10 research outputs found

    A GPU-accelerated real-time NLMeans algorithm for denoising color video sequences

    Get PDF
    Abstract. The NLMeans filter, originally proposed by Buades et al., is a very popular filter for the removal of white Gaussian noise, due to its simplicity and excellent performance. The strength of this filter lies in exploiting the repetitive character of structures in images. However, to fully take advantage of the repetitivity a computationally extensive search for similar candidate blocks is indispensable. In previous work, we presented a number of algorithmic acceleration techniques for the NLMeans filter for still grayscale images. In this paper, we go one step further and incorporate both temporal information and color information into the NLMeans algorithm, in order to restore video sequences. Starting from our algorithmic acceleration techniques, we investigate how the NLMeans algorithm can be easily mapped onto recent parallel computing architectures. In particular, we consider the graphical processing unit (GPU), which is available on most recent computers. Our developments lead to a high-quality denoising filter that can process DVD-resolution video sequences in real-time on a mid-range GPU

    Recursive Non-Local Means Filter for Video Denoising

    Get PDF
    In this paper, we propose a computationally efficient algorithm for video denoising that exploits temporal and spatial redundancy. The proposed method is based on non-local means (NLM). NLM methods have been applied successfully in various image denoising applications. In the single-frame NLM method, each output pixel is formed as a weighted sum of the center pixels of neighboring patches, within a given search window. The weights are based on the patch intensity vector distances. The process requires computing vector distances for all of the patches in the search window. Direct extension of this method from 2D to 3D, for video processing, can be computationally demanding. Note that the size of a 3D search window is the size of the 2D search window multiplied by the number of frames being used to form the output. Exploiting a large number of frames in this manner can be prohibitive for real-time video processing. Here, we propose a novel recursive NLM (RNLM) algorithm for video processing. Our RNLM method takes advantage of recursion for computational savings, compared with the direct 3D NLM. However, like the 3D NLM, our method is still able to exploit both spatial and temporal redundancy for improved performance, compared with 2D NLM. In our approach, the first frame is processed with single-frame NLM. Subsequent frames are estimated using a weighted sum of pixels from the current frame and a pixel from the previous frame estimate. Only the single best matching patch from the previous estimate is incorporated into the current estimate. Several experimental results are presented here to demonstrate the efficacy of our proposed method in terms of quantitative and subjective image quality

    Smoothing of ultrasound images using a new selective average filter

    Get PDF
    Ultrasound images are strongly affected by speckle noise making visual and computational analysis of the structures more difficult. Usually, the interference caused by this kind of noise reduces the efficiency of extraction and interpretation of the structural features of interest. In order to overcome this problem, a new method of selective smoothing based on average filtering and the radiation intensity of the image pixels is proposed. The main idea of this new method is to identify the pixels belonging to the borders of the structures of interest in the image, and then apply a reduced smoothing to these pixels, whilst applying more intense smoothing to the remaining pixels. Experimental tests were conducted using synthetic ultrasound images with speckle noisy added and real ultrasound images from the female pelvic cavity. The new smoothing method is able to perform selective smoothing in the input images, enhancing the transitions between the different structures presented. The results achieved are promising, as the evaluation analysis performed shows that the developed method is more efficient in removing speckle noise from the ultrasound images compared to other current methods. This improvement is because it is able to adapt the filtering process according to the image contents, thus avoiding the loss of any relevant structural features in the input images

    Directional edge and texture representations for image processing

    Get PDF
    An efficient representation for natural images is of fundamental importance in image processing and analysis. The commonly used separable transforms such as wavelets axe not best suited for images due to their inability to exploit directional regularities such as edges and oriented textural patterns; while most of the recently proposed directional schemes cannot represent these two types of features in a unified transform. This thesis focuses on the development of directional representations for images which can capture both edges and textures in a multiresolution manner. The thesis first considers the problem of extracting linear features with the multiresolution Fourier transform (MFT). Based on a previous MFT-based linear feature model, the work extends the extraction method into the situation when the image is corrupted by noise. The problem is tackled by the combination of a "Signal+Noise" frequency model, a refinement stage and a robust classification scheme. As a result, the MFT is able to perform linear feature analysis on noisy images on which previous methods failed. A new set of transforms called the multiscale polar cosine transforms (MPCT) are also proposed in order to represent textures. The MPCT can be regarded as real-valued MFT with similar basis functions of oriented sinusoids. It is shown that the transform can represent textural patches more efficiently than the conventional Fourier basis. With a directional best cosine basis, the MPCT packet (MPCPT) is shown to be an efficient representation for edges and textures, despite its high computational burden. The problem of representing edges and textures in a fixed transform with less complexity is then considered. This is achieved by applying a Gaussian frequency filter, which matches the disperson of the magnitude spectrum, on the local MFT coefficients. This is particularly effective in denoising natural images, due to its ability to preserve both types of feature. Further improvements can be made by employing the information given by the linear feature extraction process in the filter's configuration. The denoising results compare favourably against other state-of-the-art directional representations

    Video Filtering Using Separable Four-Dimensional Nonlocal Spatiotemporal Transforms

    Get PDF
    The large number of practical application involving digital videos has motivated a significant interest in restoration or enhancement solutions to improve the visual quality under the presence of noise. We propose a powerful video denoising algorithm that exploits temporal and spatial redundancy characterizing natural video sequences to reduce the effects of noise. The algorithm implements the paradigm of nonlocal grouping and collaborative filtering, where a four-dimensional transform- domain representation is leveraged to enforce sparsity and thus regularize the data. Moreover we present an extension of our algorithm that can be effectively used as a deblocking and deringing filter to reduce the artifacts introduced by most of the popular video compression techniques. Our algorithm, termed V-BