to the grid. It may also be desirable to supply
some reactive power to the grid in some cases, although the knowledge of the
angular position is still required.

Due of the need to know the angular position at each calculation cycle
of the control algorithm, the synchronizer must be fast, avoiding the direct
calculation of trigonometric functions, which would require a much higher
processing time than the method that will be presented in the sequence.

According to (SVENSSON, 2001), it is possible to build a synchronizer
that provides the angular position simply by acquiring the values of the three-
phase voltage. These values are used to calculate the voltages in ab coor-
dinates, as shown in Equation (2.10). After the coordinate transformation, a
low-pass filter is usually applied to each voltage component to eliminate the
possible existence of noise. The filter introduces a phase delay that can be
easily compensated with the method presented in (DA SILVA, 2004). In princi-
ple, in this thesis, the grid voltage will be considered ideal and therefore the
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filter is discarded.
Finally, it is possible to calculate the sine and cosine of the angle of

the grid voltage vector, by dividing the a and b components by the norm of
the vector. Thus, we obtain the information necessary for transforming the
components of the voltage and the current from the static reference frame
ab to the synchronous reference frame dq of Equation (2.12). The method
of vector synchronization is summarized in Figure 14, where the Low-Pass
Filter (LPF) is illustrated and the trigonometric relations presented can be
easily obtained from the right triangle formed by the vector module and its
components.

Figure 14: Vector synchronizer based on the utility grid voltage.

2.3 Switched systems

As mentioned in Section 2.2.2, the control of PV systems is performed
through power electronic converters, which are systems containing one or
more controllable switching devices. For this reason, the control problem of
a PV system can be viewed as a problem of designing a switching rule for the
converters. In this case, the PV system and the converters can be represented
as a switched system for which a switching rule must be designed in order
to achieve some performance requirements for the closed loop system. This
will be the focus of the next chapters. We end this chapter by presenting
some important aspects of switched systems that are particular cases of hybrid
systems.

Hybrid systems is a designation for systems where two types of dy-
namics coexist and interact: a continuous-time dynamic (typically modeled
by differential equations) and other composed of discrete events (typically
modeled by automata with finite or infinite states) (LIBERZON, 2003). As ex-
amples of events that produce a hybrid behavior, it is possible to mention
the opening and closing of a valve or an electronic switch, such as the ones
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present in the power electronic devices used to control the PV systems. The
fact that there are many practical examples with hybrid systems features is a
strong motivation for research in this area.

The research involving hybrid systems has very interdisciplinary char-
acteristics. This is because the studies have been made by different scientific
communities, each treating the issue within their own approaches. For ex-
ample, researchers from computer science focus their work in the discrete
behavior of the hybrid system, treating the dynamics in continuous time in
a simplified form. On the other hand, researchers at the system control area
emphasize the work in the dynamic properties of continuous time of hybrid
systems (LIBERZON, 2005). In this thesis we give emphasis to the second ap-
proach, treating the hybrid systems as dynamic systems with continuous-time
and representing the switched discrete events as isolated events. Thus, it is
possible to distinguish a particular class of hybrid systems, called switched
systems.

A switched system can be defined as a dynamic system composed of
a family of subsystems with dynamic continuous-time and a law that orga-
nizes the switching between them (LIBERZON; MORSE, 1999). Each subsys-
tem corresponds to an operation mode of the switched system. It is possible
to obtain a switched system from a hybrid system disregarding the details
about the behavior of the discrete events, and instead of that, considering all
possible switching signals for a given class. Therefore, switched systems can
be seen as an abstraction that corresponds to a particular case of a higher
level hybrid systems. Typically, this abstraction generates a system with sim-
pler description, but with more solutions than the original system (LIBERZON,
2005). More information about the relationship between hybrid systems and
switched systems can be seen in (HESPANHA, 2004).

A switched system can be mathematically represented by a differential
equation of the form .x(t) = f

s

(x(t)) (2.14)

where { fi : i 2 Im} is a family of sufficiently regular functions (at least lo-
cally Lipschitz2) from Rn to Rn, Im is an index set and s : [0,•) ! Im is
a piecewise constant set valued function referred to as switching signal. In
this context, a piecewise constant set valued function is a signal that has the
following characteristics: it presents a finite amount of discontinuities in any

2A function f (x) is said to be locally Lipschitz in the domain D ⇢Rn if all points in D have a
neighborhood D0 such that f satisfies the Lipschitz condition (k f (t,x)� f (t,y)k  Lkx� yk) for
all points in D0 with a Lipschitz constant L > 0. The symbol kxk corresponds to the Euclidian
norm of x 2 Rn.
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finite time interval and it is constant between two consecutive discontinuities.
When a switched system has only linear subsystems, it is called a lin-

ear switched system .x(t) = A
s

x(t) (2.15)

with a finite index set Im = {1,2, . . . ,m}, where m is the number of sub-
systems (or operation modes) of the switched system. In other hand, when
a switched system is composed by affine subsystems, it is denominated an
affine switched system .x(t) = A

s

x(t)+b
s

. (2.16)

2.3.1 Classification according to the type of commutation

Regarding the commutation, the switched systems may be classified
as: commutation dependent of the states versus commutation dependent of
the time; or autonomous commutation versus controlled commutation (LIBER-
ZON, 2003). The main aspects of each type of commutation is presented in
the sequence:

• State-dependent commutation: systems where the switching signal will
change as a function of the system states. In this case, the state space is
partitioned into regions, each region corresponding to the activation of
one of the subsystems that comprise the switched system. The bound-
aries of these regions are called switching surfaces;

• Time-dependent commutation: systems where there is a change in the
switching signal after a certain time interval. For this type of commu-
tation, the switching signal is described as s(t) in order to emphasize
the temporal dependence;

• Autonomous commutation: systems where there is no direct control
over switching signal. In this group are included systems with state-
dependent switching in which the location of switching surfaces is pre-
determined, or systems with time-dependent switching where the rule
that defines the switching signal is unknown or neglected in system
modeling stage;

• Controlled commutation: systems where the switching signal is
imposed to achieve a desired behavior. The switching mechanism
is directly controlled, and it can be either state-dependent or time-
dependent.
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The content of this thesis is divided in two branches: (i) the design of
stabilizing state-dependent controlled switching rules; (ii) the stability anal-
ysis of switched systems with state-dependent autonomous commutation.

It is noteworthy that combinations of different types of switching can
exist in a switched system. Furthermore, it is not simple to determine an ac-
curate distinction between autonomous and controlled commutation, as well
as state-dependent and time-dependent switching (LIBERZON, 2003).

2.3.2 Sliding modes

Sliding mode is a special type of switched system behavior that may
occur in the presence of fast enough switching frequency. For the definition
of sliding modes, a switched system with a state-dependent commutation be-
tween two operation modes will be considered as an example. The switching
surface, represented by S , divides the state space in two regions, and in each
region one of the two subsystems .x = fi(x), i = 1,2, is active. In this case,
it is assumed that there are no discontinuities in the values of the states at
the switching instant. If the vector fields f1(x) and f2(x) are pointing to the
same direction with respect to S , the continuous state trajectory reaches the
surface S and crosses to the other side. This situation is depicted in Figure
15(a). On the other hand, it is possible that the vector fields f1(x) and f2(x)
are both pointing towards the surface, as shown in Figure 15(b). In this case,
when the trajectory reaches the surface S , it cannot leave this surface and the
trajectory moves over the surface, that is, the vector field defining the system
dynamics in this case is tangent to the surface. This phenomenon is known as
sliding mode (LIBERZON, 2003).

The system behavior in sliding mode can be described using the con-
cepts introduced by Filippov (1988). According to these concepts, the vector
field that defines the dynamics in sliding mode must be tangent to the switch-
ing surface and there are several ways to define this tangent vector field. The
simplest and most common form in the literature is to define the tangent vec-
tor field through the convex combination of the vector fields of the subsystems
at each point of the trajectory over the surface. For example, in Figure 15(b)
the tangent vector field is given by

f
q

(x) := q(x) f1(x)+(1�q(x)) f2(x), q(x) 2 [0,1] (2.17)

where q(x) is the convex combination element that can be obtained through
orthogonal projection rules (FILIPPOV, 1988, p.52). Note that this way of
defining the vector field also allows the definition of the system dynamics
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(a) (b)
S S

.x = f1(x)
.x = f1(x).x = f2(x)

.x = f2(x)

Figure 15: Example of trajectories of a bimodal switched system: (a) crossing
the switching surface; (b) resulting in sliding mode. Source: (SCHARLAU,
2013).

for a singleton, that is, for .x = f1(x), q(x) = 1 and for .x = f2(x), q(x) = 0.
Thus, the dynamics of a switched system with or without sliding modes can
be viewed as a differential inclusion

.x = f
q

(x). (2.18)

For a more formal and general presentation of sliding modes, see (FIL-
IPPOV, 1988, p.50). Also, on page 54 of this book, an alternative character-
ization of tangent vector field, different of the convex combination, can be
found.

2.3.3 Control structure

The classes of switched systems considered in this thesis have a special
control structure. This is illustrated in Figure 16, which presents the control
scheme for a switched system with m different subsystems and a state-based
switching rule s(x) that forces the system to operate in a particular mode.
In this figure, the innermost dashed area represents the ideal switching de-
vices receiving the value s which determines the position of the switches
(on or off). Each combination of the positions of the set of switches defines
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one subsystem that is connected in the closed circuit (the active mode). The
switching signal s can somehow be viewed as a control input for the switched
system, although we must keep in mind that it is just a logical variable that
determines the operation mode at a given instant.

(s = 1)

(s = 2)

(s = m)

Switching rule

Determine

Measurements

Ideal switch

Switched system

f1(x)

f2(x)

fm(x)

s(x)
s

R.x xx

Figure 16: Basic control scheme for switched system with a state-dependent
switching rule.

Note that the structure presented in Figure 16 represents ideal switches
where the positions of the switches can be changed arbitrarily fast. In prac-
tice, real switches are performed by PWM devices having a small PWM
switching period (the period of the PWM carrier signal) and, in general, a
moving averaging filter is necessary to take into account the limited band-
width of the actuators whose models are included in the vector fields fi(x).
The control structure in this case is presented in Figure 17, where an aver-
aging block computes the duty cycle d from the switching signal and PWM
devices determine the switches positions p. The calculation of the duty cycle
based on the switching signal will be discussed in more detail in Section 4.4.

In the case of Figure 17, there is a mixture between state-dependent
switching and time-dependent switching, as the switching rule is based
on state feedback and the averaging technique and the PWM convert the
switching signal into a time-based signal. This structure is used by (SENGER;
TROFINO, 2014) in a real application and some performance advantages
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against the usual PWM are commented.

(p = 1)

(p = 2)

(p = m)

Switching rule

Determine

Measurements

Switches

Switching devices

f1(x)

f2(x)

fm(x)

s(x)
s

R.x xx

Averaging
Filter

PWM
Devices

d

p

Averaging period

Carrier signal

Sampling period

Figure 17: Control scheme for a state-dependent switching rule with an inter-
face to PWM controlled devices.

The particular structure adopted in this work for the definition of s , as
well as the design procedure, will be presented in Chapter 3.

2.4 Additional mathematical background

This section presents some useful mathematical definitions to be ex-
plored in several of the next chapters. More specifically, the Kronecker prod-
uct, a version of the Finsler’s Lemma, the definitions of annihilators and of
class K functions. Other definitions to be used locally will appear where they
are necessary.

Definition 2.1 (Kronecker product (LAUB, 2005)) Let A2Rm⇥n, B2Rp⇥q.
Then the Kronecker product (or tensor product) of A and B is defined as the
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matrix

A⌦B =

2

64
a11B . . . a1nB

...
. . .

...
am1B . . . amnB

3

75 2 Rmp⇥nq
. (2.19)

⇤
Obviously, the same definition holds if A and B are complex-valued

matrices. However, in this thesis, our attention is restricted to real-valued
matrices and the Kronecker product will be used only to simplify some com-
plicated notation. For more details and properties of the Kronecker product,
see (LAUB, 2005, p.139).

Lemma 2.1 (Finsler’s Lemma) Let W ✓Rs be a given polytopic set, M(.) :
W 7! Rq⇥q, G(.) : W 7! Rr⇥q be given matrix functions, with M(.) symmet-
ric. Let Q(w) be a matrix whose columns are base vectors for the null space
of G(w). Then the following statements are equivalent:

(i) 8w2W the condition z0M(w)z> 0 is satisfied 8z2Rq such that G(w)z=
0.

(ii) 8w2W there exists a matrix function L(.) : W 7!Rq⇥r such that M(w)+
L(w)G(w)+G(w)0L(w)0 > 0.

(iii) 8w 2 W the condition Q(w)0M(w)Q(w)> 0 is satisfied. ⇤
Two cases are of particular interest to this work. The first is when

M(.),G(.) are affine functions and L is constrained to be constant. In this sit-
uation (i),(ii) are no longer equivalent, but (ii) is clearly a sufficient polytopic
LMI condition for (i). The second case is when M(.) is an affine function
and G(.) is constrained to be constant, leading Q to be constant as well. In
this case (i), (iii) are yet equivalent and (iii) is a polytopic LMI with a smaller
number of decision variables when compared to (ii). The interest of these
two polytopic LMI problems is that they are numerically efficient alternatives
for condition (i), which is difficult to be tested for being an infinite dimen-
sional problem. Finally, Lemma 2.1 is still valid when the inequalities are
replaced by equality conditions. See for instance (DE OLIVEIRA; SKELTON,
2001), (TROFINO; DEZUO, 2013) for more details on the Finsler’s Lemma.

Definition 2.2 (Annihilator) Given a positive integer r and a vector func-
tion f (.) : Rq 7! Rs, a matrix function ¿ f (.) : Rq 7! Rr⇥s will be called an
annihilator of f (.) if ¿ f (z) f (z) = 0 , 8z 2Rq. Moreover, if ¿ f (.) is a linear
function, it will be referred to as a linear annihilator. ⇤
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Observe that the matrix representation of a linear annihilator is not
unique. In this work, we are interested in a general formula for a linear an-
nihilator for the case of f (z) = z = [z1 . . . zq]

0 2 Rq. Taking into account all
possible pairs zi,z j for i 6= j without repetition, i.e. for 8i, j 2 {1 . . .q} with
j > i, we obtain a linear annihilator given by the formula

¿z(z) =

2

64
f1(z) Y1(z)

...
...

f(q�1)(z) Y(q�1)(z)

3

75 2 Rr⇥q
, r =

q�1

Â
j=1

j (2.20)

f1(z) =
⇥

z2 . . . zq
⇤0

fi(z) =

2

64 0(q�i)⇥(i�1)

z(i+1)
...

zq

3

75 , i � 2

Yi(z) =�zi I(q�i), i � 1

Throughout the thesis, annihilators are used jointly with the Finsler’s
Lemma to reduce the conservativeness of parameter dependent LMIs. See,
for instance (TROFINO; DEZUO, 2013) where linear annihilators are also used
to reduce the conservativeness of state dependent LMIs.

Finally, consider the following definition.

Definition 2.3 (Class K function (KHALIL, 2002)) A continuous function
b : [0,a)! [0,•) is said to belong to class K if it is strictly increasing and
b (0) = 0. It is said to belong to class K• if a = • and b (r)! • as r ! •. ⇤

2.5 Concluding remarks

This chapter addressed the presentation of photovoltaic generation
systems to serve as reference for the next chapters. The presentation started
with a brief discussion on the model of a photovoltaic array, followed by the
main connection topologies for this type of system. In the sequel, some of the
most common methods for performing MPPT were presented, in particular
the algorithm P&O was described in more detail, because it is used in Chap-
ter 5 together with the switching technique proposed in this document. Some
coordinate transformations and a method for synchronizing the PV system to
the grid were also presented. Finally, an additional mathematical background
was introduced.
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One possibility for further work, not exploited here, is the develop-
ment of an alternative method for performing the MPPT. The main advantage
in creating a new MPPT method is the possibility to achieve higher system
performances than the current approaches, that is, a better use of the energy
that can be generated. It would also be desirable for the proposed method to
be general enough to be applied to the search of extreme points in other kinds
of systems, not only PV, as in the case of the technique of (ARIYUR; KRSTIC,
2000).

The author of this thesis is also interested in the control of battery
charging using the power generated by the PV system. To this end, more de-
tailed research on the behavior of the batteries under charging conditions, not
presented in this document, should be taken into account. Additional vari-
able structure elements may be present in the model of the battery charger:
the charge controllers. Such controllers (the simplest) are basically com-
posed of a switch that disconnects the battery from the PV array when it
is fully charged and another switch that disconnects the battery from the load
in case it is discharged. Some work that can be cited as references for battery
charging control are: (ZHENG; WANG, 2011), (WANG; LIN, 2007), (CHEN; CHEN,
2010), (RADWAN et al., 2011), (EGIZIANO et al., 2007), (TASDIGHI et al., 2012).
A comparison between different types of batteries can be found in (PATEL,
1999).
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3 CONTROL OF AFFINE SWITCHED SYSTEMS

3.1 Introduction

A switched system can be defined as a dynamical system composed of
a set of subsystems with continuous time dynamics and a rule that organizes
the switching between them (LIBERZON; MORSE, 1999). Each of these subsys-
tems corresponds to a particular operation mode of the switched system. The
problem of designing switching rules for switched systems has been largely
studied and several results are available in the literature. See the surveys pre-
sented in (DECARLO et al., 2000), (LIN; ANTSAKLIS, 2009), for a large list of
references, and Section 3.3 for a small comparative study between some of
these techniques and the one used in this thesis.

The results presented in this chapter enable the design of a stabiliz-
ing switching rule that allows the occurrence of sliding modes among any
number of subsystems with affine vector fields. The content of this chap-
ter is an updated version of (TROFINO et al., 2011) and of (SCHARLAU, 2013,
chap. 4), which generalizes and extends the results of (TROFINO et al., 2009a),
(TROFINO; SCHARLAU; COUTINHO, 2012). Furthermore, the results provide the
necessary basis for the methods developed in the next chapters. The main
feature of the method is that the results are based on a Lyapunov function
of the type maxi{vi(x)} where x is the system state and {vi(x)} is a set of
auxiliary functions to be determined. This particular type of Lyapunov func-
tion was also considered in (TROFINO et al., 2009a), (PETTERSSON, 2003), (HU;
MA; LIN, 2008). In (TROFINO et al., 2009a), (PETTERSSON, 2003) each sub-
system is associated with an auxiliary function vi(x), while in (HU; MA; LIN,
2008) each subsystem is associated with the entire set of functions {vi(x)}.
In the latter, the number of auxiliary functions can be greater than the number
of subsystems. The composition maxi{vi(x)} has interesting properties, but
some technical difficulties arise when dealing with sliding modes. See, for
instance, (HU; MA; LIN, 2006), (HU; MA; LIN, 2008), (PETTERSSON, 2003) for
details.

3.2 Preliminaries

Consider the following affine switched system composed of m affine
subsystems.

.x(t) = fi(x) = Aix(t)+bi , i 2 Im := {1, . . . ,m} , (3.1)
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where x 2 Rn is the system state, which is assumed to be available from
measurement at this point. The case of partial state measurement will be
addressed later. The matrices Ai and the vectors bi are real and have com-
patible dimensions. The class of systems described in (3.1) can represent the
dynamics of various control applications. See (MORSE, 1997), (LIBERZON,
2003), (SHTESSEL; ZINOBER; SHKOLNIKOV, 2002), (DIAKAKI; PAPAGEORGIOU;
ABOUDOLAS, 2002), for instance.

The goal is to design a switching rule that asymptotically drives the
state of the system to a given constant equilibrium x. This is done by forcing
x to be a globally asymptotically stable equilibrium point in closed-loop.

Given the desired (constant) equilibrium point x, it is possible to rep-
resent the dynamics of the tracking error by the following switched system.

.e(t) = Ai e(t)+ ki , ki = bi +Aix , e(t) := x(t)� x , (3.2)

where i 2 Im := {1, . . . ,m}. Using the error system described in (3.2), the
idea is to make the error states e(t) converge to the origin. With that in mind,
consider the switching rule given by

s(e(t)) := arg max
i2Im

{vi(e(t))} , vi(e(t))=e(t)0Pie(t)+2e(t)0Si , (3.3)

where Pi = P0
i 2 Rn⇥n and Si 2 Rn are matrices to be determined. At each

instant of time, s(e(t))2P(Im)\{ /0} is a set of indexes corresponding to the
set of subsystems with “maximum energy”, represented by

V (e(t)) = max
i2Im

{vi(e(t))}. (3.4)

For instance, s(e(t0)) = {i, j,k} means that at the instant t = t0 the trajectory
of the error is at the switching surface defined by the subsystems {i, j,k},
because vi(e(t0)) = v j(e(t0)) = vk(e(t0)) = maxi2Im{vi(e(t0))}.

Now consider the following definition.

Definition 3.1 (Filippov solution (FILIPPOV, 1988)) An absolutely continu-
ous function x(t) is regarded to be a Filippov solution of .x = fi(x) if it satisfies
the differential inclusion

.x 2 F (x) := Co{ fi(x)} (3.5)

for almost all t � 0. Observe that any element of the convex hull can be
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represented as a convex sum of { fi(x)}. In this sense we use the notation

.x := Â
i2s(x)

qi(x) fi(x) (3.6)

where q(x) =
⇥

q1(x) . . . qm(x)
⇤0 satisfies q 2 Q with Q defined as the

simplex

Q :=

(
q : qi � 0 ,

m

Â
i=1

qi = 1

)
. (3.7)

If s(x) is singleton, then F (x) = fi(x). ⇤

See the Chapter 2 of (FILIPPOV, 1988) for the proof of existence of solution
for the differential equations with discontinuous right-hand side considered
in this thesis and more details on the differential inclusion presented in Defi-
nition 3.1.

Assuming that the sliding mode dynamics of the system can be rep-
resented as convex combinations of the subsystems as in Definition 3.1, the
global switched system, including the subsystems and the sliding mode dy-
namics that may occur on any switching surface, is represented by

.e(t) =
m

Â
i=1

qi(e(t))(Ai e(t)+ ki) , q(e(t)) 2 Q , (3.8)

where q(e(t)) is the vector with components qi(e(t)), Q is the unitary sim-
plex (3.7) and qi(e(t)) = 0 if i /2 s(e(t)) with {qi(e(t)), 8i 2 s(e(t))} de-
fined according to Filippov (FILIPPOV, 1988, p.50). Recall that sliding mode
dynamics may occur at a point e(t) only if it is possible to find a convex com-
bination of the vector fields of the subsystems such that .e(t) is a vector in the
hyperplane tangent to the switching surface at the point e(t). It is assumed
that q(e(t)) and s(e(t)) are respectively piecewise continuous and piecewise
constant. Under these regularity assumptions, the vector field of (3.8) has a
finite number of discontinuous points on any system trajectory.

In order to have e(t) = 0 as the equilibrium point of (3.8), it is nec-
essary that Âm

i=1 qi(0)ki = 0, where {qi(0), i 2 Im} are piecewise continuous
functions of time and characterize the equilibrium condition. With this ob-
servation in mind, let us define constant scalars q i satisfying the following
lemma.
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Lemma 3.1 The origin is an equilibrium point of (3.8) iff there exists q 2 Q
such that

m

Â
i=1

q i ki = 0. (3.9)

⇤
Proof: Set .e(t) = 0 and e(t) = 0 in (3.8). ⇤

While q(0) is associated with the equilibrium condition, and in gen-
eral is unknown and possibly not constant, the parameter q is an auxiliary
constant representing one particular value that q(0) may take.

See the Remark 3.4.1 for comments on the matrix Âm
i=1 q iAi.

3.3 Related methods

As previously mentioned, several other types of switching rules and
Lyapunov functions, different of (3.3), (3.4) do exist in the literature. In the
sequel we highlight some aspects of these techniques.

Methods using a quadratic Lyapunov function of the type V (x) = x0Px
and switching rules based on its time derivative can be found, for instance,
in (DEAECTO et al., 2010), (BOLZERN; SPINELLI, 2004) and references therein.
Another class of methods are those based on Lyapunov functions of the type

V (x) = min
i2Im

{vi(x)} , vi(x)> 0 (3.10)

and switching rules based on

s(x) := arg min
i2Im

{vi(x)} (3.11)

In this direction we could cite, for instance, (HU; MA; LIN, 2008), (CARDIM et
al., 2009) and their references. Methods based on Polyhedral Lyapunov func-
tions are proposed in (LIN; ANTISAKLIS, 2004), (LIN; ANTSAKLIS, 2009). For
a general overview of the methods for the class of linear and affine systems,
we recommend the surveys (DECARLO et al., 2000), (LIBERZON, 2003), (LIN;
ANTSAKLIS, 2009).

All these methods have advantages and limitations and, except for
some specific cases, the results are based on sufficient conditions, leading
a conclusive comparative study difficult to be established.

The motivation for using (3.3), (3.4) in this work is that (3.4) repre-
sents a Lyapunov function with interesting degrees of freedom, if compared
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with the quadratic form x0Px, or the ‘min’ type function (3.11) or even the
polyhedral functions. Observe that the functions vi in (3.4) have linear and
quadratic terms while polyhedral functions have only linear terms. The min
type have only quadratic terms and in addition these terms must be positive
definite. Observe this positiveness constraints are not present in (3.4). In
order to reduce the conservatism of the results, it is important to correctly
exploit the degrees of freedom available in the function (3.4) and this is the
main challenge of the method.

To illustrate this fact, observe that some results found in the literature,
as for instance (DEAECTO et al., 2010), (BOLZERN; SPINELLI, 2004), are based
on the existence of a convex combination q such that Âm

i=1 q i Ai is Hurwitz
stable and Âm

i=1 q i ki = 0. When this condition is met, a stabilizing switch-
ing rule can be determined. A potential difficulty of this type of method is
that to find such q parameter is a Non-deterministic Polynomial-time hard
(NP-hard) problem (SKAFIDAS et al., 1999). On the other hand, results based
on (3.3), (3.4), which are presented in this work, do not depend explicitly on
the existence of such q parameter to be applied, but the current version of
the results depend on the existence of this q parameter to be feasible. This
point is emphasized in (SCHARLAU et al., 2014), where it is shown that we
can successfully check the design conditions for systems without a Hurwitz
stable convex combination, however, we still do not know an LMI formula-
tion to solve the problem automatically. This fact, discussed in detail in the
Remark 3.4.1, reveals a potencial conservatism of the current version of the
results proposed in this thesis, but important perspectives of improvement of
the method, based on a better usage of the degrees of freedom in (3.4), remain
open in order to overcome the conservative aspects above. It is important to
emphasize that the existence of a convex combination q such that Âm

i=1 q i Ai
is Hurwitz stable is only sufficient for the existence of a stabilizing switching
rule. Several systems that do not satisfy this condition are known to have a
stabilizing switching rule.

3.4 Switching rule design

Before presenting the main results, some auxiliary notation is intro-
duced. Consider the vectors q ,q 2 Rm with components qi,q i defined in
(3.8), (3.9), respectively. Let ¿

q

be the linear annihilator of q as in Defini-
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tion 2.2, and consider the following set of auxiliary matrices.

A =
⇥

A1 . . . Am
⇤

, K =
⇥

k1 . . . km
⇤

(3.12)

P =
⇥

P1 . . . Pm
⇤

, S =
⇥

S1 . . . Sm
⇤

(3.13)

a =
⇥

a1In . . . amIn
⇤

, 1m =
⇥

1 . . . 1
⇤
2 R1⇥m (3.14)

Ca =
⇥

0(1⇥mn) 1m
⇤

, Cb(q) =
⇥

¿
q

⌦ In 0(rn⇥m)

⇤
(3.15)

Io = 1m ⌦ In , ¿
q

2 Rr⇥m (3.16)

P
q

=
m

Â
i=1

q iPi , S
q

=
m

Â
i=1

q iSi (3.17)

Y =


(A+a)0P+P0(A+a)�a

0 P
q

Io � I0o P
q

a ?

K0P+S0A+2S0a K0S+S0K

�
(3.18)

Theorem 3.1 Let x be a given constant vector, representing the desired equi-
librium point of the switched system (3.1), and suppose the state x(t) is avail-
able from measurements. Consider the error system (3.8) under the Lemma
3.1. With the auxiliary notation (3.12)-(3.18), let Qa be a basis for the null
space of Ca and L be a matrix to be determined with the dimensions of Cb(q)0.

Suppose 9P,S,L solving the following LMI problem.

P
q

> 0 , S
q

= 0 (3.19)
Q0

a(Y+LCb(q)+Cb(q)
0L0)Qa < 0 , 8q 2 J(Q) (3.20)

Then the system (3.8) is globally asymptotically stable with the switching rule
(3.3) and

V (e(t)) := max
i2Im

{vi(e(t))} , vi(e(t))=e(t)0Pie(t)+2e(t)0Si , (3.21)

is a Lyapunov function for the switched system. ⇤

Proof: Firstly, observe that vi(e(t)) in (3.3) are continuously differentiable
functions, and thus V (e(t)) in (3.4) is a locally Lipschitz continuous function.
As qi(e(t)) = 0 for i /2 s(e(t)) and V (e(t)) = vi(e(t)), 8i 2 s(e(t)), we get
the identities

m

Â
i=1

qi(e(t)) = Â
i2s(e(t))

qi(e(t)) = 1 (3.22)
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and

m

Â
i=1

qi(e(t))vi(e(t)) = Â
i2s(e(t))

qi(e(t))vi(e(t)) =

 

Â
i2s(e(t))

qi(e(t))

!
V (e(t)) =V (e(t)). (3.23)

Thus, the following holds.

V (e(t)) := max
i2Im

{vi(e(t))}=
m

Â
i=1

qi(e(t))vi(e(t)) (3.24)

From (3.19) it follows that, for any element q of the unity simplex satisfying
the condition (3.9), we have

m

Â
i=1

q i vi(e(t)) = e(t)0(
m

Â
i=1

q iPi)e(t)+2e(t)0(
m

Â
i=1

q iSi) = e(t)0P
q

e(t)> 0 ,

8e(t) 6= 0. (3.25)

Keeping in mind that the maximum element of a finite set of real numbers is
always greater than or equal to any convex combination of the elements of
the set, it can be concluded from (3.24), (3.25) that 8e(t) 6= 0 we have

V (e(t))� e(t)0(
m

Â
i=1

q iPi)e(t) = e(t)0P
q

e(t)> 0. (3.26)

Thus V (e(t)) is positive definite and radially unbounded as the right hand side
of (3.26) is a positive definite quadratic form. Moreover, vi(e(t)) bi(ke(t)k)
where bi(ke(t)k) := kPikke(t)k2 +2kSikke(t)k. This shows that

lmin(P
q

)ke(t)k2 V (e(t)) max
i2Im

{bi(ke(t)k)} (3.27)

where the lower and upper bounds are class K• functions, as in Definition 2.3.
Next, it is shown that V (e(t)) is strictly decreasing. With this purpose, note
that for any point e(t) and direction h, the directional derivative of V (e(t))
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exists and is given by (LASDON, 1970, p.420)

DhV (e(t)) = max
i2s(e(t))

—vi(e(t))h (3.28)

where —vi(e(t)) = 2(e(t)0Pi +S0i) denotes the gradient of vi(e(t)).
With (3.8), consider the notation

f (e(t)) :=
m

Â
i=1

qi(e(t)) (Aie(t)+ ki) (3.29)

and take the directional derivative in the direction h = f (e(t)). In the sequel
we construct the expression (3.28) for the system (3.8). The first situation to
be considered is when s(e(t)) is singleton. In this case, as qi(e(t)) = 1 for
i 2 s(e(t)) and thus qi(e(t)) = 0 for i /2 s(e(t)), we can rewrite (3.28) as

D f (e(t))V (e(t)) =
m

Â
i=1

qi(e(t))—vi(e(t)) f (e(t)). (3.30)

Another situation of interest is when s(e(t)) is not a singleton on
a point “e(t)” of a switching surface and the trajectory does not leave the
switching surface at that point, i.e. s(e(t)) remains constant during a certain
time interval. In this case a sliding mode is occurring, and for all points of the
trajectory e(t) during this time interval we have

(
vi(e(t)) = v j(e(t)) =V (e(t))
—vi(e(t)) f (e(t)) = —v j(e(t)) f (e(t))

, 8i, j 2 s(e(t)). (3.31)

In particular, as —vi(e(t)) f (e(t)) = —v j(e(t)) f (e(t)) and as qi(e(t)) = 0 for
i /2 s(e(t)), we can also rewrite (3.28) as in (3.30).

The last situation to be analyzed is when s(e(t)) is not a singleton on
a point “e(t)” of a switching surface and the trajectory leaves the switching
surface at that point. In this situation, s(e(t)) will change and, as s(e(t))
is piecewise constant, the trajectory will move to a new region or switching
surface under one of the two cases previously discussed. Thus, these points
where s is discontinuous correspond to isolated points of a system trajectory.
Keeping in mind that V (e(t)) from (3.4) is locally Lipschitz continuous, we
conclude that V (e(t)) is decreasing along any system trajectory e(t) if it is
decreasing in the two previous cases where (3.30) is valid. Observe that s

is piecewise constant and thus the behavior of V along a system trajectory in
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the neighborhoods of the points where s is discontinuous is characterized by
(3.30).

From the above discussion, it is clear that the condition D f (e(t))V (e(t))<
0, obtained from (3.30), guarantees the decreasing of V (e(t)) along any tra-
jectory of the system (3.8) under the switching rule (3.3). Observe that as
V (e(t)) is locally Lipschitz, it follows that the directional derivative and time
derivative coincide almost everywhere, and D f (e(t))V (e(t)) < 0 guarantees
the decreasing of V (e(t)) even for system trajectories moving along lines
or surfaces where the gradient of V (e(t)) does not exist and thus the usual
expressions for the time derivative cannot be used. See (FILIPPOV, 1988,
p.155) for more details on this point.

For global stability it is required D f (e(t))V (e(t)) < 0, 8e(t) 6=
0, 8q(e(t)) 2 Q. As V (e(t)) is positive definite from (3.27) and non
increasing from D f (e(t))V (e(t)) < 0, we conclude that the origin is an equi-
librium point of the system whenever these conditions are satisfied. The
global asymptotic stability follows from the same arguments in (FILIPPOV,
1988, p.155).

Now, applying the S-Procedure to the condition D f (e(t))V (e(t)) <
0 and taking into account the constraint (3.26) that represents the relation
V (e(t))� e(t)0P

q

e(t)� 0, we get

D f (e(t))V (e(t))+2a

q

�
V (e(t))� e(t)0P

q

e(t)
�
< 0 , (3.32)

8e(t) 6= 0, 8q(e(t)) 2 Q, and a

q

:= Âm
i=1 aiqi(e(t)) > 0 is a scaling factor

with positive constants ai chosen according to the Remark 3.4.1, introduced
after the proof.

As, in general, q(e(t)) is multivalued and of difficult characterization,
i.e. it is difficult to take into account the dependence of q(e(t)) with respect
to e(t), we will use a more conservative condition where q(e(t)) is replaced
by an arbitrary time-varying parameter, namely q , free to take any value in
the unitary simplex Q independently of e(t). Now with the notation

P
q

:=
m

Â
i=1

qi Pi , A
q

:=
m

Â
i=1

qi Ai , K
q

:=
m

Â
i=1

qi ki , S
q

:=
m

Â
i=1

qi Si ,

(3.33)
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D f (e(t))V (e(t)) from (3.30) and V (e(t)) from (3.24), it is possible to rewrite
(3.32) as


e(t)
1

�0  A0
q

P
q

+P
q

A
q

+2a

q

(P
q

�P
q

) ?

K0
q

P
q

+S0
q

A
q

+2S0
q

a

q

2K0
q

S
q

�
e(t)

1

�
< 0. (3.34)

Now define the following vector according to Definition 2.1,

e
q

:= q ⌦ e =

2

64
q1e(t)

...
qme(t)

3

75 2 Rmn (3.35)

and note that e(t)= Ioe
q

. Thus, we can rewrite (3.34) with the notation (3.12)-
(3.18) as 

e
q

q

�0
Y


e
q

q

�
< 0. (3.36)

Observe from (3.9) that Kq = 0 and from (3.19) that Sq = 0. With Y
given in (3.18), it follows that the left side of the inequality (3.36) is null for
e(t) = 0, that is 

0mn⇥1
q

�0
Y


0mn⇥1
q

�
= 0. (3.37)

Therefore, it is possible to rewrite the left side of the inequality (3.36) by
subtracting the null identity (3.37) from it as


e

q

q

�0
Y


e
q

q

�
=


e

q

q �q

�0
Y


e
q

q �q

�
< 0. (3.38)

With Ca,Cb(q) from (3.15), it follows that

Ca


e

q

q �q

�
= 0 , Cb(q)


e

q

q �q

�
= 0. (3.39)

Therefore, for any matrix L with suitable dimensions we can rewrite (3.38) as


e
q

q �q

�0
(Y+LCb(q)+Cb(q)

0L0)


e

q

q �q

�
< 0. (3.40)

Taking into account the null space of Ca through the Finsler’s Lemma, we
get the LMI in (3.20) as a sufficient condition for D f (e(t))V (e(t)) in (3.30)
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to satisfy D f (e(t))V (e(t)) < 0, 8e(t) 6= 0 2 Rn and 8q 2 Q (consequently
8q(e(t)) 2 Q), where e(t) = 0 is the desired equilibrium.

In summary, the inequality (3.27) shows that V (e(t)) is positive defi-
nite and radially unbounded. The expression (3.32) implies V (e(t)) is glob-
ally decreasing, even if sliding motions occur, and the global asymptotic sta-
bility follows from the same arguments in (FILIPPOV, 1988). ⇤

Remark 3.4.1 Note that for the global stability problem considered in this
chapter, a necessary condition for (3.34) to be satisfied is A0

q

P
q

+P
q

A
q

+
2a

q

(P
q

�P
q

) < 0. As q(e(t)) 2 Q, this condition implies, for q(e(t)) = q ,
that A0

q

(q)P
q

(q)+P
q

(q)A
q

(q) < 0, which in turn implies that A
q

(q) must
be Hurwitz stable, because P

q

(q) = P
q

> 0 from (3.19). The requirement
of A

q

(q) being Hurwitz stable is removed if q(e(t)) is not allowed to take
values in the whole simplex Q, so that q(e(t)) = q cannot occur, which would
characterize a situation where the equilibrium can be maintained without the
intermittent switching of a sliding mode. However, note that it is hard to
remove this requirement, specially because q(e(t)) = q may also occur for
e(t) 6= 0.

If there exists a suitable region of the simplex Q that contains the equi-
librium q and that is known to be free of sliding motions, then it is possible to
consider problems in which A

q

(q) is not Hurwitz stable after minor changes
in the Theorem 3.1. This point will be addressed in future research. Observe
that the existence of q such that A

q

is Hurwitz stable is a sufficient condi-
tion for the existence of a stabilizing switching rule (FERON, 1996). This fact
suggests the conditions of the Theorem 3.1 may be conservative because A

q

Hurwitz is only necessary for this theorem. A study of the conservativeness
of the conditions of the Theorem 3.1 is another point to be investigated, as
discussed in Section 3.3.

Observe in addition that we can rewrite the inequality above as (A
q

+
a

q

In)0P
q

+P
q

(A
q

+a

q

In)�2a

q

P
q

< 0. As a

q

P
q

> 0, this condition suggests
the constants ai can be chosen as in (TROFINO et al., 2009a) in the interval
0<ai < |l i| where l i denotes the real part of the stable (negative) eigenvalue
of Ai nearest to the imaginary axis and |l i| is its absolute value. The idea is
to get exponential decreasing of V (e(t)) in the directions where the negative
term �2a

q

e(t)0P
q

e(t) in (3.32) can be neglected. In this case, (3.32) becomes
the exponential performance requirement of (TROFINO et al., 2009a).

Notice that the choice of the parameters ai and the exponential decay
analysis previously presented are not valid for the case where the matrices Pi
are the same for all operation modes, let us say Pi = Pu,8i 2 Im. See that in
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this case we would have P
q

=P
q

=Pu and then the terms in which a

q

appears
in the previous inequality disappear and the stability condition to be satisfied
becomes A0

q

Pu +PuA
q

< 0, which requires A
q

to be Hurwitz stable 8q 2 Q.
Therefore, for this case the constants ai can be chosen freely, just aiming to
get a feasible solution for the LMIs. ⇤

Remark 3.4.2 By observing the differences between Equations (3.36) and
(3.38), it is possible to check that the part of the vector K

q

that is the same
for all modes is cancelled and consequently does not appear in the LMIs of
the Theorem 3.1. To show this, recall from Lemma 3.1, that in equilibrium we
have K

q

= 0, and note that it is possible to replace K
q

from Equation (3.36)
by K

q

�K
q

, which appears in Equation (3.38). Now suppose the notation
ki = h0 +hi, i 2 Im, where h0 is the part of ki that is common to all the modes
and hi the part that is dependent of each mode. Thus, K

q

= h0 + h
q

and
K

q

= h0 +h
q

and hence K
q

�K
q

= h0 +h
q

�h0 �h
q

= h
q

�h
q

.
The fact that the common part of the vectors ki do not need to be

considered in the LMIs may be of great interest for some systems, specially
those containing uncertain variables or variables that are difficult to express
in terms of LMIs in case they affect all operation modes equally and only
through the vector ki. Finally, as the LMIs become independent of these vari-
ables, the switching rule design is robust in relation to these variables. This
observation will be explored in more detail in the next chapters. ⇤

3.4.1 Partial state measurement

The results of the Theorem 3.1 are essentially state feedback: the com-
plete state of the system is necessary to determine the active mode according
to the switching rule (3.3). In practice, however, the whole state is often
not available. In the sequel, we introduce a switching rule based on output
feedback, i.e. partial state measurements. Consider the system (3.1) with a
measurement vector y(t) =Cix(t) 2Rgi , where Ci 2Rgi⇥n, 8i 2 Im, are given
matrices. Define the output tracking error

e(t) = y(t)�Ci x =Ci e(t). (3.41)

Assume that the auxiliary functions vi(e(t)), i 2 Im, have the structure

Pi := P0 +C0
iQiCi , Si := S0 +C0

iRi , 8i 2 Im , (3.42)
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where P0 = P0
0 2 Rn⇥n, S0 2 Rn, Ri 2 Rgi , Qi = Q0

i 2 Rgi⇥gi . In this case, the
auxiliary functions vi(e(t)) can be rewritten as

vi(e(t)) = e(t)0(P0 +C0
iQiCi)e(t)+2e(t)0(S0 +C0

iRi) (3.43)
= e(t)0P0e(t)+2e(t)0S0 +µi(e(t)), (3.44)

where

µi(e(t)) := e(t)0Qie(t)+2e(t)0Ri. (3.45)

Consequently,

max
i2Im

{vi(e(t))}= e(t)0P0e(t)+2e(t)0S0 +max
i2Im

{µi(e(t))} (3.46)

and from (3.3) the switching rule becomes a function of the output tracking
error as

arg max
i2Im

{vi(e(t))}= arg max
i2Im

{µi(e(t))}= s(e(t)). (3.47)

This shows that the Theorem 3.1 can be directly applied to cope with the
case of partial state information by introducing the constraints (3.42) on the
structure of the matrices Pi,Si.

3.5 Numerical examples

In the following examples, we have used the software Matlab, with the
computational package SeDuMi (STURM, 2001), through the parser YALMIP
(LÖFBERG, 2004), to solve the LMIs and Simulink to obtain the trajectories of
the switched systems.

Example 3.1 (Buck-Boost) Consider the Buck-Boost converter presented in
the Figure 18 with a linear load (resistor R). The constant parameters of the
system are given in the Table 2 and D is considered as an ideal diode.

Assuming as the system states the current flowing through the inductor
L (x1) and the voltage over the output capacitor C (x2), we have the state
space representation (3.1) with two subsystems, Im = {1,2}, depending on
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Figure 18: Buck-Boost converter used in the Example 3.1.

Parameter Value
Vin 15V
L 10�3H
C 10�6F
R 30W

Table 2: Data of the Buck-Boost converter used in the Example 3.1.

the position of the switch s, where

A1 =


0 0
0 �1/RC

�
, A2 =


0 1/L

�1/C �1/RC

�
, b1 =

2

4
Vin

L
0

3

5
, b2 =

2

4
0

0

3

5
.

(3.48)
The eigenvalues of A1 and A2 are, respectively, {�33333.34, 0} and
{�16666.7 ± j26874.1}. According to the Remark 3.4.1, the design pa-
rameters were chosen as a1 = 333 and a2 = 166.

The desired equilibrium point x and the constants ki from (3.2) are

x =

2

664

V 2
out �VoutVin

VinR

Vout

3

775 , k1 =

2

664

Vin

L

�Vout

RC

3

775 , k2 =

2

664

Vout

L

� V 2
out

VinRC

3

775 ,

(3.49)
where Vout is the desired value of the regulated output voltage. Based on the
Lemma 3.1, the following relations can be established, where we can see that
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the output voltage has opposite polarity when compared to the input:

Vout

Vin
=�q 1

q 2
=� q 1

1�q 1
(3.50)

The Equation (3.50) also shows that the converter operates as a Buck if
q 1 < 0.5, and as a Boost if q 1 > 0.5. Therefore, there exists a convex combi-
nation q for any desired output voltage, differently of what would happen for
a Buck converter or for a Boost converter, for the reasons shown in Section
2.2.2.2. Note that the subsystem 1 is not Hurwitz stable, however any convex
combination of the two subsystems is stable (except the one with q 1 = 1).

Assume now that Vout = �9V, which means that the converter oper-
ates as a Buck. Solving the LMIs of the Theorem 3.1, we get the matrices
P1,S1,P2,S2, from which the switching rule (3.3) can be computed.

The switched system response to the zero initial state is shown in Fig-
ure 19. Observe that the output voltage is correctly regulated. The phase
plane of the tracking error is also shown in Figure 19. Note that, when the
trajectory touches the switching surface for the second time, a sliding motion
occurs driving the error towards the origin.
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Figure 19: Buck-Boost converter operating as a Buck with Vout =�9V.

The case where Vout = �21V, which means the converter operates as
a Boost, was also considered. The system response and the phase plane are
shown in the Figure 20, where one can observe that the output voltage is also
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correctly regulated in this case. There are several switchings in finite time
before the sliding motion starts driving the error to the origin.

The oscillations of the regulated output could be attenuated by includ-
ing a performance requirement to the problem. The Theorem 3.1 deals only
with the regulation problem. However, according to Remark 3.4.1, it is possi-
ble to improve the transient response with a suitable choice of the parameters
ai. It is important to emphasize that feasibility of the conditions in Theorem
3.1 typically occurs for a wide range of these parameters. For this converter,
in particular, the range is approximately ai 2 {20|li|, |li|/1000}, where li
denotes the real part of the stable eigenvalue of Ai nearest to the imaginary
axis. Typically, the response is fast, often oscillatory, for small values of ai,
and slow, often damped, for large values of ai. The Figure 21 shows the
system response in both Buck and Boost operations for a switching rule de-
signed with a1 = 24.975⇥103 and a2 = 12.450⇥103, which corresponds to
ai = 0.75 |li|. ⇤

For several examples of switching rule design based on the ‘min’ func-
tion (3.11) with application to DC/DC converters, we recommend the ref-
erence (MAINARDI JÚNIOR et al., 2012). Numerical comparisons are not per-
formed in this thesis for the reasons exposed in Section 3.3.
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Figure 20: Buck-Boost converter operating as a Boost with Vout =�21V.

Example 3.2 (Three subsystems) In this example, we consider a system in
the state space representation (3.2) with three subsystems, Im = {1,2,3},
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Figure 21: Buck-Boost converter operating as a Buck (left side curves) and
as a Boost (right side curves) with a switching rule designed with an adequate
choice of the parameters ai.

where A1,A2,A3,k1,k2,k3 are respectively:


0 1
�1 �b

�
,


0 1

�2b �2

�
,


0 1
�3 �3

�
,


1
0

�
,


1
1

�
,


�2
�1

�
.

(3.51)
For this system the desired equilibrium is the origin and q 1 = q 2 =

q 3 = 1/3 satisfies the Lemma 3.1. As q has an interpretation similar to the
duty cycle, we must have a sliding mode among the three subsystems at the
equilibrium point.

Let us start with the case where b = 1, where all subsystems are Hur-
witz stable, but the desired equilibrium point (the origin) is not an equilib-
rium of any subsystem. The eigenvalues of A1, A2 and A3 are, respectively,
{�0.5 ± j0.866}, {�1 ± j}, and {�1.5 ± j0.866}. According to Remark
3.4.1, observe that the matrix A

q

(q) = Â3
i=1 Aiq i is Hurwitz stable and the

design parameters ai were chosen as a1 = 0.25, a2 = 0.50, and a3 = 0.75.
The Theorem 3.1 was applied to get the matrices Pi,Si, i 2 Im, from which
the switching rule (3.3) is computed. Simulation results for different initial
conditions are shown in the phase plane of the Figure 22. It can be seen that
in all cases the error system states converge to the origin. When the trajec-
tory reaches the origin, a sliding mode involving the three subsystems occurs,
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as expected. Sliding motions outside the origin also occur in the switching
surfaces of the subsystems {1,2}, {2,3} and {3,1}, although for the cases
presented in the Figure 22 only sliding motions on {2,3} and {3,1} were
observed.
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Figure 22: Stable subsystems (b = 1). Solid (black) curves are the error
trajectories; dashed curves (in assorted colors) are switching surfaces.

Next consider the case where b = �1. In this situation, the system
has two unstable subsystems, A1 and A2 with eigenvalues {0.5± j0.866} and
{0.73,�2.73} respectively, and one Hurwitz stable subsystem, A3 with eigen-
values {�1.5± j0.866}. The design parameters ai, i 2 Im, and q have the
same values used in the previous case and A

q

(q) is also Hurwitz stable in
this instance. The Figure 23 presents the simulation results in a phase plane
for one specific initial condition. As in the previous occasion, a sliding mo-
tion among the three subsystems is observed at the origin; outside the origin
two sliding motions occur for this trajectory in the switching surfaces of the
subsystems {1,2} and {3,1}. ⇤

3.6 Concluding remarks

In this chapter, the theoretical basis and formulation required for the
design of the proposed switching rules were presented. The results were il-
lustrated through two examples of switched systems control: a Buck-Boost
converter and a system with three operation modes. It is shown in the ex-
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Figure 23: Unstable subsystems (b = �1). Solid (black) curve is a error
trajectory; dashed curves (in assorted colors) are switching surfaces.

amples that the technique can be applied to systems with unstable operation
modes, provided that the system has a stable convex combination at the equi-
librium point, otherwise it is not possible to find a solution for the proposed
LMIs. The case of systems without a stable convex combination at the equi-
librium is a topic for future research.

The switching rule proposed in this chapter can be extended in several
directions. For instance, it is possible to include the optimization criterion
H• and guaranteed cost performance. The case of affine subsystems is eas-
ily recovered from (TROFINO et al., 2009b) if the equilibrium point (q ) is not
uncertain. Expansions to some classes of nonlinear switched systems will be
presented in the next chapters.

Finally, the switching rules developed in this work are allowed to pro-
duce ideal sliding modes, which in theory may have infinite switching fre-
quency. The extension to the case where dwell time constraints are applied
to limit the switching frequency are currently being investigated and will be
presented in future work.
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4 CONTROL OF SWITCHED SYSTEMS WITH SECTOR-
BOUNDED NONLINEARITIES

4.1 Introduction

Among the switching rule design techniques, some of them are based
on Lyapunov functions and LMI techniques, as for instance in (BOLZERN;
SPINELLI, 2004) and (TROFINO et al., 2011). The interest of recasting the prob-
lem as LMIs is that it is easy to incorporate new constraints to the problem,
provided that these constraints can be also expressed as LMIs, and the avail-
ability of powerful computational packages to solve the LMI problems. How-
ever, extending the results obtained for the class of linear switched systems
to the class of nonlinear switched systems is a difficult task, and the design
conditions for general nonlinear systems usually result in conservative LMIs.
A possible way to reduce the conservatism is to take advantage of the struc-
ture of a specific class of nonlinear functions, such as the sector-bounded
functions of the state (see (KHALIL, 2002)).

Renewable energy generation systems, as the PV systems, can be
viewed as nonlinear switched systems due to the combination of power elec-
tronic devices and the nonlinear model of the generation apparatus. For PV
systems in particular, one of the biggest challenges for control is the fact that
the system presents a highly nonlinear model. This nonlinear behavior is due
to the I-V characteristic of the PV array described in Section 2.2.1. The I-V
characteristic curves of devices in general are usually sector-bounded nonlin-
ear functions of the state, not only for the PV array but for any element that
presents a nonlinear resistance characteristic such as tunnel diodes (DEMASSA,
1970), (NG, 2002), (WALKER; COAKLEY; SPLETT, 2004), for instance.

This chapter presents an extension of the results from Chapter 3
(TROFINO et al., 2011) to the class of nonlinear switched systems containing
state-dependent sector-bounded nonlinear functions. A multiple Lyapunov
function approach is used to design switching rules based on the ‘max’ com-
position that guarantee global asymptotic stability of the switched system
with convergence to a desired equilibrium point even if sliding motions occur
on any switching surface of the system. An extension to the switching rule
design based on partial state measurement is presented. It is also shown that,
depending on the system structure, it is not necessary to know all the state
vector at the desired equilibrium point a priori for the design of the switching
rule.
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4.2 Preliminaries

Consider a nonlinear switched system composed of m affine subsys-
tems as indicated below.

.x(t) = Aix(t)+bi +Byx(qx(x(t))) , i 2 Im := {1, . . . ,m} , (4.1)

where x 2 Rn is the system state, yx : R 7! R is a nonlinear function of the
state-dependent scalar

qx(x(t)) :=Cqx(t), (4.2)

with a given vector Cq 2 R1⇥n, and Ai 2 Rn⇥n, bi 2 Rn, B 2 Rn are given
matrices of structure.

The problem of concern is to design a switching rule that asymptot-
ically drives the system state to a constant reference x. In other words, the
desired equilibrium point x of the (closed-loop) switched system must be
asymptotically stable. In the sequel, we will consider the case of full state
information. The case of partial state information will be treated in Section
4.3.1.

Given x, we can represent the tracking error dynamics as a switched
system with the following subsystems

.e(t) = Aie(t)+Aix+bi +By(q(e(t))) , i 2 Im , (4.3)

where

y(q(e(t))) := yx(q(e(t))+Cqx)) = yx(qx(x(t))), (4.4)
e(t) := x(t)� x , q(e(t)) :=Cqe(t). (4.5)

Note that y(q(e(t))) is just yx(qx(x(t))) rewritten as a function of e(t). Now
consider the following decomposition of Ai,bi.

Ai = Ao +Ai , bi = bo +bi , (4.6)

where Ao,bo denote the component of Ai,bi, respectively, that is common for
all i 2 Im and Ai,bi contain the terms that vary according to i. Now defining

ho = Aox+bo , hi = Aix+bi , (4.7)

we can rewrite Aix+bi as ho +hi.
Assume the sliding mode dynamics of the system can be represented
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as convex combinations of the subsystems as in Definition 3.1 (FILIPPOV,
1988). Therefore, the global switched system, that includes the subsystem
dynamics and the sliding mode dynamics that may eventually occur on any
switching surface, is represented by

.e(t) =
m

Â
i=1

qi(e(t))(Ai e(t)+ho +hi +By(q(e(t)))), q(e(t)) 2 Q, (4.8)

where q(e(t)) is the vector with entries qi(e(t)) and Q is the unitary simplex
defined in (3.7).

Recall that a sliding motion may be occurring at a point e(t) if it is
possible to find a convex combination of the subsystem vector fields such that.e(t) is a vector that belongs to the tangent hyperplane of the switching surface
at the point e(t).

In order to achieve the tracking objective, the origin must be an
asymptotically stable equilibrium point of (4.8), thus it is necessary that
Âm

i=1 qi(0)ki = 0, where {qi(0), i 2 Im} are piecewise continuous functions
of time and characterize the equilibrium condition. Then, let us define
y := y(0) and constant scalars q i satisfying the following lemma.

Lemma 4.1 The origin is an equilibrium point of (4.8) iff there exists q 2 Q
such that

m

Â
i=1

q i (ho +hi +By) = 0. (4.9)

⇤
Proof: Set .e(t) = 0 and e(t) = 0 in (4.8). ⇤

While q(0) is associated with the equilibrium condition, and in gen-
eral is unknown and possible not constant, the parameter q is an auxiliary
constant representing one particular value that q(0) may take.

As (4.9) is a zero identity, we can subtract the left-hand side of (4.9)
from (4.8) and rewrite the error dynamics in the following more convenient
form. .e = A

q

e+ k
q

, q(e) 2 Q, (4.10)

where A
q

= Âm
i=1 qi(e)Ai and k

q

= Âm
i=1 qi(e)ki with

ki = hi �h
q

+BDy, (4.11)

where h
q

= Âm
i=1 q ihi and Dy = y �y . Note that the operation that elimi-

nates the term ho, commented in the Remark 3.4.2, was incorporated into the
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system definition in this chapter.

4.2.1 Switching rule using a max composition

Thanks to the error system (4.10), the problem of concern can be re-
stated as to design a switching rule that asymptotically drives the error state
to the origin. For this purpose, consider the switching rule given by

s(e) := arg max
i2Im

{vi(e)} , vi(e)=e0Pie+2e0(Si �S
q

) , (4.12)

where S
q

:= Âm
i=1 q iSi and Pi 2 Rn⇥n and Si 2 Rn⇥1 are matrices to be deter-

mined. The set valued signal s(e) : Rn 7! P(Im) is a map specifying the set
of subsystems having ‘maximum energy’. For instance, s(e(t0)) = { j,k, l}
means that at instant t = t0 the error trajectory is at the switching surface de-
fined from the subsystems { j,k, l} because v j(e(t0)) = vk(e(t0)) = vl(e(t0)) =
maxi2Im{vi(e(t0))}. Whenever the set s(e) has more than one element, a slid-
ing mode may be occurring at that instant and the elements of convex com-
bination, the entries of the vector q(e), are such that qi(e) = 0 if i /2 s(e).
We refer the reader to (FILIPPOV, 1988, p.50) for details on this point. It is
assumed that q(e(t)) and s(e(t)) are respectively piecewise continuous and
piecewise constant. Under these regularity assumptions, the vector fields of
(4.10) have a finite number of discontinuous points on any system trajectory.

4.2.2 Sector-bounded nonlinearity

Consider the following definition.

Definition 4.1 (Sector-bounded function) A function j(q) : R 7! R, with
j(0) = 0, is said to be in sector [l,u] if for all q 2 R, p = j(q) lies between
p = lq and p = uq. Then, the inequality

(p�uq)(p� lq) 0 (4.13)

holds for all q, p = j(q). ⇤

For example, a visual representation of a particular1 sector-bounded
function and its sector bounds can be seen in Figure 24.

1The plot in Figure 24 was generated with the nonlinear function j(q) = sin(3pq)/5+q and
sector bounds [l,u] = [2+3p/5,0.5].
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p = j(q)

q

p p = uq

p = lq

o

Figure 24: Example of sector bounds (red lines) for a particular nonlinear
function (blue curve).

Consider the Definition 4.1 with the nonlinear function p = Dy(q),
q =Cqe, and note that Dy = 0 for Cqe = 0. Therefore, it is possible to rewrite
(4.13) as

�(Dy �uCqe)(Dy � lCqe)� 0. (4.14)

Remark 4.2.1 There always exists a sector [l,u] large enough to contain a
continuous nonlinear function j(q). For instance, the sector [�•,•] con-
tains all points (p,q) 2 R2. See (KHALIL, 2002, p.232) for more details on
sector-bounded nonlinear functions. ⇤

4.3 Switching rule design

Before presenting the theorem for the switching rule design, let us in-
troduce some auxiliary notation. Let ¿

q

: Rm 7!Rr⇥m be a linear annihilator
of q as in Definition 2.2, i.e. ¿

q

is a linear function of q with ¿
q

q = 0,
8q 2 Q, let ai, i 2 Im, be given positive scalars chosen according to Remark
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3.4.1 and consider the following set of auxiliary matrices.

A =
⇥

A1 . . . Am
⇤
, H =

⇥
h1 . . . hm

⇤
(4.15)

a =
⇥

a1In . . . amIn
⇤
, P =

⇥
P1 . . . Pm

⇤
, S =

⇥
S1 . . . Sm

⇤

(4.16)

1m =
⇥

1 . . . 1
⇤
2 R1⇥m

, Io = 1m ⌦ In (4.17)

Ca =
⇥

0(1⇥mn) 1m 0
⇤
, Cb(q) =

⇥
¿

q

⌦ In 0(rn⇥m+1)
⇤

(4.18)

La(q) =
m

Â
i=1

qiLi , P
q

=
m

Â
i=1

q iPi (4.19)

G =

2

4
�I0oC0

q(ul)CqIo ? ?

0m⇥mn 0m ?

CqIo(u+ l)/2 01⇥m �1

3

5 (4.20)

Y =

2

4
A0P+P0A+(P�P

q

Io)0a +a

0(P�P
q

Io) ? ?

H 0P+S0A+2S0a H 0S+S0H ?

B0P B0S 0

3

5

(4.21)
In this chapter, annihilators are used jointly with the Finsler’s Lemma

to reduce the conservativeness of parameter dependent LMIs as in (TROFINO;
DEZUO, 2013).

Theorem 4.1 Let x be a given constant vector representing the desired equi-
librium point of the system (4.1), and suppose that x(t) is available online.
Consider the error system (4.10) and let q 2 Q be a given constant vector
according to Lemma 4.1. With the auxiliary notation (4.15)-(4.21), let Lb,Li,
i 2 Im, be matrices to be determined with the dimensions of Cb(q)0,C0

a, re-
spectively.

Suppose that 9P,S,t,Lb,Li, i2 Im, solving the following LMI problem.

P
q

> 0 (4.22)

Y+ t G+LbCb(q)+Cb(q)
0L0

b +La(q)Ca +C0
aLa(q)

0
< 0 , 8q 2 J(Q)

(4.23)
Then the nonlinear switched system (4.10) is globally asymptotically stable
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with the switching rule (4.12) and

V (e) := max
i2Im

{vi(e)} , vi(e)=e0Pie+2e0(Si �S
q

) , (4.24)

is a Lyapunov function for the system. ⇤

Proof: The proof consists of showing that if the LMIs (4.22) and (4.23) are
satisfied, then the continuous function V (e) defined in (4.24) satisfies the con-
ditions

f1(e)V (e) f2(e), (4.25)
DhV (e)�f3(e), (4.26)

where f1(e), f2(e), and f3(e), are continuous positive definite functions and
DhV (e) is the Dini’s directional derivative of V (e) in the direction h, and is
given by (LASDON, 1970, p.420)

DhV (e) = max
i2s(e)

—vi(e)h, (4.27)

where —vi(e) = 2(e0Pi + S0i � S0
q

) denotes the gradient of vi(e). The local
asymptotic stability follows from (4.25), (4.26) using the same arguments in
(FILIPPOV, 1988, p.155).

First, it will be demonstrated that the condition (4.25) is satisfied. As
qi(e) = 0 for i /2 s(e) and V (e) = vi(e), 8i2 s(e), we get the identities below.

m

Â
i=1

qi(e) = Â
i2s(e)

qi(e) = 1 (4.28)

m

Â
i=1

qi(e)vi(e) = Â
i2s(e)

qi(e)vi(e) = Â
i2s(e)

qi(e) V (e) =V (e) (4.29)

Therefore, the following is true.

V (e) = max
i2Im

{vi(e)}=
m

Â
i=1

qi(e)vi(e) (4.30)
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Keeping in mind that Âm
i=1 q iSi = S

q

, we get that

m

Â
i=1

q i(Si �S
q

) = S
q

�S
q

= 0 (4.31)

and from (4.12), (4.19), (4.31) it follows that

m

Â
i=1

q i vi(e) = e0
 

m

Â
i=1

q iPi

!
e+2e0

m

Â
i=1

q i(Si �S
q

) = e0P
q

e. (4.32)

Note that the maximum element of a finite set of real numbers is always
greater than or equal to any convex combination of the elements of the set.
Therefore, we can conclude from (4.22), (4.30), (4.32) that 8e 6= 0 we have

V (e)�
m

Â
i=1

q i vi(e) = e0P
q

e > 0. (4.33)

Thus, V (e) is positive definite and radially unbounded, because e0P
q

e is a
positive quadratic form in view of (4.22). Besides, vi(e)  bi(kek) where
bi(kek) := kPikkek2 +2kSi �S

q

kkek. Hence, (4.25) is satisfied with

f1(e) = lmin(P
q

)kek2
, f2(e) = max

i2Im
{bi(kek)} , (4.34)

where the lower and upper limits are class K• functions.
Next, it is shown that V (e(t)) is strictly decreasing along any sys-

tem trajectory for any Dy belonging to a given sector [l,u]. With this pur-
pose, note that for any point e(t) and direction h, the directional derivative of
V (e(t)) exists and is given by (4.27).

With (4.10), consider the notation

f (e(t)) :=
m

Â
i=1

qi(e(t)) (Aie(t)+ ki) (4.35)

and take the directional derivative in the direction h = f (e(t)). In the sequel
we construct the expression (4.27) for the system (4.10). The first situation
to be considered is when s(e(t)) is singleton. In this case, as qi(e(t)) = 1 for
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i 2 s(e(t)) and thus qi(e(t)) = 0 for i /2 s(e(t)), we can rewrite (4.27) as

D f (e(t))V (e(t)) =
m

Â
i=1

qi(e(t))—vi(e(t)) f (e(t)) =: W(q(e)). (4.36)

Another situation of interest is when s(e(t)) is not a singleton on
a point “e(t)” of a switching surface and the trajectory does not leave the
switching surface at that point, i.e. s(e(t)) remains constant during a certain
time interval. In this case a sliding mode is occurring, and for all points of the
trajectory e(t) during this time interval we have

(
vi(e(t)) = v j(e(t)) =V (e(t))
—vi(e(t)) f (e(t)) = —v j(e(t)) f (e(t))

, 8i, j 2 s(e(t)). (4.37)

In particular, as —vi(e(t)) f (e(t)) = —v j(e(t)) f (e(t)) and as qi(e(t)) = 0 for
i /2 s(e(t)), we can also rewrite (4.27) as in (4.36).

The last situation to be analyzed is when s(e(t)) is not a singleton on
a point “e(t)” of a switching surface and the trajectory leaves the switching
surface at that point. In this situation, s(e(t)) will change and, as s(e(t))
is piecewise constant, the trajectory will move to a new region or switching
surface under one of the two cases previously discussed. Thus, these points
where s is discontinuous correspond to isolated points of a system trajectory.
Keeping in mind that V (e(t)) from (4.24) is locally Lipschitz continuous, we
conclude that V (e(t)) is decreasing along any system trajectory e(t) if it is
decreasing in the two previous cases where (4.36) is valid. Observe that s

is piecewise constant and thus the behavior of V along a system trajectory in
the neighborhoods of the points where s is discontinuous is characterized by
(4.36).

From the above discussion, it is clear that the condition D f (e(t))V (e(t))<
0, obtained from (4.36), guarantees the decreasing of V (e(t)) along any tra-
jectory of the system (4.10) under the switching rule (4.12). Observe that as
V (e(t)) is locally Lipschitz, it follows that the directional derivative and time
derivative coincide almost everywhere, and D f (e(t))V (e(t)) < 0 guarantees
the decreasing of V (e(t)) even for system trajectories moving along lines
or surfaces where the gradient of V (e(t)) does not exist and thus the usual
expressions for the time derivative cannot be used. See (FILIPPOV, 1988,
p.155) for more details on this point.

For global stability it is required D f (e(t))V (e(t)) < 0, 8e(t) 6=
0, 8q(e(t)) 2 Q. As V (e(t)) is positive definite from (4.25), (4.34) and
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non increasing from D f (e(t))V (e(t)) < 0, we conclude that the origin is an
equilibrium point of the system whenever these conditions are satisfied. The
global asymptotic stability follows from the same arguments in (FILIPPOV,
1988, p.155).

Recall that q(e), present in the condition (4.36), is of difficult char-
acterization. One idea to overcome this issue is to use a more conservative
condition where q(e) is replaced with an arbitrary time varying parameter
q in the unity simplex Q. To reduce the conservativeness associated with
this relaxation of the problem, we can apply the S-Procedure to the condition
(4.26) and take into account the constraint (4.33) that represents the ‘max’
composition. Therefore, we replace (4.26) with the following condition.

W(q)+2a

q

�
V (e)� e0P

q

e
�
<�f3(e) , 8q 2 Q, (4.38)

where W(q) is the function indicated in (4.36) with q(e) replaced by an
arbitrary time-varying parameter q , V (e) is indicated in (4.30) and a

q

:=
Âm

i=1 aiqi > 0 is a scaling factor with given positive constants ai. Observe
that (4.38) implies from (4.36) that W(q(e)) = D.eV (e) < �f3(e) because
2a

q

�
V (e)� e0P

q

e
�

is non-negative from (4.33) and q 2 Q.
Next we show that (4.23) implies (4.38) for a suitable positive definite

function f3(e) to be specified later. Consider the notation P
q

:= Âm
i=1 qi Pi and

S
q

:= Âm
i=1 qi Si. Let us rewrite the left-hand side of (4.38) as


e
1

�0 A0
q

P
q

+P
q

A
q

+2a

q

(P
q

�P
q

) ?

k0
q

P
q

+
�
S

q

�S
q

�0 A
q

+2
�
S

q

�S
q

�0
a

q

k0
q

�
S

q

�S
q

�
+
�
S

q

�S
q

�0 k
q

�
e
1

�

< 0. (4.39)

Note that S
q

�S
q

= S(q �q) and k
q

= h
q

�h
q

+BDy = H(q �q)+BDy .
Therefore, it is possible to rewrite (4.39) using the auxiliary notation (4.15)-
(4.21) as

W(q)+2a

q

�
V (e)� e0P

q

e
�
= x

0 Yx < 0, (4.40)

x =

2

4
e

q

q �q

Dy

3

5
, e

q

=

2

64
q1e

...
qme

3

75 2 Rmn
. (4.41)

Now it is possible to incorporate to the condition (4.40) the fact that
Dy is a sector-bounded function of the error. Using the notation (4.20), we
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can rewrite (4.14) as
x

0Gx � 0. (4.42)

The inequality (4.40) must be satisfied whenever (4.42) is satisfied. By using
the (lossless) S-Procedure, this occurs if there exists a scalar t � 0 such that

M := x

0(Y+ t G)x < 0. (4.43)

With Ca and Cb(q) from (4.18), it follows that Cax = 0 and Cb(q)x =
0. From the Finsler’s Lemma, (4.43) is satisfied if there exist scaling matrices
Lb 2Rnm+m+1⇥rn, Li 2Rnm+m+1⇥1, 8i 2 Im, and La(q) defined in (4.19) such
that

U(q)< 0, 8q 2 Q , (4.44)

where

U(q) := Y+ t G+LbCb(q)+Cb(q)
0L0

b +La(q)Ca +C0
aLa(q)

0
. (4.45)

The expression (4.44) shows that if (4.23) is satisfied then M < 0
which in turn implies (4.40). Note that the element in the last row and last col-
umn of (4.23) is �t , thus feasibility of (4.23) already implies t > 0, avoiding
the need for this additional LMI condition.

Define the positive constants

e0 = min
q2Q

�
q

0
q

�
, e3 = min

q2Q
lmin (�U(q)) . (4.46)

Now multiplying the inequality (4.23) by x to the right and by its
transpose to the left and keeping in mind that Cax = 0 and Cb(q)x = 0, we
get

x

0(Y+ tG)x �e3kxk2
< 0. (4.47)

As kxk2 = ke
q

k2 + kq � qk2 + kDyk2 and ke
q

k2 = kqk2kek2, we
conclude that kxk2 � ke

q

k2 � e0kek2, which in turn implies

x

0(Y+ tG)x �e3e0kek2
. (4.48)

Using f3(e)= e3e0kek2 we have shown that the LMI (4.23) is a sufficient con-
dition for (4.43), thus for (4.38) whenever Dy 2 [l,u], and finally for (4.26).
Thus, global asymptotic stability follows using the same arguments in (FILIP-
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POV, 1988, p.155). ⇤

Remark 4.3.1 The Theorem 4.1 requires the nonlinear function yx to equally
influence all the modes of the switched system (4.1) by considering the same
vector B for all subsystems. The difficulty of considering a different vector
B for each subsystem lies in the construction of the LMIs, as shown in the
sequel. Suppose that instead of B, we had Bi, i 2 Im, in (4.1). Note in the text
after Equation (4.39) that in this case k

q

= H(q � q)+B
q

y �B
q

y , where
B

q

= Âm
i2Im

qiBi and B
q

= Âm
i2Im

q iBi. Therefore, it would not be possible to
isolate neither q �q nor Dy = y �y , variables that compose the vector x

given in (4.40), which is the basis for constructing the current LMI. Recall
that Dy is the variable that is sector-bounded and thus it is of interest to
maintain it in the vector x to include the sector-bounded restriction (4.42) in
order to relax the LMI conditions. ⇤

4.3.1 Partial state measurement

The results of the Theorem 4.1 are state feedback, however, the design
of a switching rule that uses output feedback can be performed in the same
manner as in Section 3.4.1. In order to show that, define the output tracking
error as in (3.41) and assume the auxiliary functions vi(e(t)), i 2 Im, from
(4.12) have the matrices Pi,Si with the structure given in (3.42). In this case,
the auxiliary functions vi(e(t)) can be rewritten as

vi(e(t)) = e(t)0(P0 +C0
iQiCi)e(t)+2e(t)0(S0 +C0

iRi �S0 �
m

Â
i2Im

q iCiRi)

(4.49)

= e(t)0P0e(t)�2e(t)0
m

Â
i2Im

q iCiRi +µi(e(t)), (4.50)

where µi(e(t)) is defined as in (3.45). Note that Âm
i2Im

q iCiRi is a constant
convex combination and thus this term does not change according to the op-
eration mode. Consequently,

max
i2Im

{vi(e(t))}= e(t)0P0e(t)�2e(t)0
m

Â
i2Im

q iCiRi +max
i2Im

{µi(e(t))} (4.51)
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and from (4.12) the switching rule becomes a function of the output tracking
error as

arg max
i2Im

{vi(e(t))}= arg max
i2Im

{µi(e(t))}= s(e(t)). (4.52)

This shows that the Theorem 4.1 can be directly applied to cope with the
case of partial state information by introducing the constraints (3.42) on the
structure of the matrices Pi,Si.

4.3.2 LMIs independent of the equilibrium point

In this section we show that it is possible to have the LMIs in Theorem
4.1 independent of the equilibrium variables x,q if the matrices Ai (from the
system) and Pi (from the Lyapunov function) have particular structures. To be
more specific, the application of the result presented in the sequel is possible
when both of these matrices are the same for all subsystems, that is

Ai = Ao , Pi = P0 , i 2 Im , (4.53)

where Ao is given by the decomposition (4.6) with Ai = 0, i 2 Im, and P0 2
Rn⇥n is a matrix to be determined. Also, consider the following auxiliary
notation used in the next corollary.

F =

2

4
A0P+P0A ? ?

H 0P+S0A+2S0a H 0S+S0H ?

B0P B0S 0

3

5 (4.54)

Corollary 4.1 Let x be a constant vector, not necessarily known a priori,
representing the desired equilibrium point of the system (4.1), and suppose
that x(t) is available online. Consider the error system (4.10) and let q 2Q be
a given constant vector according to Lemma 4.1. With the auxiliary notation
(4.15)-(4.20) and (4.54), let Lb,Li, i 2 Im, be matrices to be determined with
the dimensions of Cb(q)0,C0

a, respectively.
Suppose that 9P,S,t,Lb,Li, i2 Im, solving the following LMI problem.

P0 > 0 (4.55)

F+ t G+LbCb(q)+Cb(q)
0L0

b +La(q)Ca +C0
aLa(q)

0
< 0, 8q 2 J(Q)

(4.56)
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Then the nonlinear switched system (4.10) is globally asymptotically stable
with the switching rule (4.12) and

V (e) := max
i2Im

{vi(e)} , vi(e)=e0P0e+2e0(Si �S
q

) (4.57)

is a Lyapunov function for the system. ⇤

Proof: First, note from (4.7), (4.15) that if the matrices Ai, from the decom-
position (4.6), are equal to zero 8i 2 Im (i.e. Ai is the same for all i 2 Im),
then the LMIs in Theorem 4.1 are independent of equilibrium point x. That is
because x only appears in the LMI (4.23) multiplied by Ai (implicitly inside
the definition of the vectors hi).

Now consider vi(e) with the structure (4.12), (3.42) and recall that the
full state feedback case is recovered with Ci = In, 8i 2 Im. It is possible to get
the LMIs in Theorem 4.1 also independent of q by forcing Qi = 0,8i 2 Im. In
this case, we have P

q

= Âm
i=1 qiPi = P0 and P

q

= Âm
i=1 q iPi = P0. Therefore,

the LMI (4.22) can be replaced by (4.55) and the term (P�P
q

Io)0a +a

0(P�
P

q

Io) is eliminated from (4.23), resulting in the LMI (4.56). ⇤
The Corollary 4.1 allows the results of the Theorem 4.1 to be applied

even if some entries of the desired operation point x, and consequently q , are
not known a priori. In this case, changes in the equilibrium point with time
are also possible to take into account, provided that the changes in x can be
represented by piecewise constant vectors varying slowly enough when com-
pared to the system dynamics, as shown in Remark (4.3.2) in the sequence.

Remark 4.3.2 (Piecewise constant equilibrium) When the reference vari-
able x varies continuously, it can still be approximated by a piecewise con-
stant function, as illustrated in Figure 25, which can be obtained by passing
the real continuous reference signal to be approximated through a Zero-Order
Holder (ZOH), sampling every Ts seconds. The value of Ts must be greater
than the time necessary for the accommodation (within a given precision) of
the step response of the state variables of the switched system. Thus, the hy-
pothesis that

.
x = 0 is realistic. It should be emphasized that Ts does not enter

in the design of the switching rule, being selected a posteriori to accommo-
date the response of the system in each step. ⇤

4.4 Limited switching frequency

At this point, all switching rule design procedures proposed in this
thesis were presented, and all of them are based on the assumption that ideal
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Figure 25: Illustration of the piecewise-constant approximation x for a vari-
able reference x(t). The ideal x(t) is represented in black color and the ap-
proximate x in red.

sliding modes can occur. However, real switched systems often require a
certain minimum time t

min
s between two switchings, which results in a lim-

ited switching frequency2. This minimum time before updating the switching
signal is due to two main reasons: (i) slow microprocessors generating the
control signal (inherent problem of any control system); (ii) slow switching
devices, which is often the most restrictive reason for power electronics con-
verters.

Various types of switches can be used for the converter circuits, among
which the most commonly employed are the Metal Oxide Semiconductor
Field Effect Transistor (MOSFET), the Insulated Gate Bipolar Transistor
(IGBT) and the Gate Turn-Off (GTO). A comparison between the power ca-
pacities and switching speed of these types of switches can be seen in Table
3, extracted from (MOHAN; UNDELAND; ROBBINS, 2003). For these types of
switches (not mechanical, but electrical), the switching speed is mainly re-
lated to the dynamics of the voltages and currents in the switch3 during the

2The term ‘limited switching frequency’ may be misleading, as the problem is in fact the time
between switches, specially for asynchronous switching rules, as presented in this thesis.

3With the switch in the closed state, the voltage over the switch is zero and the current has a
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switching, which are usually neglected in the modeling of the system for be-
ing much faster than the dynamics of the rest of the system. Although, they
do not have instantaneous variation, typically taking a time in the order of
microseconds to open or close (BARBI, 2006).

Switching device Power capacity Switching speed
MOSFET 175kW (low) 1MHz (fast)

IGBT 1MW (medium) 100kHz (medium)
GTO 6MW (high) 1kHz (slow)

Table 3: Power properties and switching speed of the controlled switches:
MOSFET, IGBT e GTO.

The typical waveforms of the dynamics of the voltage over a switch
and the current flowing through it during a switching transient are presented
in Figure 26, where tr is defined as the rise time (time for the current to go
from 10% to 90% of its value in the closed state) and t f is defined as the fall
time (time for the current to go from 90% to 10% of its value in the closed
state). During the time intervals tr and t f , the switch state is undefined and
it is not possible to assert that the switching have already occurred. For this
reason, the switching signal should not be updated during this intervals and,
therefore, t

min
s � max{tr, t f }.

Another problem arises due to the switching transient time in systems
with certain circuit topologies. This is the case of DC/AC converters, for
instance, where a pair of switches connected in series in each leg of the con-
verter have a parallel connexion to a DC voltage source, as illustrated in Fig-
ure 27. In the ideal situation, the states of the two switches are considered
complementary, i.e. one switch is closed when the other is open. However,
the opening switch needs a time t f to be considered open and, thus, there must
exist a minimum delay t

min
d before closing the other switch. Otherwise, both

switches could be momentarily closed and the voltage source would be short-
circuited. This delay is referred to as dead time4 and it must be defined as
t

min
d � t f . Figure 27 also shows the waveforms of the current flowing through

both switches and the introduction of the dead time.
The reference (TORRES; LOPES, 2013) shows the introduction of dead

time for controlling a real system. Also, there are some techniques to com-

certain value, with the switch in the open state, the voltage over the switch has a certain value
and the current is zero.

4Also known as blanking time.
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Figure 26: Voltage and current dynamics on a switch during switching tran-
sient.

Figure 27: A generic DC/AC converter leg with dead time introduced in the
switching rule.

pensate (BEN-BRAHIM, 2004), (HWANG; KIM, 2010) or eliminate (CHEN; PENG,
2007) the effects of dead time. Although not all DC/AC converters require
the introduction of dead time, as the Opposed Current Converter (OCC) from
(SCHELLEKENS et al., 2011), which does not have switches connected in series
at the cost of more structural complexity.

The introduction of t

min
s and t

min
d may cause some undesired effects on
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the system response. For instance, the greater the dwell time t

min
s , the larger

is the ripple effect. Moreover, the average value of the states may undergo a
deviation from the desired value. This deviation may be positive or negative,
depending on the side of the switching surface that is closer to points where
the switchings are occurring, as shown in Figure 28. In relation to introduc-
ing the delay t

min
d in DC/AC converters, the sinusoidal system response may

present an amplitude deviation and also a phase shift.

Figure 28: Deviation in the desired average value for a switching surface
x(t) = x. (a) Ideal sliding mode (no deviation); (b) dwell time with positive
deviation; (c) dwell time with negative deviation.

Remark 4.4.1 One can realize that exact sliding modes do not occur if the
switching frequency is bounded. As in practice this is always the case, we
present in the sequel a procedure to get an approximation of the Filippov’s
convex parameter q(e(t)) used in the switched system (4.10). The idea is
usual in PWM based models (YOUNG, 1993) and consists of replacing the
ideal sliding mode dynamics associated with unbounded switching frequency,
with a bounded but sufficiently high switching frequency. For this purpose, it
is required that the switching frequency must be higher than the sprectrum of
subsystems, i.e. the switching frequency is associated with a time scale where
the subsystems vector field can be considered almost constant. In this case,
the Filippov’s convex parameter q(e(t)) can be approximated by the average
value of a logical variable. To illustrate the ideas, suppose that fi(e(t),z(t))
are Lipschitz continuous functions representing the vector fields of the sub-
systems and f (e(t)) = Âm

i=1 qi(e(t)) fi(e(t)) is the vector field of the switched
system, where qi(e(t)) is the convex combination parameter according to Fil-
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ippov’s results. Consider the approximation

f (e(t)) =
m

Â
i=1

qi(e(t)) fi(e(t))⇡
1
Dt

Z t

t�Dt

m

Â
i=1

gi(t) fi(e(t))dt , (4.58)

where Dt > 0 is a sufficiently small time interval, gi(t) are logical variables
defined as (

gi(t) = 1 for some i 2 s(e(t))
g j(t) = 0 for j 6= i

(4.59)

and s(e(t)) is defined as in (4.12). As the functions fi(e(t)) are Lipschitz, the
more Dt is reduced, the more fi(e(t)) approaches a fixed value in the inter-
val, in the sense that fi(e(t)) is practically constant in the interval [t �Dt, t].
Thus, for sufficiently small Dt > 0, the right-hand side of (4.58) can be ap-
proximated as

1
Dt

Z t

t�Dt

m

Â
i=1

gi(t) fi(e(t))dt ⇡
m

Â
i=1

✓
1
Dt

Z t

t�Dt
gi(t)dt

◆
fi(e) (4.60)

that in turn yields the approximation

qi(e(t))⇡
1
Dt

Z t

t�Dt
gi(t)dt (4.61)

that is valid for a sufficiently small Dt > 0. Observe that (4.61) express an
approximation based on the average value of the logical variables gi(t). ⇤

According to Remark 4.4.1, the introduction of the minimum dwell
time t

min
s > 0 and the dead time t

min
d > 0 are not an issue for stability, pro-

vided that they are small enough. The same approximation presented in Re-
mark 4.4.1 was considered for the characterization of state and parameter
estimation using switched observers in (PINTO; TROFINO, 2014). Moreover,
the approximation (4.61) can be used to get a duty cycle, in case the input of
the switching devices passes through a PWM as in Figure 17.

4.5 Numerical examples

In the following examples, we have used the software Matlab, with the
computational package SeDuMi (STURM, 2001), through the parser YALMIP
(LÖFBERG, 2004), to solve the LMIs and Simulink to obtain the trajectories of
the nonlinear switched systems.
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Example 4.1 (Saturation) Consider a nonlinear switched system repre-
sented in the form (4.1) with the matrices

A1 =


0 1
�1 �1

�
, A2 =


0 1
�2 �2

�
,

b1 =


�2
�1

�
, b2 =


0
2

�
, B =


0
1

�
.

(4.62)

and the following nonlinear function.

yx(qx(x(t)) = sat(x2) :=

8
><

>:

2 if x2 >= 2
x2 if �2 < x2 < 2
�2 if x2 <=�2

(4.63)

As qx(x(t)) :=Cqx = x2, we have that Cq = [0 1].
Note that the Corollary 4.1 cannot be applied to this case because the

matrices Ai are not equal for the two subsystems and, therefore, a switching
rule must be designed for every desired equilibrium point. Assume the desired
equilibrium in this case is

x =


0
1

�
. (4.64)

Using the decomposition (4.6), we have

A0 =


0 1
0 0

�
, A1 =


0 0
�1 �1

�
, A2 =


0 0
�2 �2

�
,

b0 =


0
0

�
, b1 =


�2
�1

�
, b2 =


0
2

� (4.65)

and now we can determine the vectors in (4.7) as

ho =


1
0

�
, h1 =


�2
�2

�
, h2 =


0
0

�
. (4.66)

Also knowing that
y = y(0) = yx(x2) = 1, (4.67)

we can solve the equilibrium condition (4.9) for q 2 Q, which results in the
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unique solution

q 1 = q 2 =
1
2
. (4.68)

The sector [l,u] can be determined by analyzing the function
y(q(e(t))) given by Equation (4.4) and represented in Figure 29. It is
easy to notice that the sector [l,u] = [0,1.1] (also represented in Figure 29)
contains the nonlinear function y(q(e(t))), 8q(e(t)) 2 R.

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

yx

x2

Dy = sat(x2)� sat(x2)

q = x2 � x2

Dy = uq

Dy = lqo

Figure 29: Sector bounds (red dashed lines) for the nonlinear saturation func-
tion (4.63) (blue lines).

Setting a1 = a2 = 0.25 according to Remark 3.4.1 and solving the
LMIs in Theorem 4.1, a feasible solution is found and we get the following
matrices used to construct the switching rule (4.12).

P1 =


0.3913 �0.0263
�0.0263 0.3420

�
, P2 =


0.8232 0.1796
0.1796 0.5248

�
,

S1 =


0.4633
�0.2158

�
, S2 =


�0.4633
0.2158

� (4.69)

Simulation results showing the state trajectories for a given initial
condition x(0) =

⇥
0 �3

⇤0 are presented in Figure 30. Note that the
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state is correctly regulated to the equilibrium point. Also, Figure 31(a)
displays the auxiliary functions vi(e(t)), i 2 Im, and Figure 31(b) shows
s(e(t)), in which we can see a sliding mode starting at t = 2.5295s (area
in black color representing the fast switching). Note that the max composi-
tion V (e(t)) = maxi2Im{vi(e(t))} is positive and decreasing even though the
individual auxiliary functions are not, which would not be possible by using
a ‘min’ composition.

0 1 2 3 4 5 6

−3

−2

−1

0

1

2
0 1 2 3 4 5 6

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

t [s]

t [s]

x1

x2

Figure 30: State trajectories for the given initial condition x(0).

Finally, Figure 32 shows the effects of limiting the switching frequency
for the system under study. A minimum time t

min
s = 0.1s was introduced be-

tween two consecutive switchings. Note in Figure 32 that the trajectories
converged to a region around the desired equilibrium point, although a small
negative deviation can be perceived after the equilibrium is achieved, as ex-
pected according to Section 4.4. ⇤

Example 4.2 (Variable equilibrium) Consider a nonlinear switched system
represented in the form (4.1) with the matrices

A1 = A2 =


0 1
�2 �2

�
, b1 =


�2
�1

�
, b2 =


0
2

�
, B =


0
1

�
,

(4.70)
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Figure 31: (a) Auxiliary functions vi(e(t)), i 2 Im. (b) Active mode s(e(t)).

and the nonlinear function (4.63). As the nonlinear function is the same as
in Example 4.1, Cq =

⇥
0 1

⇤
and the same sector [l,u] = [0,1.1] will be

considered.
Note that the Corollary 4.1 can be applied to this case because the

matrices Ai are equal for the two subsystems. For this reason, it is not nec-
essary to know the equilibrium point a priori and it is allowed to change in
accordance to Section 4.3.2. Using the decomposition (4.6), we get

A0 =


0 1
�2 �2

�
, A1 = A2 = 02 ,

b0 =


0
0

�
, b1 =


�2
�1

�
, b2 =


0
2

�
,

(4.71)

and, as the matrices Ai are zero 8i 2 Im, we can determine the vectors hi in



118 4 Control of Switched Systems with Sector-Bounded Nonlinearities

0 1 2 3 4 5 6

−1

−0.5

0

0.5

0 1 2 3 4 5 6

−3

−2

−1

0

1

2

t [s]

t [s]

x1

x2

Figure 32: State trajectories for the given initial condition x(0) with dwell
time t

min
s = 0.1s.

(4.7) independently of x as

h1 = b1 =


�2
�1

�
, h2 = b2 =


0
2

�
. (4.72)

Setting a1 = a2 = 0.25 and solving the LMIs from Corollary 4.1, a
feasible solution is found and we get the following matrices used to construct
the switching rule (4.12).

P1 = P2 =


0.6694 0.0875
0.0875 0.3350

�
, S1 =


1.0762
�0.4906

�
, S2 =


0
0

�

(4.73)
Note that the knowledge of an equilibrium point was not necessary for

the switching rule design, although the equilibrium point still needs to satisfy
the condition from Lemma 4.1 to be considered as a ‘possible’ equilibrium
for the switched system. Note from (4.7) that, for this particular system, we
have

h0 = A0x+b0 =


x2

�2x1 �2x2

�
, (4.74)
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and, recalling that y = yx(x2), we get the following system of equations from
(4.9). (

�2q 1 + x2 = 0
�q 1 +2q 2 �2x1 �2x2 +yx(x2) = 0

(4.75)

As 0  q 1  1, from the first equality of (4.75) we have that the possible
equilibria must have 0  x2  2, and for this interval yx(x2) = x2. As q 1 =
x2/2 from the first equality and q 2 = 1�q 1 = 1� x2/2, we have, for a given
x2, that x1 = 1�5x2/4 from the second equality. Therefore, the set of possible
equilibria for this system is

Xeq := {x : x1 = 1�5x2/4 , 0  x2  2} . (4.76)

Finally, simulation results showing the state trajectories for null
initial conditions, x(0) =

⇥
0 0

⇤0, are presented in Figure 33. In or-
der to show that the switching rule designed is robust to variations in the
desired equilibrium, the simulation is started with the possible equilib-
rium x =

⇥
�7/8 3/2

⇤0 and then changed to the possible equilibrium
x =

⇥
3/8 1/2

⇤0 in t = 5s (after the previous equilibrium is achieved,
according to Section 4.3.2). Notice that the state is correctly regulated to
both equilibria. ⇤

The switching rule design proposed in the current chapter does not
take into account information about the nonlinear function, therefore the
switching rule designed can be applied to the same system for any nonlin-
ear function contained inside the given sector bounds. For instance, if the
nonlinear function (4.63) from the previous examples was replaced by the
function

yx(qx(x(t)) = tanh(x2) (4.77)

with x2 = 0, then the same switching rule could be applied for the new system,
because (4.77) is also in sector [l,u] = [0,1.1], as shown in Figure 34.

4.6 Concluding remarks

The switching rule design technique proposed in this chapter can be
extended in several directions, as to include performance requirements such
as guaranteed cost and H• attenuation, for instance. Another idea for future
work is to extend the technique for a more general case with multiple sector-
bounded nonlinearities.
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Figure 33: State trajectories for null initial conditions.

For the case of photovoltaic systems in particular, the nonlinear char-
acteristic of the PV array may be modeled as a sector-bounded function. The
application of the design technique for PV systems is presented in Chapter 5.
When the PV system is connected to the grid, it also contains nonlinearities
that are not state-dependent, but time-dependent (sinusoids), and thus an ex-
tension of design method to cover this type of system would be necessary in
this case.

The derivation of LMI conditions for switching rule design with guar-
antee of stability for limited switching frequency is still an open problem.
Some ideas to solve this problem are the introduction of dwell time con-
straints on the LMIs by using state-dependent dwell time as in (DE PERSIS;
DE SANTIS; MORSE, 2003) or to use Lyapunov-Krassovskii functionals to con-
sider the switching delay in the design, similarly to (MOARREF; RODRIGUES,
2014), (HETEL; DAAFOUZ; IUNG, 2008). Conditions based on the type of Lya-
punov functions used in this thesis have shown to result in conservative LMIs
in previous attempts to introduce dwell time into the switching rule, thus the
modification of the Lyapunov function to also include the minimum dwell
time variable may be an interesting approach for future work. Another idea
to be investigated is to design a state-dependent switching surface without
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Figure 34: Sector bounds (red lines) for the nonlinear function (4.77) (blue
curve).

considering a limited switching frequency and then analyzing the stability of
the controlled system under limited switching frequency. Recall that in this
last case the system trajectories do not converge to an equilibrium point, but
to a region, as in (KUIAVA et al., 2013), where the stability of time-dependent
switching rules is analyzed.



122 4 Control of Switched Systems with Sector-Bounded Nonlinearities



123

5 CONTROL OF PHOTOVOLTAIC SYSTEMS

5.1 Introduction

This chapter is dedicated to present the application of the control strat-
egy proposed in Chapter 4 to PV systems, of which the operation was de-
scribed in Chapter 2. As the nonlinear function in PV systems also depends
on uncertain parameters, a formula for determining robust sector bounds for
this system is also provided, allowing for the application of MPPT algorithms.
The chapter is divided in two parts. The first part is devoted to the application
of the method for stand-alone PV systems, starting by presenting the topology
of the system to be controlled, the control objectives and some considerations
about the system and ending with numerical simulations to show the effec-
tiveness of the obtained results. The second part shows the modeling and
control objectives for a grid-connected PV system to serve as a basis for the
design of a switching rule to be presented in a future work.

5.2 Stand-alone PV system

This section deals with the application of the methodology for con-
trolling a PV system feeding a local load through a Boost converter, without
connection to the grid, starting the presentation from the system modeling
and generation of references for maximizing the power generated (MPPT) to
the design of the switching rule to be applied. A numerical example shows
the effectiveness of the proposed method.

5.2.1 Mathematical model of the PV-Boost system

A PV array can be modeled as a current source, where the output cur-
rent ipv of the array is a nonlinear function of the voltage Vpv over the termi-
nals of the array, represented by (2.7). Recall that it is not possible to isolate
ipv to determine its value algebraically. Moreover, ipv is also a nonlinear func-
tion of the uncertain input parameters T and G.

The first stage consists of a PV array connected to a Boost converter
with fixed output voltage as shown in Figure 35. This is the case for stand-
alone systems with a battery bank or grid-connected systems with a constant
DC link voltage. The objective considered here is to extract the maximum
power of the array even under variations in T and G.

The PV system from Figure 35 has only one switching device (u0)
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Figure 35: Topology of the DC/DC converter stage.

and, therefore, it is composed of two different subsystems (m = 2). The Table
4 shows the relation between the number of the active subsystem (mode of
operation) and the binary command u0 sent to switch s0 of the Boost converter
that enables the respective mode.

Mode (s ) u0

1 1
2 0

Table 4: Signal u0 send to the switch s0 of the Boost converter, where u0 = 1
puts the switch in the “closed” state (conducting) and u0 = 0 in the “open”
state (not conducting).

Consider the state vector x =
⇥

il Vpv
⇤0, where il is the electric cur-

rent through the inductor L and Vpv is the voltage over the capacitor C. De-
fine the nonlinear function yx(qx(x(t))) = ipv(Vpv). Therefore, qx(x(t)) =
Cqx(t) =Vpv with Cq =

⇥
0 1

⇤
. And the system matrices are

A1 = A2 =


�Rl/L 1/L
�1/C �1/(RcC)

�
, b1 =


0
0

�
, b2 =


�Vdc/L

0

�
, B =


0

1/C

�
.

(5.1)
Considering the decomposition (4.6) and the definition (4.7), the sys-
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tem matrices can be represented as in (4.10) with

A0 =


�Rl/L 1/L
�1/C �1/(RcC)

�
, A1 = A2 = 02,

b0 = b1 =


0
0

�
, b2 =


�Vdc/L

0

�
, B =


0

1/C

�
.

(5.2)

More details about modeling power electronic devices can be found in (MO-
HAN; UNDELAND; ROBBINS, 2003), for instance.

Finally, note in Figure 35 that a more realistic model of the capacitor
C and of the inductor L was considered, with the presence of their parasitic
resistances, which are, respectively, the resistance of the dielectric of the ca-
pacitor (Rc) and the intrinsic resistance of the conductive material of the in-
ductor (Rl). These resistances are usually neglected, but they can be useful,
as without them the dynamic matrices of the system models have eigenvalues
on the imaginary axis and thus, no matter how small the influence of the re-
sistances may be, they are already enough to make the system present stable
eigenvalues. This point will be discussed in more detail during the project.
Another study that consider the parasitic elements is (WILLMANN et al., 2007).

5.2.2 References generation for MPPT

Considering the Lemma 4.1, the equilibrium is defined by Âm
i=1 q i(ho+

hi +By) = 0, from which we get the following system of equations.
(

il =�V pv/Rc + ipv ⇡ ipv

V pv = Rlipv +q 2Vdc
(5.3)

The approximation il ⇡ ipv in (5.3) takes into account that 1/Rc (the dielec-
tric conductance of C) has very small values (around nW�1), (NETO, 2012).
Therefore, in practice, the influence of the term �V pv/Rc is negligible when
compared to ipv.

There is no problem in doing the previous approximation, since, as it
will be shown in the sequel, the equilibria are generated by the P&O MPPT al-
gorithm, which may introduce a small inaccuracy in the references generated.
However, note that the approximation is only possible for the definition of the
equilibrium and not for the system model. If the model was built consider-
ing ideal elements, the dynamic matrix of the switched system in equilibrium
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would be

Aideal
q

= Aideal
i =


0 1

L
� 1

C 0

�
, (5.4)

which would have only eigenvalues on the imaginary axis and thus it would
not be possible to find a solution for the LMIs proposed in this document,
which require the system to have a stable convex combination for the q of
equilibrium, according to the Remark 3.4.1. Moreover, the model considering
the non-ideal components not only helps to introduce negative eigenvalue in
A

q

, but it is also a more realistic approximation of the system.
Consider the objective of maximizing the power extracted from the

PV array and note that we have x =
⇥

ipv V pv
⇤0, according to (5.3). How-

ever, the values of ipv and V pv are coupled by the nonlinear equation (2.7),
which depends on the uncertain parameters T and G, not known in real time.
It means that if ipv is fixed, it is not possible to calculate V pv, and vice versa.
Moreover, two MPPT algorithms simultaneously generating references can-
not co-exist. This is because each algorithm operates independently of the
other, although their outputs (ipv and V pv) must be coupled by the I-V char-
acteristic of array so that the system can reach a feasible reference.

To overcome this difficulty, the switching rule is designed based on
output feedback (Section 4.3.1), which requires the value of only one of the
references in real time. In the case presented in this chapter, the output con-
sidered is the current state x1. Therefore, y(t) = Cix(t) with Ci =

⇥
1 0

⇤
,

8i 2 Im. An alternative would be to measure only the voltage state x2, how-
ever, this case does not result in feasible LMIs.

In order to perform the MPPT, we consider the value of ipv as the
output of an MPPT algorithm, such as the simple Perturb and Observe (P&O)
algorithm. See (TAN; GREEN; HERNANDEZ-ARAMBURO, 2005) for details on the
P&O algorithm considered. The algorithm will perform changes in the value
of ipv to get as close as possible to the maximum power point even in case of
changes in T and G. According to Section 4.3.2, ipv is allowed to change as a
slowly varying piecewise constant function.

5.2.3 Robust sector bounds for PV systems

According to (4.4), in the system representation (4.10) we have Dy =
ipv(q+V pv)� ipv, where q = Cqe = Vpv �V pv and ipv = ipv(V pv). Note that
Dy = 0 for q = 0, and therefore we are able to represent Dy as a sector-
bounded function of q as suggested in the Remark 4.2.1.

The Figure 36 shows the I-V characteristic curve of the array, obtained
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by plotting (2.7) for fixed values of T and G. The Figure 36 also shows the
axis for the sector-bounded function Dy as a function of q for specific values
of ipv and V pv. Sector-bounding lines satisfying the sector condition for this
case are also presented.

ipv

Vpv

Dy = ipv � ipv

q =Vpv �V pv

ipv

V pv

Dy = uq

Dy = lq

(i)

(ii)

o

Figure 36: Example of I-V characteristic curve (blue curve) and sector bounds
(red lines).

Note that the equilibrium point (ipv,V pv) can be any point on the I-V
characteristic curve. In order to find sector bounds [l,u] for the curve Dy(q)
for any value of (ipv,V pv) we must consider the following two worst case
scenarios. (i) When ipv = 0 all the points of the curve are located in the
second quadrant and the curve is limited above by a line with slope l = dDy

dq

evaluated at the origin (Dy = 0 and q = 0 with ipv = 0). The value of dDy

dq
at this point characterizes the most negative slope of the curve Dy(q), as it
can be seen in Figure 36. (ii) Analogously, when V pv = 0 all the points of the
curve are located in the fourth quadrant and the curve is limited by a line with
slope u = dDy

dq evaluated at the origin (Dy = 0 and q = 0 with V pv = 0). The

value of dDy

dq at this point characterizes the least negative slope of the curve
Dy(q).

However, the slopes of the curve Dy(q) in relation to q for the worst
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cases are not known a priori because they depend on the uncertain parameters
T and G, as shown in the sequence. Note that

dDy

dq
=

dipv

dVpv
=�

Mp

MsNsRs (1+ f (T,G,Vpv, ipv))
, (5.5)

where

f (T,G,Vpv, ipv) :=
hkT

eRsir
⇣

exp
⇣

e

hkT

⇣
Vpv

MsNs
+

Rsipv
Mp

⌘⌘
�1

⌘
. (5.6)

In order to find a robust sector [l,u], note in Equation (5.6) that f
is always positive, independently of the values of (T,G,Vpv, ipv). Thus, the
most negative (l) and the least negative (u) values of dDy

dq can be extracted
from (5.5) as follows.

l = lim
f!0

dDy

dq
=�

Mp

MsNsRs
(5.7)

u = lim
f!•

dDy

dq
= 0 (5.8)

Therefore, the sector [l,u] given by (5.7), (5.8) is robust in relation to T and G
(it depends only on constant parameters of the system) and it is guaranteed to
contain Dy(q) for any reference (ipv,V pv) because these bounds contemplate
the worst case scenarios corresponding to the points (i) and (ii) in Figure 36.

5.2.4 Switching rule design for the PV-Boost system

As the nonlinear function ipv can be represented as a sector-bounded
function according to Section 5.2.3, the switching rule design for the first
stage will be based in the method presented in Chapter 4. Note in (5.1) that the
matrices Ai are the same for all operation modes. Therefore, it is possible to
use the results for switching rule design independent of the equilibrium point
given by the Corollary 4.1, making it possible for the equilibrium to vary in
order to perform the MPPT. In addition, the switching rule will be designed
for a partial state measurement (y = il), as explained in Section 5.2.2, and
thus the switching rule will be given by (4.52).
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5.2.5 Results and simulations

The simulation data considered for the system from Figure 35 are pre-
sented in Table 5. Seeking only to exemplify the application of the control
methodology, there was no concern with the optimal design of the electrical
components of the converter circuits; for the design of the components the
references (MARTINS; BARBI, 2008), (BARBI; MARTINS, 2008) are suggested,
and for the particular application of grid-connected PV systems (DE SOUZA,
2009) is recommended. The PV array considered has Ms = 10 and Mp = 2,
i.e. a total of 20 modules, where each module has the data presented in Table
1. This module and this configuration are the same used in (DE BRITO et al.,
2010), (CASARO, 2009) and (COELHO; CONCER; MARTINS, 2009).

Parameter Value
C 100µF
Rc 1GW
L 50mH
Rl 10mW
Vdc 350V

Table 5: Data of the PV system with a local load from Figure 35.

In the sequel, we have used the software Matlab, with the computa-
tional package SeDuMi (STURM, 2001), through the parser YALMIP (LÖF-
BERG, 2004), to solve the LMIs and Simulink to obtain the trajectories of the
nonlinear switched systems. For the simulations that will be presented in the
sequence, the tool Simulink with the toolbox SimPowerSystems from Matlab
was used. This toolbox allows the construction of circuits directly from the
connection of simulated electrical components, making it possible to validate
the technique in a model closer to the real circuit, thus avoiding the applica-
tion of the technique in the mathematical model from which it was designed.

Consider the sector [l,u] = [�0.7407,0] obtained with Equations
(5.7)-(5.8) and the matrices Pi,Si defined as in (3.42) with Qi = 0 (according
to Section 4.3.2) and Ci =

⇥
1 0

⇤
,8i 2 Im, as in Section 5.2.2. The LMIs

of the Corollary 4.1 are satisfied and as a result we obtain the following
coefficient matrices, from which Qi,Ri, i 2 Im, are used to compute the
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switching rule (4.52).

P0 =


6.5852 ?

�1.9675⇥10�11 5.0115⇥10�3

�
, S0 =


0
0

�
,

Q1 =�4.0794, R1 = 0, (5.9)

Q2 =�4.0794, R2 = 8.7702⇥10�9
,

In the sequence, simulation results are presented. The simulation is
initiated with T = 10�C and G = 1000 W/m2 and null initial conditions for
all the states. To demonstrate the robustness of the technique with respect
to the variation of the input parameters of the solar panel, T changes1 from
10oC to 25oC in t = 0.3s, and G is changed from 1000 W/m2 to 1200 W/m2

in t = 0.4s.
In Figure 37(a) the plot of the power generated by the PV array is pre-

sented. It is possible to demonstrate, by plotting the P-V characteristic curves,
that the MPP for each set of input parameters corresponds to the values of Ppv
reached in steady state in Figure 37(a). Between t = 0.3s and t = 0.4s in
particular, the system is in STC, therefore, it is easy to check that the MPP
is achieved simply by multiplying the values of voltage and current in MPP
from Table 1 between themselves and by the number of modules considered,
which results in 4003W, the same obtained in simulation. The small oscilla-
tions in Ppv in steady state are due to the adjustments of the P&O algorithm,
which has a compromise between speed of convergence and precision. A bet-
ter response could be achieved by using an improved P&O algorithm such as
in (KUMARI; BABU; BABU, 2012).

Figure 37(b) shows that the curve of ipv converges to ipv (discretized
output of an P&O algorithm2) due to the convergence of the state il to ipv
as in (5.3). Figure 37(c) shows the convergence of the non-measured state
Vpv to its reference (not known a priori). Recalling that these two variables
are intrinsically connected by the I-V characteristic from Figure 6, when ipv
reaches the MPP it means that Vpv reached it as well, hence the need for using
an MPPT algorithm for only one of these two variables. In this case, it is
known that the current il is equal to ipv when the system is in steady state and,
therefore, it is sufficient for il to have as its equilibrium the value of ipv of the

1An extreme case is illustrated; in real situations the temperature does not undergo a step type
of variation.

2An P&O algorithm for current control, as in (TAN; GREEN; HERNANDEZ-ARAMBURO,
2005), is used for MPPT. The algorithm is adjusted to perform steps of ±0.8A. The references
are changed every Ts = 0.01s, according to Remark 4.3.2.
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Figure 37: (a) Ppv = Vpvipv (black curve) and the MPP for each values of T
and G (red lines). (b) ipv (black curve) and its reference ipv (green lines). (c)
Vpv.

MPP in order for the system to achieve the maximum generation.
It is important to emphasize that the technique is designed consider-

ing the possibility of switching with infinite frequency, as there are no re-
strictions including a minimum residence time between switching instants.
However, simulations similar to the one presented in Example 4.1 show that
the designed switching rule works well for converters with limited switching
frequency, since this frequency is high enough. By decreasing the maximum
switching frequency, only an increase in the amplitude of the ripples and a
small deviation of the average value of the states in steady state are observed,
as expected according to Section 4.4. In the simulations presented it was
assumed that all the switches can operate with a maximum frequency up to
1MHz, which is a frequency possible for switches of the MOSFET type (MO-
HAN; UNDELAND; ROBBINS, 2003), as shown in Table 3.
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5.3 Grid-connected PV system

In order to illustrate the case of connection to the AC power grid, the
system with two converter stages shown in Figure 38 will be used. It will
be considered that the main control objective for this system is to generate
and deliver to the grid the maximum power possible at unitary PF. The power
circuit topology includes an L filter as interface between the inverter and the
grid. Despite the advantages of the LCL filter described in Section 2.2.2.3, a
single L filter is considered in order to simplify the exposition of the modeling
process.

Figure 38: Topology considered for connection of the PV system with the
grid.

The DC link voltage (Vdc) will be considered constant and with am-
plitude large enough to be able to reproduce in the output of the inverter a
switching voltage with an average value similar in amplitude to the sinusoidal
voltage of the grid. This case of DC link voltage kept constant by means of
batteries, also known by the nomenclature link-battery, can be found in (NGE;
MIDTGARD; NORUM, 2011), (DASGUPTA et al., 2011) and (GULES et al., 2008).
The voltage Vdc is also applied to the output of the DC/DC converter of the
first converter stage and we will consider a PV array for which the maxi-
mum operating voltage, even in the worst case T and G, will be less than Vdc,
justifying the use of the Boost converter in this case.

Batteries with a high voltage value are not an impossibility. For in-
stance, the electric vehicles developed by Itaipu Binacional contain batteries
with voltages above 250 Volts (ITAIPU BINACIONAL, 2013). An alternative to
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the use of high voltage batteries, but still with constant link voltage, would
be to use a low battery voltage value, but with the system connected to the
grid via a transformer, as shown in (LI; WOLFS, 2008), (TEODORESCU; LIS-
ERRE; RODRÍGUES, 2011, p.27). In this case, the whole system would oper-
ate with lower voltages, eventually forcing the use of converters of the type
Buck-Boost (or similar) and the design of protection due to the higher current
values.

A less expensive alternative to the use of batteries or transformers
would be to replace the battery with a capacitor, enabling the regulation of
the DC link voltage. However, the design of the control system becomes
more complex due to the coupling of the two stages. The control strategy for
this type of system will be addressed in a future work.

The control design can be performed independently for each converter
stage, because the (constant) voltage Vdc decouples the dynamics of the state
variables of the two stages. With this, there are two distinct systems: PV-
Boost (stage 1) and inverter-grid (stage 2). As the output of the controller,
there are the commands u0,u1,u2,u3,u1,u2,u3 to be applied to the opening or
closing of each of 7 switches present in the structure of Figure 38.

The Table 4 shows the relation between the number of the active sub-
system (mode of operation) and the binary command u0 sent to switch s0
of the Boost converter. The Table 6 shows the same relations, but for the
case of the voltage inverter, where u1,u2,u3 are the commands sent to the
switches s1,s2,s3, respectively. The commands u1,u2,u3 sent to the switches
s4,s5,s6 are simply the binary complements of u1,u2,u3, because of a struc-
tural constraint (avoid short-circuit in Vdc), the two switches of a same leg
of the inverter must be in a complementary position. Dead time will not be
considered.

Because of the decoupling between the two converter stages, the con-
trol design for the first stage is exactly the same presented in Section 5.2.
Therefore, only the inverter-grid stage will be considered in the sequel.

5.4 Stage 2: inverter-grid

This section deals with the application of the methodology for control-
ling the second converter stage (inverter-grid). First, note that the structure of
this stage is the same presented in Figure 39. The presentation begins with
a detailed system modeling and the generation of references to deliver the
maximum active power to the grid, and ends with the design of the switching
rule to be applied.
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Mode (s ) u1 u2 u3

1 1 0 0
2 1 1 0
3 0 1 0
4 0 1 1
5 0 0 1
6 1 0 1
7 0 0 0

Table 6: Signals u1,u2,u3 send to the switches s1,s2,s3 of the inverter, where
u j = 1 puts the switch s j in the “closed” state (conducting) and u j = 0 in
the “open” state (not conducting). The commands for s4,s5,s6 are the binary
complements u1,u2,u3, respectively.

5.4.1 Model

The dynamics of the inductor current in each filter between the inverter
and the grid is given by the voltage difference in their terminals divided by
the inductance value, that is
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(5.10)
where the subscript i denotes the vector that varies according to the active
operation mode.

Consider the Clarke’s transformation (2.10), the Park’s transformation
(2.12) and their inverses (2.11) and (2.13), respectively, which deductions are
presented in the Appendices B and C. Note that by taking the time derivative
of both sides of (2.11) and (2.13) we get, in this order,
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+
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⌘ fd
fq

�
, (5.12)

where f = wt in the transformation matrices Kdq, with w being the constant
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Figure 39: Three-phase inverter feeding a three-phase load (grid) through an
L filter.

frequency of the grid and, therefore,

d
dt

⇣
K�1

dq

⌘
= w


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�
. (5.13)

With the previous definitions, it is possible to rewrite (5.10) in ab

coordinates3 as
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and pre-multiplying both sides by K

ab

, we get
 .

i
a.

i
b

�
=�

R f

L f


i
a

i
b

�
+

1
L f


V

an
V

bn

�

i
� 1

L f


Vga

Vgb

�
. (5.15)

Now consider the input/output voltage relation in the three-phase in-
verter given by4
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3The three-phase system is considered balanced here, thus the zero component is dismissed.
4Derived in Appendix A.
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By using (2.10) it is possible to rewrite (5.16) in ab coordinates as
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where U
ai,U

b i are constants that are different for each of the 7 possible dis-
tinct operation modes and their values are shown in Table 7.

Mode i U
ai U

b i

q
U2

ai +U2
b i

1 2/3 0 2/3
2 1/3 �

p
3/3 2/3

3 �1/3 �
p

3/3 2/3
4 �2/3 0 2/3
5 �1/3

p
3/3 2/3

6 1/3
p

3/3 2/3
7 0 0 0

Table 7: Magnitudes of the elements U
ai and U

b i and of the module of the
vector U

ab

for each operation mode.

By replacing (5.17) in (5.15), we get
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Now it is possible to rewrite (5.18) in dq synchronous coordinates by
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using the definitions of the Park’s transformation and (5.12), as
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Observe the following relations.
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By replacing (5.20)-(5.22) in (5.19), we get the following state space
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representation in synchronous coordinates.
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In (5.23), note that the matrices Ai, i 2 {1,7}, are the same for all
the operation modes, however, the subscript i was maintained to avoid con-
fusion with the notation adopted in (3.12). Also note that the real part of the
eigenvalues of Ai is strictly negative if R f 6= 0.

By representing the switched system (5.23) as a function of the error
between the state x and its desired constant reference x, that is e = x� x, we
have .e = Aie+Aix+bi +BUiz(t) (5.24)

Assuming the sliding mode dynamics of the system can be represented
as convex combinations of the subsystems as in Definition 3.1, according to
(FILIPPOV, 1988), the global switched system, that includes the subsystem
dynamics and the sliding mode dynamics that may eventually occur in any
switching surface, is represented by

.e(t) = Â
i2s(e(t),z(t))

qi(e(t),z(t))(Ai e(t)+Aix+bi +BUiz(t)) (5.25)

= Â
i2Im

qi(e(t),z(t))(Ai e(t)+Aix+bi +BUiz(t)), q(e(t),z(t)) 2 Q,

(5.26)

where q(e(t),z(t)) is the vector with entries qi(e(t),z(t)) and Q is the unitary
simplex defined in (3.7).

In order to achieve the tracking objective, the origin must be an
asymptotically stable equilibrium point of (5.26). Define q(z(t)) = q(0,z(t)).
Hence, the following lemma is established.

Lemma 5.1 The origin is an equilibrium point of (5.26) iff there exists
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q(z(t)) 2 Q such that

m

Â
i=1

q i(z(t)) (Aix+bi +BUiz(t)) = 0. (5.27)

⇤
Proof: Set .e(t) = 0 and e(t) = 0 in (5.26). ⇤

Taking into account the Lemma 5.1, the equilibrium of the system is
defined by solving Âm

i=1 q i(z(t))(Aix+bi +BUiz(t)) = 0, from which we get
the following system of equations for the system (5.23).

idq = A�1
i

1
L f

 
Vdc

m

Â
i=1

q i(z(t))Uiz(t)�Vgdq

!
(5.28)

Knowing that Ai,L f ,Vdc,Vgdq are constant and equal for all modes,
z(t)2Rnz contains sinusoidal variables and the switching alters only the value
of Ui, thus the term Âm

i=1 q i(z(t))Ui must be commuted in order to generate a
sinusoidal behavior that annuls the influence of z(t) in steady state, since idq
must be constant, because a constant equilibrium in synchronous coordinates
represents a sinusoidal waveform in three-phase abc coordinates. Observing
the values in Table 7, one way to get that result is to commutate in the se-
quence from 1 to 6 and restart the cycle, as it is traditionally performed in the
vector control techniques existing in the literature. However, several other
sequences including sliding modes may occur.

Another observation is that q(z(t)) is unknown and not constant. This
differs from the case of Boost converter from Section 5.2, because in that case
q was unknown, but constant. Finding a relation that provides the values of
q(z(t)) in this case is not a trivial task, perhaps not even possible in some
cases.

5.4.2 References generation

For the equilibrium of the currents in the output of the inverter (grid
side) two criteria will be used: (i) obtaining unitary PF; (ii) power balance.
The first criterion has the goal of delivering only active power to the grid and
the second criterion is intended to deliver power generated by the PV array
only, resulting in a null average power entering or leaving the battery Vdc,
making the presence of the battery only necessary to maintain the DC link
voltage constant and not to feed the system or the grid.
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With the use of the synchronization of the reference frame of the sys-
tem with the grid presented in Section 2.2.6, the grid voltages in synchronous
coordinates are established as Vgd = V peak

g and Vgq = 0. Therefore, in order
to deliver the currents in phase with the voltages, it is sufficient to impose
id = ipeak

g and iq = 0 as the references for the currents. With that, criterion
(i) is satisfied. The value of ipeak

g , which is the amplitude of the sinusoidal
output current, will be designed in order to satisfy the criterion (ii). This
can be accomplished through the following power balance, where Pg is the
power delivered to the grid, Ppv is the power generated by the PV array, and
PRc, PRl and PR f are the power losses in the resistive elements Rc, Rl and R f ,
respectively.

Pg = Ppv �PRc �PRl �PR f (5.29)

3V rms
g irms

g cos(f) =Vpvipv �
V 2

pv

Rc
�Rli2l �3R f irms

g
2 (5.30)

Note that the power balance (5.29) is performed without considering “com-
mutation” (switching) losses, which occur on every switching instant and,
therefore, the losses depend on the number of switchings. It is assumed that
the DC link will feed/absorb the unbalanced power.

As by the criterion (i) we have unitary PF, then cos(f) = 1. Thus,
(5.30) can be rewritten as

irms
g

2 +
V rms

g

R f
irms
g +

1
3R f

 
V 2

pv

Rc
+Rli2l �Vpvipv

!
= 0. (5.31)

The solution of the quadratic equation (5.31) for irms
g results in

irms
g =�

V rms
g

2R f
±

s✓V rms
g

2R f

◆2
� 1

3R f

✓V 2
pv

Rc
+Rli2l �Vpvipv

◆
. (5.32)

Knowing that a negative Root Mean Square (RMS) value for the cur-
rent does not have physical meaning, the negative signal at the left of the root
can be eliminated. Finally, as ig is a sinusoidal current, ipeak

g =
p

2 irms
g , and

thus the desired equilibria for the state variables of the output currents of the
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inverter are the following.

id =�
p

2V rms
g

2R f
+

vuut
 p

2V rms
g

2R f

!2

� 2
3R f

✓V 2
pv

Rc
+Rli2l �Vpvipv

◆
(5.33)

iq = 0 (5.34)

Note in (5.33)-(5.34) that the references adopted for the control of the
inverter depend on variables that are controlled by the Boost converter stage.
As the design of the switching rules for the two stages are done separately,
without this coupling in the references (updating the reference of the inverter
based in the values of the variables in the Boost in real time) the power de-
livered to the grid would be always the same, regardless of how much power
was being generated by the array. Thus, the battery Vdc (responsible for the
decoupling) would bear with the unbalance by generating the lacking power
or consuming the excess, which are undesirable situations.

5.4.3 Perspectives for the switching rule design for the stage 2

The content presented in Sections 5.4.1 and 5.4.2 about the modeling
of the system and the generation of the desired references is intended to be a
basis for the switching rule design, to be presented in a future work.

We are interested in designing a switching rule that drives the switched
error system (5.26) to the origin. Note that q is a function of z, and therefore
the switching rule s must also be a function of z. For this purpose consider
the switching rule given by

s(e,z) := arg max
i2Im

{vi(e,z)}. (5.35)

where vi(e,z) are auxiliary functions to be determined. According to previous
studies, such as the one presented in (SCHARLAU et al., 2013), a promising
structure for the auxiliary functions in this case is

vi(e,z)=e0Pue+2e0Y ki(z), (5.36)

where Pu = P0
u 2 Rn⇥n and Y 2 Rn⇥n are matrices to be determined. This

is the same switching rule presented in Equation (3.3), but with a particular
structure for the matrices Pi and Si, with the latter depending on the nonlin-
ear function z. This particular structure has some interesting properties for
making the stability conditions independent of q , that is unknown and not
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constant. However, more work has to be done in order to obtain feasible LMI
conditions.

5.4.4 Analysis of the complete system

A block diagram representation of the control structure applied to the
system of Figure 38 is presented in Figure 40, comprising since the measured
variables until the command signals to be imposed to the switches.

(3.47)

Fig.38

Figure 40: Complete control structure. The highlighted blocks are: the mea-
sured variables (in yellow), reference generation blocks (in green) and blocks
for calculation of the Lyapunov functions (in gray).

All the measured variables necessary for the solution of the problem
are presented in Figure 40 (in yellow color). These variables are only volt-
ages and currents, all accessible and easy to obtain through measurement.
The number of measuring devices could be reduced by eliminating one cur-
rent measurement and one voltage measurement when the system is perfectly
balanced, as considered in this work. This is possible because the sum of the
three-phase currents or three-phase voltages is null in balanced systems, thus
it is enough to measure the variables of two of the phases and calculate the
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variables of the third phase by using the relations

ic =�ia � ib , (5.37)
Vc =�Va �Vb . (5.38)

It is noteworthy that the measurement of Vpv is not required for the
switching rule designed for the stage 1, because this is accomplished with
partial state measurement, however, its measurement is still necessary to cal-
culate the references for both stages (green blocks in Figure 40). The design
using partial state information was not performed with the objective of reduc-
ing the number of measuring devices, but to avoid problems in the references
generation, as shown in Section 5.2.2.

A prerequisite for the operation of this control structure is to find a
solution to the LMI problems of switching rule design. The solution of the
LMIs is done offline, i.e. out of the control structure, and the coefficients
Q1,Q2,R1,R2 obtained from Corollary 4.1 and Pu,Y (assuming the structure
(5.36) for which the conditions for design are not presented in this thesis) are
stored and then used to calculate the auxiliary functions µi, i = {1,2}, and
vi, i = {1, ...,7} (grey blocks in Figure 40). It is worth to mention that the
switching rules proposed in this thesis have low complexity and thus easy
implementation and fast real-time computability.

For the control of the inverter, the values of vi are compared with each
other and the index of the function with the highest value determines the
operation mode to be active at that instant, that is, s . If s is the same of
the previous iteration, then there is no switching. Knowing s , Table 6 is
used to determine the commands for the position of the switches u1,u2,u3
to be applied to the inverter, switching if needed. The control of the Boost
is performed in a similar manner, by determining the active mode from the
comparison between the values of µi and using the Table 4 to define u0.

Finally, the references of the states must pass through a ZOH, due to
the consideration that these variables must be piecewise constant.

5.5 Concluding remarks

This chapter presented an application of the switching rule design
technique for PV systems, where two particular topologies were used to
demonstrate the procedure: a stand-alone PV system and a PV array con-
nected to the utility grid through two converter stages. The mathematical
models of the DC/DC converter (Boost) and of the DC/AC converter (in-
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verter) present in the topologies were presented. The model of the voltage
inverter took into account transformations to the synchronous two-phase co-
ordinate system, specially to simplify the synchronization with the variables
of the grid.

For the grid-connected topology, a decoupling between the models
of the DC/DC and DC/AC converters, due to the constant DC link voltage,
allows the switching rule design for each converter to be performed inde-
pendently. This makes it possible to divide the two main control objec-
tives between the two stages: the Boost achieves the MPPT while the in-
verter delivers power to the grid with unitary PF. With respect to the equi-
librium of the system, the proposed technique performs a reference tracking,
whose dynamics (unknown) are neglected with the assumption that the ref-
erences are piecewise constant. A result that accomplishes reference track-
ing based on the (known) model of the reference dynamics can be seen in
(TROFINO et al., 2009c).

As a result, the LMIs presented for the switching rule design applied
for the PV-Boost system proved to be feasible and simulations were per-
formed for the stand-alone case. From these simulations, the correct system
operation could be verified, even under variations on the input parameters of
the PV array, which alter both the dynamics of the system and its references.
The simulated system accomplished the desired objectives in all cases, always
reaching the MPP in steady state. The control design for the inverter-grid case
will be considered in future works. Another idea to be explored in the future
is to design observer-based switching rules. Note that the partial state infor-
mation used for the DC/DC converter requires the measurement of the current
state, and current sensors are more expensive and fragile than voltage sensors
(YOSHIMURA et al., 2013).

As already mentioned, the development of a new MPPT technique via
LMIs to be embedded into the switching rule design is also an interesting
problem to be addressed in a future work. Accomplishing this task, there
would be no more need to use other MPPT techniques existing in the litera-
ture for generating references to reach the MPP. A possible way to address the
problem is to consider the dynamics of the power variable in the LMIs and
to use a maximization criterion, as the H• for instance, in a similar manner
to the performed in (XU; YANG, 2010), where the objective is to maximize the
sensitivity to faults in the system. Another idea is to consider the derivative
of the power with respect to ipv or Vpv, as in (2.9), as an additional state to the
system to be controlled and by driving this new state to zero, the maximum
power point would be reached. The main difficulty in both cases is the neces-
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sity of dealing with the nonlinearities present in Equation (2.8), which makes
the problem challenging to be expressed in terms of LMIs.
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6 STABILITY ANALYSIS OF PIECEWISE AFFINE SYSTEMS
WITH SLIDING MODES

6.1 Introduction

In continuous-time systems, the sliding mode phenomenon (UTKIN,
1992) plays an important theoretical role as a mathematical model of com-
plex dynamics found in many practical applications (FILIPPOV, 1988). The
analysis of sliding modes can be quite complex, and for this reason, it is
rare to find methodologies considering the cases where sliding modes exist.
Important exceptions for stability analysis of PWA systems with attractive
sliding modes are found in (BRANICKY, 1998), (JOHANSSON, 2003), (SAMADI;
RODRIGUES, 2011). It is proposed in (BRANICKY, 1998) to add the sliding
dynamics to the modes of the system. However, this needs a priori informa-
tion about the sliding modes, which is typically hard to get. In (JOHANSSON,
2003, p.64), an extra condition is introduced to extend the analysis to systems
with attractive sliding modes. However, the conditions are never satisfied
for the case where the origin belongs to a boundary between affine subsys-
tems. In (SAMADI; RODRIGUES, 2011), stability is verified without the need of
a priori information about the sliding modes. However, systems containing
sliding modes are treated only by using common Lyapunov functions and the
conservativeness introduced by not using PWQ Lyapunov functions requires
the use of common Lyapunov functions of higher degree. Furthermore, the
case where the equilibrium point is located at a boundary between affine sub-
systems has not been considered for PWA systems before in the literature,
excluding important classes of systems as, for instance, applications where
state-dependent surfaces are designed for tracking references that are not the
equilibrium point of any of the subsystems (TROFINO et al., 2011), and power
electronic converters.

This chapter presents new sufficient conditions for stability of PWA
systems considering the presence of sliding modes. The results guarantee
global exponential stability of the state dynamics even if attractive sliding
modes occur along any switching surface of the system and even if the ori-
gin is located in a boundary between affine subsystems. The conditions are
based on a convex combination of PWQ Lyapunov function and are formu-
lated as LMIs. The method can handle PWA systems with discontinuous
vector fields, which may lead to the existence of sliding modes involving any
number of subsystems. Moreover, there is no need for a priori information
about the sliding modes. If the conditions are satisfied for a system that con-
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tains sliding modes, then these sliding modes are guaranteed to be stable. As
a by-product, sufficient conditions for stability for any possible switching sur-
faces are derived as a corollary, allowing to check stability independently of
the complexity of the boundary. The contributions are illustrated through four
numerical examples.

The new method combines ideas from two approaches, stability anal-
ysis of PWA systems in (SAMADI; RODRIGUES, 2011) and stabilization of
switched affine systems with sliding modes (TROFINO et al., 2011), providing
a unified theory for both classes.

6.2 Preliminaries

This section presents the background and notation used in the rest of
the chapter. First, the dynamics of a PWA system can be written as

.x = fi(x) = Aix+bi, x 2Ri , (6.1)

where x(t) 2 Ri ⇢ Rn is the state vector with initial condition x(0) = x0,
Ai 2 Rn⇥n

, bi 2 Rn. The state space is partitioned into m open regions Ri,
i 2 Im := {1, ...,m}, such that

m[

i=1
Ri = Rn

, Ri
\

R j = /0, i 6= j. (6.2)

where Ri denotes the closure of Ri. The dependence of x with respect to the
time will be omitted throughout the chapter.

Considering the Filippov definition of trajectories (FILIPPOV, 1988) for
solutions of (6.1), based on Definition 3.1, we get the following more general
system representation of (6.1), which includes any possible sliding mode dy-
namics

.x = A
q

x+b
q

, q 2 Q , x 2 Rn
, (6.3)

where Q is the unit simplex defined in (3.7) and

A
q

=
m

Â
i=1

qi(x)Ai , b
q

=
m

Â
i=1

qi(x)bi. (6.4)

The description (6.3) is general enough to represent the system dynamics at a
boundary that is the intersection between any number of regions.
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For stability of the origin of (6.3) we must have .x = 0 and x = 0.
Therefore the following assumption is necessary.

9q(0) 2 Q such that Â
i2s(0)

qi(0)bi = 0 (6.5)

Remark 6.2.1 When bi 6= 0 for some i 2 s(0), assumption (6.5) implies that
if the PWA system is stable, the equilibrium is maintained by an intermittent
switching. The assumption (6.5) is more general than the assumption avail-
able in the current literature, where it is assumed that bi = 0 if i 2 s(0). ⇤

The subsystem i is active when x 2Ri. When x 2Ri, then qi(x) = 1,
q j(x) = 0, 8 j 6= i. When x 2 Ri \R j 6= /0, then q(x) assumes a specific
value in Q for that point x. The dependence of q with respect to x can be
nonlinear and difficult to take into account to formulate convex problems.
For this reason, the dependence will be omitted and we will use a (possibly)
more conservative approach where q is treated as a free parameter that can
assume any value inside the simplex Q.

Finally, note that system (6.3) can be rewritten using the following
more compact notation.

.̃
x =

m

Â
i=1

qi Ãix̃ , Ãi =


Ai bi

01⇥n 0

�
, x̃ =


x
1

�
(6.6)

6.3 Main results

This section presents the main results for the stability analysis of PWA
systems, where the regions can be described by

Ri = {x : Eix+ ei � 0} , (6.7)

with Ei 2 Rpi⇥n and ei 2 Rpi , where pi is the number of hyperplanes en-
closing the region Ri. Stability of Filippov solutions in (6.3) will be proved
using a Lyapunov function. The candidate Lyapunov function considered in
this chapter is a convex combination of PWQ functions with the following
structure.

V (x) =
m

Â
i=1

qi x̃0P̃ix̃ , P̃i =


Pi ?

q0i ri

�
(6.8)
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Before presenting the theorem for stability, consider the following def-
initions, auxiliary notation and LMI conditions.

Let Sk ⇢ Rn be the set of points x belonging to the k-th surface be-
tween any number of adjacent regions and let Sk be the set of all regions i
sharing the k-th surface, where k 2 Ig and g is the total number of surfaces.

Note that row j(Ei)x+ row j(ei) = 0, j 2 Ipi , represents each of the pi

surfaces surrounding Ri. For all k 2 Ig, define lk as one (it can be any) of the
integers in Sk. Therefore, if i = lk, then i 2 Sk. Define for all k 2 Ig, Ek :=
row j(Elk) and ek := row j(elk), where j is such that row j(Elk)x+ row j(elk) =
0 8x 2 Sk. Therefore, Ekx+ ek = 0, 8x 2 Sk.

Consider the following auxiliary notation.

Cak = Ek, C̃ak =
⇥

Ek ek
⇤
, Ẽi =


Ei ei

01⇥n 1

�
(6.9)

P =
⇥

P1 . . . Pm
⇤
, q =

⇥
q1 . . . qm

⇤
, r =

⇥
r1 . . . rm

⇤

(6.10)

A =
⇥

A1 . . . Am
⇤

, b =
⇥

b1 . . . bm
⇤

(6.11)

ã =
⇥

a1 . . . am
⇤

, a = ã ⌦ In (6.12)

Ct = ¿
q

⌦ In , C̃t =


¿

q

⌦ In 0dn⇥m
0d⇥nm ¿

q

�
(6.13)

¿
q

2 Rd⇥m
, M =

⇥
1 . . . 1

⇤
2 R1⇥m (6.14)

Cbk =Cak (M⌦ In) , C̃bk = C̃ak


M⌦ In 0n⇥m
01⇥nm M

�
(6.15)

° =


A0P+P0A+a

0P+P0
a ?

b0P+q0A+2q0a b0q+q0b+a

0
mr+ r0am

�
(6.16)

where ¿
q

is the linear annihilator of q as defined in (2.20).
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1) LMI conditions for positivity of V(x) with V(0) = 0:

ri = 0, if i 2 s(0) (6.17)
qi = 0, if bi = 0 (6.18)

q0i =
pi

Â
j=1

gi j row j(Ei), if bi 6= 0 (6.19)

Pi � eIn, if bi = 0 and ei 6= 0 (6.20)
⇢

Zi ⌫ 0
Pi �E 0

i ZiEi � eIn
, if ei = 0 (6.21)

8
<

:

Z̃i ⌫ 0

P̃i � Ẽ 0
i Z̃iẼi � e


In ?

01⇥n 0

�
, if bi 6= 0 and ei 6= 0 (6.22)

Q0
ak
(Pi � eIn)Qak � 0, if ei = 0 (6.23)

Q̃0
ak

✓
P̃i � e


In ?

01⇥n 0

�◆
Q̃ak � 0, if bi 6= 0 and ei 6= 0 (6.24)

where e � 0, gi j � 0, 8i 2 Im, 8 j 2 Ipi , and Qak , Q̃ak are given matrix basis
for the null spaces of Cak ,C̃ak , respectively.

2) LMI conditions for decay of V(x):

PiAi +A0
iPi +aiPi < 0, if bi = 0 and ei 6= 0 (6.25)

⇢
Li ⌫ 0
PiAi +A0

iPi +aiPi +E 0
i LiEi < 0 , if bi = 0 and ei = 0 (6.26)

⇢
L̃i ⌫ 0
P̃iÃi + Ã0

iP̃i +aiP̃i + Ẽ 0
i L̃iẼi < 0 , if bi 6= 0 (6.27)

P0A+A0P+a

0P+P0
a +LtCt(q)+Ct(q)

0L0
t < 0, 8q 2 J(Q),

if bi = 0 8i 2 Im and 9i : ei 6= 0 (6.28)

Q0
bk

�
P0A+A0P+a

0P+P0
a +LtCt(q)+Ct(q)

0L0
t
�

Qbk < 0, 8q 2J(Q),

if (bi = 0 and ei = 0)8i 2 Im (6.29)
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Q̃0
bk

�
°+ L̃tC̃t(q)+C̃t(q)

0L̃0
t
�

Q̃bk < 0, 8q 2 J(Q), if 9i : bi 6= 0 (6.30)

where Lt has the dimensions of Ct(q)0 and Qbk , Q̃bk are given matrix basis for
the null spaces of Cbk ,C̃bk , respectively.

3) LMI conditions for continuity of V(x):

Q̃0
ak

�
P̃i � P̃j

�
Q̃ak = 0 , 8i, j 2 Sk, i 6= j (6.31)

Taking into account all possible pairs i, j 2 Sk for i 6= j without repetition, i.e.
8i, j 2 Sk with j > i, we avoid declaring redundant LMIs in (6.31).

The result for global stability analysis is formalized in the following
theorem.

Theorem 6.1 Consider the system (6.3) with assumption (6.5) and re-
gions described by (6.7). With the auxiliary notation (6.9)-(6.16), let
Qak , Q̃ak ,Qbk , Q̃bk be given matrix basis for the null space of Cak ,C̃ak ,Cbk ,C̃bk ,
respectively, and Lt , L̃t be matrices to be determined with the dimensions
of Ct(q)0,C̃t(q)0. Suppose 9 P̃i,Zi, Z̃i,Li, L̃i,Lt , L̃t , e � 0, gi j � 0 and given
decay rates ai � 0 solving the LMIs (6.17)-(6.31) for all i 2 Im and for all
k 2 Ig. Then (6.8) is a Lyapunov function for the system (6.3) and the origin
is globally exponentially stable. ⇤

Proof: The proof is structured as follows. First, continuity of V (x) is en-
sured 8x 2 Rn, followed by positivity of V (x),8x 2 Rn. Next, the proof for
decreasing of V (x),8x 2 Rn is divided in two parts, 8x 2 Ri,8i 2 Im and
8x 2 Sk,8k 2 Ig (note that the union of Ri for all i 2 Im and Sk for all k 2 Ig
results in Rn). At the end, the results are summarized and the conclusion
about stability is presented.

Consider the Lyapunov function candidate (6.8) rewritten as V (x) =
Âm

i=1 qivi(x), where vi(x) = x̃0P̃ix̃. Noticing that C̃ak x̃ = 0 and then using
the Finsler’s Lemma, it follows from (6.31) that for any x 2 Sk, 8k 2 Ig,
vi(x) =Vj(x), 8i, j 2 Sk. Therefore, V (x) is continuous 8x 2 Rn. In addition,
constraint (6.17) implies that V (0) = 0. Note in Definition 3.1 that if x 2Ri,
then qi = 1, q j = 0, 8 j 6= i, therefore V (x) = vi(x), 8x 2Ri.

The proof that positivity of V (x) is ensured 8x 2 Rn is subdivided in
three parts, contemplating all cases of ei and bi:

1. If ei 6= 0 and bi = 0, we conclude from (6.17), (6.18), (6.20) that for all
x 6= 0 2 Ri (including 8x 2 Sk), vi(x) = x0Pix � ekxk2

> 0, therefore
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V (x) = Âm
i=1 qivi(x)� mini2Im{vi(x)}� ekxk2

> 0, 8q 2 Q.

2. If ei = 0, we have Ri = {x | Eix � 0}, then for any Zi with appropri-
ate dimensions and non-negative entries, for all x 2Ri, x0E 0

i ZiEix � 0.
Also note that (6.19) with gi j � 0 implies q0ix = Âpi

j=1 gi j row j(Ei)x ⌫ 0
for all x 2Ri. In this case, (6.17), (6.18), (6.19), (6.21) yield

V (x) = vi(x) = x0Pix+2q0ix � x0Pix �
x0E 0

i ZiEix+ ekxk2 � ekxk2
> 0. (6.32)

for all x 6= 0 2Ri. To ensure positiveness of V (x), 8x 2 Sk, 8k 2 Ig,
the condition is

V (x) =
m

Â
i=1

qix̃0P̃ix̃ �
m

Â
i=1

qix0Pix � ex0x = ekxk2
> 0,

8q 2 J(Q), 8x 2 Rn : Cak x = 0. (6.33)

Evaluating qi in Âm
i=1 qix0Pix � ex0x for all vertices of Q and noticing

that Cak is an annihilator of x with constant entries only, we get (6.23)
by using the Finsler’s Lemma.

3. If ei 6= 0 and bi 6= 0, we have Ri =
�

x | Ẽix̃ � 0
 

and similarly to the
previous case, condition (6.22) yields

V (x) = vi(x) = x̃0P̃ix̃ � x̃0Ẽ 0
i Z̃iẼix̃+ ekxk2 � ekxk2

> 0. (6.34)

for all x 6= 0 2Ri. To ensure positiveness of V (x), 8x 2 Sk, 8k 2 Ig,
the condition is

V (x) =
m

Â
i=1

qix̃0P̃ix̃ � ex0x = ekxk2
> 0,

8q 2 J(Q), 8x 2 Rn : C̃ak x̃ = 0. (6.35)

Evaluating qi for the vertices of Q in condition (6.35) and noticing that
C̃ak is an annihilator of x̃ with constant entries only, we get (6.24) by
using the Finsler’s Lemma.

It has been shown that V (x) is positive for x2Rn. Also V (x) is radially
unbounded since V (x) � ekxk2, which is a positive definite quadratic form.
Moreover, vi(x) bi (kxk) where bi (kxk) := kPikkxk2+2kqikkxk+krik. As
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V (x) is a convex combination of the active functions vi(x), we have V (x) 
maxi2s(x){vi(x)}. This shows that

ekxk2 V (x) max
i2s(x)

{bi (kxk)} , (6.36)

where the lower and upper bounds are class K• functions, as in Definition
2.3.

The proof that V (x) is decreasing 8x2Ri is also divided in three parts,
contemplating all cases of bi and ei:

1. If bi = 0 and ei 6= 0, we conclude from (6.25) that for all x 6= 0 2Ri,

—V (x)0A
q

x = —vi(x)0Aix = 2x0PiAix = x0
�
PiAi +A0

iPi
�

x
<�aix0Pix =�aivi(x) =�aiV (x)< 0. (6.37)

2. If bi = 0 and ei = 0, we have Ri = {x | Eix � 0}, then for any Li
with appropriate dimensions and non-negative entries, for all x 2 Ri,
x0E 0

i LiEix � 0. In this case, (6.26) yields

—V (x)0A
q

x = —vi(x)0Aix <�aix0Pix� x0E 0
i LiEix

�aix0Pix =�aivi(x) =�aiV (x)< 0 (6.38)

for all x 6= 0 2Ri.

3. If bi 6= 0, we have Ri =
�

x | Ẽix̃ � 0
 

and similarly to the previous
case, condition (6.27) yields

—V (x)0 (A
q

x+b
q

) = —vi(x)0 (Aix+bi) = 2x̃0P̃iÃix̃

<�aix̃0P̃ix̃� x̃0Ẽ 0
i L̃iẼix̃ �aix̃0P̃ix̃
=�aivi(x) =�aiV (x)< 0 (6.39)

for all x 6= 0 2Ri.

The next steps show how to obtain the conditions for V (x) decreas-
ing for x 2 Sk, 8k 2 Ig. Consider the compact notation P

q

:= Âm
i=1 qiPi and

q
q

,r
q

,A
q

,b
q

,a

q

defined in a similar way.
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1. If bi = 0, 8i 2 Sk, this condition can be characterized by

—V (x)0A
q

x = 2x0P
q

A
q

x = x0
�
P

q

A
q

+A0
q

P
q

�
x <

�2a

q

x0P
q

x =�2a

q

V (x)< 0. (6.40)

See (TROFINO et al., 2011) for details on the equivalence in the first
equality of (6.40). Using the auxiliary notation (6.10)-(6.16), the con-
dition (6.40) can be rewritten as

x0
�
P

q

A
q

+A0
q

P
q

�
x�2a

q

x0P
q

x = x0
q

�
PA+A0P+Pa +a

0P
�

x
q

< 0 ,

(6.41)
where x

q

= q ⌦ x =
⇥

q1x0 . . . qmx0
⇤0 2 Rmn. Noticing that Ct(q)

is a linear annihilator of x
q

(i.e. Ct(q)x
q

= 0), we insert it in condition
(6.41) by using the Finsler’s Lemma and obtain the LMI (6.28). More-
over, if ei = 0, 8i 2 Im, it is possible to use the annihilator Cbk x

q

= 0,
along with the Finsler’s Lemma, to reduce the conservativeness of
(6.28), obtaining (6.29).

2. If 9i2 Sk : bi 6= 0, the condition for V (x) decreasing for x2Sk, 8k 2 Ig,
can be characterized by

—V (x)0 (A
q

x+b
q

) = x̃0


P
q

A
q

+A0
q

P
q

?

b0
q

P
q

+q0
q

A
q

b0
q

q
q

+q0
q

b
q

�
x̃

<�2a

q

x̃0


P
q

?

q0
q

r
q

�
x̃ =�2a

q

V (x)< 0. (6.42)

See (TROFINO et al., 2011) for details on the first equality of (6.42). Us-
ing (6.10)-(6.16), the condition (6.42) can be rewritten as

x̃0
q

° x̃
q

< 0 , x̃
q

=


q ⌦ x

q

�
. (6.43)

As in the previous case, note that C̃t(q)x̃
q

= 0 and C̃bk x̃
q

= 0. By using
the Finsler’s Lemma to insert these annihilators to relax the condition
(6.43), we get the LMI condition (6.30).

The last situation that needs to be considered is when V (x) is not dif-
ferentiable at a point x. As Vi(x) are continuously differentiable functions,
V (x) is locally Lipschitz. Keeping in mind that q and s are piecewise contin-
uous and piecewise constant, respectively, the points of discontinuity of the
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vector field are isolated points of the system trajectory and thus V (x) cannot
increase at the points where V (x) is not differentiable. Furthermore, q may
be discontinuous at the boundaries but V (x) is guaranteed to be decreasing
because the conditions (6.28)-(6.30) hold 8q 2 Q.

In summary, V (x) is continuous, positive definite and satisfies the
bounds (6.36). Moreover, V (x) is globally strictly decreasing for the dy-
namics of the system (6.3), that includes the subsystem dynamics and the
sliding mode dynamics that may eventually occur at any switching surface,
and global exponential stability follows from (FILIPPOV, 1988, p.155). ⇤

Remark 6.3.1 Compared to the current literature, conditions (6.19), (6.23),
(6.24), (6.28)-(6.30) are new. Condition (6.19) allows feasibility when the
origin is located in a boundary between affine subsystems and (6.23), (6.24),
(6.28)-(6.30) guarantee stability of any sliding mode dynamics that may oc-
cur. ⇤

The following interesting corollary is derived from Theorem 6.1.

Corollary 6.1 (Stability independent of the boundaries) If it is possible to
find a solution for Theorem 6.1 by replacing the variables Zi, Z̃i,Li, L̃i,gi j by
zeros and Qak , Q̃ak ,Qbk , Q̃bk by identity matrices, all with appropriate dimen-
sions, then this system is globally exponentially stable for any boundaries.
⇤

Proof: Follows trivially as a particular case of the proof of Theorem 6.1,
noticing that by fixing the decision variables as suggested in Corollary 6.1, the
LMIs are now checked without inserting any information about any specific
surface to relax the conditions. ⇤

Remark 6.3.2 Note that in Corollary 6.1, the continuity condition (6.31) is
replaced by

P̃i � P̃j = 0 , 8i, j 2 Im, i 6= j , (6.44)

which is satisfied only if it is possible to force all Lyapunov functions to be
equal, reducing the problem to the one of finding a single quadratic Lyapunov
function. This may be more conservative than Theorem 6.1, but a stronger
result is obtained as stability is guaranteed even if the boundaries change. ⇤

Remark 6.3.3 (Discontinuous Lyapunov functions) It is known that a con-
tinuous Lyapunov function is not a requirement for stability analysis of PWA
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systems as long as it decreases along the trajectories, as shown and exempli-
fied in (MIGNONE; FERRARI-TRECATE; MORARI, 2000). However, discontinuous
Lyapunov functions are only possible where the state trajectory crosses the
switching surfaces without entering in a sliding mode, thus a priori knowl-
edge about the existence and location of sliding modes is required. For in-
stance, consider a point located at a switching surface between regions Ri
and R j . If a sliding mode is occurring, then the crossing may occur both
from Ri to R j and from R j to Ri at that point. If there is a decreasing dis-
continuity in the Lyapunov function in one direction, then it is increasing in
the other direction. Thus, continuity of the Lyapunov function is required at
the given point. ⇤

6.4 Numerical examples

In the examples that follow we have used SeDuMi (STURM, 2001) and
SDPT3 (TOH; TODD; TÜTÜNCÜ, 1996) with Yalmip interface (LÖFBERG, 2004)
to solve the LMIs and Simulink to obtain the state trajectories. Example 6.1
shows a systems with unstable sliding modes. Example 6.2 illustrates the
case where the origin is located at a boundary between affine subsystems.
Example 6.3 shows the application of Corollary 6.1.

Example 6.1 (Unstable sliding mode) Consider the system
( .x = A1x+b1, if x2 � 0

.x = A2x+b2, if x2  0
(6.45)

with the following matrices A1, A2, b1, b2, respectively (SAMADI; RODRIGUES,
2011).


1 �2
2 �2

�
,


1 2
�2 �2

�
,


0
0

�
,


0
0

�
(6.46)

Although this system has both A1 and A2 Hurwitz, it presents an un-
stable sliding mode (SAMADI; RODRIGUES, 2011), as shown in Figure 41.

The regions Ri can be expressed as in (6.7) with

E1 =
⇥

0 1
⇤
, E2 =

⇥
0 �1

⇤
, e1 = e2 = 0. (6.47)

The LMIs to be solved in this case are (6.17), (6.21), (6.23), (6.26),
(6.29), (6.31). It is not possible to find a feasible solution, which is consistent
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with the expected result. Without the condition (6.29) for inclusion of slid-
ing modes dynamics, the LMI problem would be feasible, providing a wrong
conclusion about the stability of the system. Reference (SAMADI; RODRIGUES,
2011) gets the same infeasible result by using a more conservative approach
with a common quadratic Lyapunov function. ⇤
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Figure 41: Some state trajectories for the system in Example 6.1 (solid black
curves) and the switching surface (red dotted line).

Example 6.2 (Origin at the surface between affine subsystems) Consider
the system (6.45), with the regions parameterized by (6.47), with the matrices
A1, A2, b1, b2 given by, respectively,


�2 �2
4 1

�
,


�2 2
�4 1

�
,


0
�d

�
,


0
d

�
, (6.48)

where d is a given fixed parameter. This system presents only stable sliding
modes for d � 0. First, consider the case where d = 0. According to (JO-
HANSSON, 2003, p. 84), it is not possible to find a quadratic or class C1 PWQ
function for this system. However, Theorem 6.1 does not require a class C1

function to be satisfied. Solving the same LMIs of Example 6.1, a feasible
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solution is found. Reference (SAMADI; RODRIGUES, 2011) solves this case by
using a sixth order C1 polynomial Lyapunov function.

For the case where d > 0, note that the system satisfies assumption
(6.5) with qi(0) = 1/2, 8i 2 Im. In this case the LMIs to be solved are (6.17),
(6.19), (6.21), (6.23), (6.26), (6.30), (6.31). Consider d = 2 as an example,
for which some trajectories are shown in Figure 42. If an initial condition is
outside the blue dot-dashed curve, then it converges to the origin through the
sliding mode .x = f

q

=
⇥

x1 0
⇤0. Otherwise, through the sliding mode .x =

f
q

=
⇥
�x1 0

⇤0. The conditions are tested and a feasible solution is found.
Note that the origin is located at a boundary between affine subsystems, for
which case there is no other stability analysis method available in the current
literature. ⇤

−1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

x1

x2

R1

R2

Figure 42: Some state trajectories for the system in Example 6.2 with d = 2
(black solid curves), the switching surface (red dotted line) and trajectories
that touch the surface only at the origin (blue dot-dashed curve).
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Example 6.3 Consider the system
( .x = A1x+b1, if x2 +1 � 0

.x = A2x+b2, if x2 +1  0
(6.49)

with the matrices A1, A2, b1, b2 given by, respectively,


�1 �2
2 �2

�
,


�1 2
�2 �2

�
,


0
0

�
,


d

0

�
, (6.50)

where d is a given fixed parameter. The regions Ri are parameterized as in
(6.7) with

E1 =
⇥

0 1
⇤
, E2 =

⇥
0 �1

⇤
, e1 = 1, e2 =�1. (6.51)

For the case of d = 0, the LMIs to be solved are the same as in Example
6.1. A feasible solution is found, showing that the system (6.49) is stable for
the given surface, even with the occurrence of a sliding mode. Moreover, it
is possible to prove that the system (6.49) is stable for any possible surfaces
by fixing the matrices Zi,Li equal to zero and Qak , Q̃ak ,Qbk equal to identity
matrices, as mentioned in the Corollary 6.1, then solving the same set of
LMIs, which is feasible.

For the case of d 6= 0, subsystem 2 is affine and Corollary 6.1 is not
feasible because the equilibrium point of this subsystem, given by

x|i=2 = �A�1
2 b2 =

1
3


d

�d

�
, (6.52)

is not the origin. Recalling that A2 is Hurwitz, it is easy to realize that for
boundaries that let x|i=2 2 R2, the system is not globally stable. Therefore,
for the boundary given in (6.49), the origin of the PWA system is not globally
stable for d � 3. For this case, the LMIs to be solved to analyze stability are
(6.17), (6.20), (6.25) for i = 1, (6.22), (6.24), (6.27) for i = 2, and (6.30),
(6.31). As expected, it is not possible to find a solution when d � 3, but it is
possible when d < 3. In the latter case, the closer d gets to 3, the closer a2
must get to 0. Figure 43 shows the occurrence of a stable sliding mode for
the particular case of d = 1. ⇤
Example 6.4 (Switching rule stability) The objective of this example is to
check the stability of a previously designed switching rule method for a real
application. Consider the Buck converter presented in Figure 44 with a linear
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Figure 43: Some state trajectories for the system in Example 6.3 for d = 1
(black solid curves) and the switching surface (red dotted line).

load (resistor).
Considering as system states the error between the current in the in-

ductor and its desired reference (x1 = iL � iL) and the error between the volt-
age over the output capacitor and its desired reference (x2 =Vout �V out ), we
have the system representation (6.3) with two different subsystems (m = 2),
where

A1 =


0 � 1

L
1
C � 1

RC

�
, A2 =


0 � 1

L
1
C � 1

RC

�
, b1 =


Vin�V out

L
0

�
, b2 =


�V out

L
0

�
.

(6.53)
The following relation can be established based on the assumption (6.5).

q1(0) =
V out

Vin
(6.54)

This shows that the desired equilibrium is always maintained by an intermit-
tent switching, except for the trivial cases V out = 0 (switch constantly open)
and V out =Vin (switch constantly closed).
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Figure 44: Structure of the Buck converter.

Parameter Value
Vin 15V
L 10�3H
C 10�6F
R 30W

V out 9V

iL
V out

R

Table 8: Parameters os the Buck converter from Figure 44.

Let us consider the switching rule design method proposed in Chapter
3 (TROFINO et al., 2011), where the state space is partitioned into two regions
and in each region the switch s is in one position. As the objective is to make
the states converge to a given reference, the origin of the error system must
be stable. The constant parameters of the system are given in Table 8. Let
us inspect the switching rule (3.3). Note that by forcing the matrices to be
determined in the quadratic term to be equal 8i 2 Im, the quadratic term does
not influence the index given by the max function in the switching rule. Thus,
the switching rule (3.3) can be rewritten as

s(x(t)) := arg max
i2Im

{2S0ix(t)}=
(

1 if (S01 �S02)x(t)> 0
2 if (S02 �S01)x(t)> 0

(6.55)

Solving the LMIs of Theorem 3.1 for the given Buck system, we get the switch-
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ing rule (6.55) with the matrices Si given by

S1 =


�1.4284⇥10�3

�1.5579⇥10�4

�
, S2 =


2.1426⇥10�3

2.3369⇥10�4

�
. (6.56)

This results in a PWA system where the regions can be expressed as in (6.7)
with

E1 = S01 �S02 =
⇥
�3.5711⇥10�3 �3.8949⇥10�4 ⇤

,

E2 =�E1, e1 = e2 = 0. (6.57)

The LMIs from Theorem 6.1 to be solved in this case are (6.17), (6.19),
(6.21), (6.23), (6.26), (6.30), (6.31), and a feasible solution is found. This
shows that the origin of the error system is stable, i.e. the desired equilibrium
point is achieved by the given switching rule. ⇤

6.5 Concluding remarks

In this chapter, sufficient conditions for stability of PWA systems were
formulated as convex problems. The conditions are sufficient for checking the
stability of systems even in the occurrence of sliding modes and there is no
need to know a priori in which switching surfaces a sliding mode happens, if
it does. Besides that, a relaxation to the equilibrium assumption is presented,
allowing the stability analysis of systems where the origin is located at the
boundary between affine subsystems. With this result, it is possible to check
the stability of the switching rule design technique proposed in Chapter 3
for affine systems, provided that the switching surface is a hyperplane. As a
by-product, sufficient conditions for stability for any switching surfaces are
derived at the expense of some additional conservatism. Examples were used
to illustrate the application and the advantages of the proposed method.

Some ideas for future works are discussed in the sequel. First, the ex-
tension for the case where the surfaces are characterized by quadratic equa-
tions, not hyperplanes, in which the stability analysis could include systems
such as the one in Example 3.2. This theory is already under development
and will be published soon. Second, control design for mixed systems of the
type switched affine and piecewise affine, e.g. systems containing control-
lable switches and switchings with predefined behavior, such as a security
switch that opens when a voltage (state) reaches a certain level, for instance.
Third, the stability analysis of systems with overlapping regions. Concerning
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this last idea, it may be possible to force a dwell time or hysteresis between
switches in a previously designed switching rule, which would result in a
system with overlapping regions, then analyze its stability.
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7 CONCLUSIONS AND PROSPECTS

7.1 General concluding remarks

This thesis presented the main aspects involved in the analysis and
development of control techniques for switched systems with application in
photovoltaic power generation, although all the methods were presented in a
manner that is general enough to be applied in systems other than PV. The
objectives, the applications that are being studied, the requirements of the
proposed control techniques and the resulting contributions were specified.

For a better understanding of the aspects surrounding the topic under
investigation in this work, Chapter 2 presented a survey of the main features
and properties of photovoltaic systems. The research topics presented in this
chapter provide an overview of the topologies and techniques for control and
achievement of the maximization of the power generated that exist in the cur-
rent literature. Additionally, we presented the basic results that are necessary
for the development of control techniques for this type of system, the main
control objectives, as well as all the basic tools that would be used throughout
the document. Therefore, this chapter contains the theoretical background
necessary for the subsequent chapters.

Next, a new methodology for controlling switched systems, published
in (TROFINO et al., 2011), was presented in Chapter 3. This methodology al-
lows for the design of a switching rule with guaranteed asymptotic conver-
gence of the states of the system to a desired equilibrium point, ensuring
stability of the system even under the occurrence of sliding modes. The use
of this new technique has been illustrated in two examples of control design,
one applied to a Buck-Boost converter and the other applied to a system with
three modes of operation. The simulation results demonstrated the possibility
of including requirements for robustness to parameter variation and uncertain
equilibrium points. A requirement for the application of the technique is that
the system must have a stable convex combination in the equilibrium.

One of the main contributions of this thesis was presented in Chapter
4, also published in (DEZUO; TROFINO; SCHARLAU, 2014). This chapter pre-
sented a switching rule design technique for a class of nonlinear systems. To
summarize, the results from the preceding chapter were extended to include
sector-bounded nonlinearities and the applicability of the new method was
illustrated through some numerical examples. The new design procedure has
shown to have special importance for the design of a switching rule for PV
systems, as the panel can be modeled as a sector-bounded current source. An-
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other important requirement for PV systems achieved in this chapter was the
possibility of designing the control without knowing a priori the value of the
constant reference, allowing it to undergo step variations.

In Chapter 5, the study was directed to the application of the new de-
sign methodologies for the control of photovoltaic generation systems. Two
cases were studied, each one representing a common topology of photo-
voltaic systems. The first case is the stand-alone connection containing a
static DC/DC converter (of the Boost type), and in the second case a DC/AC
converter (of the VSI type) was included for connection of the PV array to
the the three-phase grid. For this application, the main control objectives
were assumed to be the maximization of the power generated by the PV array
through the use of an MPPT technique and the delivery of only active power
to the grid, that is, obtaining unitary power factor via synchronization with
the grid. Due to an electrical decoupling present between the two converter
stages, the design of the switching rules for the Boost and for the inverter
could be carried out separately and with the previously specified goals re-
spectively divided between them. In the case of grid-connection, the system
contains a time-dependent external signal, which makes it challenging for
obtaining LMI conditions, thus the design for this case was left as a future
work.

The technique designed for the stand-alone case proved to be robust
with respect to the value of the current generated by the PV array, which is
a nonlinear variable that is difficult to treat and would require a great effort
to representation via LMIs. The feasibility of the problem has been verified
and the results obtained were tested in simulation. Through these tests, it was
possible to verify that the results were satisfactory and objectives were met,
even under variation of the input parameters of the panel (temperature and
solar radiation). The applicability of the technique in real systems depends
only on the inclusion of conditions to guarantee stability under limitation of
the switching frequency, which are currently under development. Although,
simulation results show that imposing a dwell time for the current techniques
may not be an issue for stability if the dwell time is small enough. Other
works to be performed in the future are: the development of an MPPT tech-
nique that can be included in the switching rule design method via LMIs, the
control of switched systems without stable convex combination and battery
charging, as well as improving the results already obtained.

Inspired by the lack of a method for stability analysis of piecewise
affine systems with sliding modes, a novel methodology was proposed in
Chapter 6. The new results were particularly interesting for allowing the sta-
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bility analysis of the switching rule designed for affine switched systems in
the third chapter, however, it may also be applied for the class of piecewise
affine systems. The contents of this chapter were also published in (DEZUO;
RODRIGUES; TROFINO, 2014). The technique can be used to check the stability
of piecewise affine systems with hyperplanes as switching surfaces. There-
fore, a relevant improvement to be made is to treat the case of switching
surfaces expressed as polynomial functions of higher degree.

7.2 Prospects

As prospects for continuation of the work, the following activities are
proposed:

1. To conduct a study to improve the results already obtained. In this di-
rection, it is possible to include performance guarantees, to consider
uncertainties in different parameters of the system, among other ac-
tions;

2. To investigate the development of an MPPT technique to be imple-
mented in the switching rule design via LMIs, thus eliminating the de-
pendence on other MPPT techniques from the literature;

3. To consider the application of charging batteries using the PV system;

4. To develop a switching rule design technique for DC/AC converters,
allowing the connection to the grid;

5. To include conditions for limited switching frequency, thus avoiding
the occurrence of chattering and ensuring stability in the experimental
implementation of the control methodologies proposed;

6. To perform the extension of the obtained results for the case of control
of switched systems without a stable convex combination of its subsys-
tems;

7. To publish the results yet unpublished in relevant international journals
and conferences.

7.3 Activities abroad

An internship abroad with duration of twelve months was carried out
as part of the activities planned for the Ph.D. program. The activities were
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conducted at the Department of Electrical & Computer Engineering at Con-
cordia University in Montreal, Canada, in collaboration with the faculty mem-
bers of this department and under the guidance of Professor Luis Rodrigues.
Professor Rodrigues has done work with significant contributions in the area
of control systems of high complexity (switched, hybrid and nonlinear control
systems), optimal control and convex optimization methods applied the con-
trol using LMIs as a tool (SAMADI; RODRIGUES, 2011), (SAMADI; RODRIGUES,
2008), (RODRIGUES, 2003), and also having experience with variable structure
systems and discrete-time dynamics (RODRIGUES, 2007). Among the results
generated by the cooperation, we can cite the stability analysis technique pre-
sented in Chapter 6 as an important contribution for this thesis.

7.4 Publications related to the work

The activities performed during the Ph.D. program led to results that
gave rise to the following papers already published (see Appendix D for the
abstract of each paper):

• A. Trofino, C. C. Scharlau, T. J. M. Dezuo, M. C. de Oliveira.
“Stabilizing switching rule design for affine switched systems”.
Proceedings of 50th IEEE Conference on Decision and Control, 2011.

• A. Trofino, C. C. Scharlau, T. J. M. Dezuo, M. C. de Oliveira.
“Switching rule design for affine switched systems with H• per-
formance”. Proceedings of 51th IEEE Conference on Decision and
Control, 2012.

• C. C. Scharlau, T. J. M. Dezuo, A. Trofino, R. Reginatto. “Switching
rule design for inverter-fed induction motors”. Proceedings of 52nd
IEEE Conference on Decision and Control, 2013.

• C. C. Scharlau, M. C. de Oliveira, A. Trofino, T. J. M. Dezuo.
“Switching rule design for affine switched systems using a max-
type composition rule”. Systems & Control Letters, 2014.

• T. Dezuo, L. Rodrigues, A. Trofino. “Stability analysis of piecewise
affine systems with sliding modes”. Proceedings of 2014 American
Control Conference, 2014.

• T. Dezuo, A. Trofino, C. C. Scharlau. “Switching rule design for
sector-bounded nonlinear switched systems”. Proceedings of 19th
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International Federation of Automatic Control (IFAC) World Congress,
2014.

The author also worked on the development of other papers not di-
rectly related to the content of this thesis, but to the stability analysis and
observer design for nonlinear systems (vide abstracts in Appendix D), which
are:

• A. Trofino, T. J. M. Dezuo. “Global stability of uncertain rational
nonlinear systems with some positive states”. Proceedings of 50th
IEEE Conference on Decision and Control, 2011.

• A. Trofino, T. J. M. Dezuo. “LMI stability conditions for uncer-
tain rational nonlinear systems”. International Journal of Robust and
Nonlinear Control, 2013. DOI: 10.1002/rnc.3047, pages 1-46.

• T. Dezuo, A. Trofino. “LMI conditions for designing rational non-
linear observers”. Proceedings of 2014 American Control Conference,
2014.

• T. Dezuo, A. Trofino. “LMI conditions for designing rational non-
linear observers with guaranteed cost”. Proceedings of 19th Interna-
tional Federation of Automatic Control (IFAC) World Congress, 2014.
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APPENDIX A – INPUT/OUTPUT VOLTAGES RELATION IN A
THREE-PHASE INVERTER

Consider the inverter shown in Figure 45, where the point o is a virtual
point inserted just to simplify the analysis. The output of the inverter (points
a,b,c) is connected to the point n in a star1 configuration.

Figure 45: Three-phase inverter with output connected in a star configuration.

Recalling that the input command of the two switches of an arm of the
inverter must be complementary, i.e. ui is the binary complement of ui for
i = 1,2,3, the following relations can be verified:

Va �Vo =
Vdc

2
(u1 �u1) =

Vdc

2
(2u1 �1) (A.1)

Vb �Vo =
Vdc

2
(u2 �u2) =

Vdc

2
(2u2 �1) (A.2)

Vc �Vo =
Vdc

2
(u3 �u3) =

Vdc

2
(2u3 �1) (A.3)

Summing �Vn +Vn to the left of the equalities in (A.1-A.3), we get,
respectively:

Va �Vn +Vn �Vo =Van +Vno =
Vdc

2
(2u1 �1) (A.4)

Vb �Vn +Vn �Vo =Vbn +Vno =
Vdc

2
(2u2 �1) (A.5)

Vc �Vn +Vn �Vo =Vcn +Vno =
Vdc

2
(2u3 �1) (A.6)

1Also known as "Y" configuration.
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Summing the three Equations (A.4)-(A.6) and taking into account that
the system is balanced, i.e. Van +Vbn +Vcn = 0, we get

3Vno =
Vdc

2
(2u1 +2u2 +2u3 �3) (A.7)

and isolating Vno:

Vno =
1
3

✓
u1 +u2 +u3 �

3
2

◆
Vdc (A.8)

Finally, replacing (A.8) in (A.4)-(A.6) and isolating the variables Van,Vbn,Vcn,
we get 2

4
Van
Vbn
Vcn

3

5=Vdc
1
3

2

4
2 �1 �1
�1 2 �1
�1 �1 2

3

5

2

4
u1
u2
u3

3

5
. (A.9)
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APPENDIX B – CLARKE’S TRANSFORMATION

Consider the reference frames abc and ab with the orientations indi-
cated in Figure 46, from which we can deduce that the projections f

a

and f
b

of the vectors fa, fb, fc are:

f
a

= 1 fa � cos(60o) fb � cos(60o) fc (B.1)
f
b

= 0 fa + sen(60o) fb � sen(60o) fc (B.2)

Figure 46: Transformation from abc to ab .

Recalling that, if the system is balanced, fb + fc = � fa, (B.1) can be
rewritten as

f
a

= 1 fa + cos(60o) fa =
3
2

fa. (B.3)

Due to the relation (B.3), if it is of interest to keep f
a

with the same amplitude
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as fa, (B.1)-(B.2) are multiplied by 2/3, that is,

f
a

=
2
3

✓
1 fa �

1
2

fb �
1
2

fc

◆
, (B.4)

f
b

=
2
3

 
0 fa +

p
3

2
fb �

p
3

2
fc

!
, (B.5)

which can be rewritten in a matrix form as


f
a

f
b

�
=

2
3

"
1 � 1

2 � 1
2

0
p

3
2 �

p
3

2

#

| {z }
K

ab

2

4
fa
fb
fc

3

5
. (B.6)

The inverse transformation can be obtained by calculating the pseudo-
inverse of K

ab

, although it is deduced here step by step as a confirmation of
the previously obtained transformation. Consider the Figure 47. In this case,
the projections fa, fb, fc of f

a

, f
b

in the abc axis are, respectively:

fa = 1 f
a

+0 f
b

(B.7)

fb =�cos(60o) f
a

+ cos(30o) f
b

(B.8)

fc =�cos(60o) f
a

� cos(30o) f
b

(B.9)

Note in (B.7) that this deduction already results in fa and f
a

to have equal
amplitudes.

Finally, rewriting (B.7-B.9) in a matrix form, we get

2

4
fa
fb
fc

3

5=

2

64
1 0
� 1

2

p
3

2
� 1

2 �
p

3
2

3

75

| {z }
K#

ab


f
a

f
b

�
. (B.10)

It is possible to verify that K#
ab

is the pseudo-inverse of K
ab

from Equation
(B.6), hence its nomenclature. Transformations between three-phase and two-
phase variables with different Cartesian axis orientations and that consider
the 0 component can be found in (BARBI, 1985) and (FERREIRA, 2004), for
instance. Also, note in the Figure 46 that the transformation described here
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Figure 47: Transformation from ab to abc.

has the b axis in advance in relation to the a axis (BARBI, 1985).
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APPENDIX C – PARK’S TRANSFORMATION

Consider the reference frames ab an dq (synchronous) as shown in
the Figure 48, where the reference frame dq is synchronized with the grid
and, therefore, it rotates with the constant angular velocity w , and thus

f =
Z

w dt = wt. (C.1)

Figure 48: Transformation from ab to dq.

Figure 49: Transformation from dq to ab .
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Observing the Figure 48, we can infer that


fd
fq

�
=


cos(f) sin(f)
�sin(f) cos(f)

�

| {z }
Kdq


f
a

f
b

�
. (C.2)

The deduction of the inverse transformation can be obtained simply
by calculating the inverse of the matrix Kdq, or as shown in the sequence to
confirm the previously obtained transformation. Consider the Figure 49, from
which we get the following relations.


f
a

f
b

�
=


cos(f) �sin(f)
sin(f) cos(f)

�

| {z }
K�1

dq


fd
fq

�
. (C.3)

It is possible to verify that K�1
dq is the inverse of Kdq, hence its nomenclature.
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APPENDIX D – ABSTRACTS OF PUBLISHED PAPERS

In this appendix, the abstracts of each publication mentioned in Sec-
tion 7.4 are presented.

•A. Trofino, C. C. Scharlau, T. J. M. Dezuo, M. C. de Oliveira.
“Stabilizing switching rule design for affine switched systems”.
Proceedings of 50th IEEE Conference on Decision and Control, 2011.
We propose a method for designing switching rules that can drive the
state of the switched dynamic system to a desired equilibrium point.
The method deals with the class of switched systems where each sub-
system has an affine vector field. The results are given in terms of linear
matrix inequalities and they guarantee global asymptotic stability of the
tracking error dynamics even if sliding motion occurs along a switch-
ing surface of the system. The switching rules are based on complete
and partial state measurements. Two examples are used to illustrate the
approach.

•A. Trofino, C. C. Scharlau, T. J. M. Dezuo, M. C. de Oliveira.
“Switching rule design for affine switched systems with H• per-
formance”. Proceedings of 51th IEEE Conference on Decision and
Control, 2012.
In this paper we consider the class of affine switched systems subject
to L2 disturbances and we propose a method for switching rule design
such that an upper bound on the disturbance gain, in the H• sense, is
minimized. In the absence of disturbances the switching rule drives the
state of the switched system to a desired equilibrium point. The re-
sults are given in terms of linear matrix inequalities and they guarantee
global asymptotic stability of the tracking error dynamics even if slid-
ing motion occurs on any switching surface of the system. An example
is used to illustrate the approach.

•C. C. Scharlau, T. J. M. Dezuo, A. Trofino, R. Reginatto. “Switching
rule design for inverter-fed induction motors”. Proceedings of 52nd
IEEE Conference on Decision and Control, 2013.
This paper presents a method for designing switching rules that drive
the state of a class of nonlinear switched system to a desired constant
reference. The proposed method is focused on an application of a three-
phase squirrel-cage induction motor fed by an inverter and considers a
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switching rule using ‘max’ composition of auxiliary functions. The
results are given in terms of linear matrix inequalities and they guaran-
tee local asymptotic stability of the closed-loop system even if sliding
modes occur on any switching surface of the system.

•C. C. Scharlau, M. C. de Oliveira, A. Trofino, T. J. M. Dezuo.
“Switching rule design for affine switched systems using a max-
type composition rule”. Systems & Control Letters, 2014.

This paper presents conditions for designing a switching rule that drives
the state of the switched dynamic system to a desired equilibrium point.
The proposed method deals with the class of switched systems where
each subsystem has an affine vector field and considers a switching
rule using ‘max’ composition. The results guarantee global asymptotic
stability of the tracking error dynamics even if sliding mode occur at
any switching surface of the system. In addition, the method does not
require a Hurwitz convex combination of the dynamic matrices of the
subsystems. Two numerical examples are used to illustrate the results.

•T. Dezuo, L. Rodrigues, A. Trofino. “Stability analysis of piecewise
affine systems with sliding modes”. Proceedings of 2014 American
Control Conference, 2014.

This paper proposes new sufficient conditions for stability analysis of
PWA systems. The conditions are based on a convex combination of
PWQ Lyapunov functions and are given in terms of LMIs, which can
be solved efficiently using available software packages. There are three
contributions of the new conditions presented in this paper. First, the
conditions guarantee exponential stability of the state dynamics even
in the presence of non-destabilizing sliding modes of all possible di-
mensions smaller than the dimension of the state space. Second, the
conditions can handle the important case where the equilibrium point is
located at a boundary between affine subsystems. Third, sufficient con-
ditions for stability of systems independently of the parametrization of
the boundary surfaces are derived as a corollary. The new method pre-
sented in this paper leads to a unified methodology for stability analysis
of switched affine systems and piecewise affine systems with sliding
modes.

•T. Dezuo, A. Trofino, C. C. Scharlau. “Switching rule design for
sector-bounded nonlinear switched systems”. Proceedings of 19th
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International Federation of Automatic Control (IFAC) World Congress,
2014.

This paper presents a technique for designing switching rules that drive
the state of a class of nonlinear switched system to a desired constant
reference. The system may contain state-dependent sector-bounded
nonlinear functions. The proposed method considers a switching rule
using the ‘max’ composition of auxiliary functions. The results are
given in terms of LMIs and they guarantee global asymptotic stability
of the closed-loop system even if sliding modes occur on any switch-
ing surface of the system. The application of the method is illustrated
through a numerical example based on a PV system and important re-
quirements are achieved, such as the MPPT and robustness with respect
to the uncertain parameters of the PV array.

•A. Trofino, T. J. M. Dezuo. “Global stability of uncertain rational
nonlinear systems with some positive states”. Proceedings of 50th
IEEE Conference on Decision and Control, 2011.

This paper presents LMI conditions for local and global asymptotic
stability of rational uncertain nonlinear systems where some or all the
state variables are constrained by the model to have definite signal. The
uncertainties are modeled as real time varying parameters with magni-
tude and rate of variation bounded by given polytopes. The stability
conditions are based on a rational Lyapunov function with respect to
the states and uncertain parameters. A numerical example is used to
illustrate the potential of the proposed results.

•A. Trofino, T. J. M. Dezuo. “LMI stability conditions for uncer-
tain rational nonlinear systems”. International Journal of Robust and
Nonlinear Control, 2013. DOI: 10.1002/rnc.3047, pages 1-46.

This paper presents LMI conditions for local, regional and global ro-
bust asymptotic stability of rational uncertain nonlinear systems. The
uncertainties are modeled as real time varying parameters with magni-
tude and rate of variation bounded by given polytopes and the system
vector field is a rational function of the states and uncertain parame-
ters. Sufficient LMI conditions for asymptotic stability of the origin
are given through a rational Lyapunov function of the states and uncer-
tain parameters. The case where the time derivative of the Lyapunov
function is negative semi-definite is also considered and connections
with the well known LaSalle’s invariance conditions are established. In
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regional stability problems an algorithm to maximize the estimate of
the region of attraction is proposed. The algorithm consists of maxi-
mizing the estimate for a given target region of initial states. The size
and shape of the target region are recursively modified in the directions
where the estimate can be enlarged. The target region can be taken as a
polytope (convex set) or union of polytopes (non-convex set). The esti-
mates of the region of attraction are robust with respect to the uncertain
parameters and their rate of change. The case of global and orthant
stability problems are also considered. Connections with some results
found in SOS based methods and other related methods found in the
literature are established. The LMIs in this paper are obtained by us-
ing the Finsler’s Lemma and the notion of annihilators. The LMIs are
characterized by affine functions of the state and uncertain parameters
and they are tested at the vertices of a polytopic region. It is also shown
that, with some additional conservatism, the use of the vertices can be
avoided by modifying the LMIs with the S-Procedure. Several numeri-
cal examples found in the literature are used to compare the results and
illustrate the advantages of the proposed method.

•T. Dezuo, A. Trofino. “LMI conditions for designing rational non-
linear observers”. Proceedings of 2014 American Control Conference,
2014.

This paper presents a technique for designing rational nonlinear ob-
servers for rational nonlinear systems. The approach is based on a Lya-
punov function that is quadratic in the estimation error and rational in
the system states. The design conditions are formulated as LMIs. If
the conditions are satisfied, then the estimation error is guaranteed to
asymptotically converge to zero for initial conditions on an estimated
region of attraction. An optimization procedure for enlarging the re-
gion of attraction is also provided. An example is used to illustrate the
results.

•T. Dezuo, A. Trofino. “LMI conditions for designing rational non-
linear observers with guaranteed cost”. Proceedings of 19th Interna-
tional Federation of Automatic Control (IFAC) World Congress, 2014.

This paper presents a technique for designing rational nonlinear ob-
servers for rational nonlinear systems with guaranteed cost perfor-
mance. The approach is based on a Lyapunov function that is quadratic
in the estimation error and rational in the system states. The design
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conditions are formulated as LMIs. If the conditions are satisfied, then
the estimation error is guaranteed to asymptotically converge to zero
for initial conditions on an estimated region of attraction. An optimiza-
tion procedure for enlarging the region of attraction is also provided.
An example is used to illustrate the results.
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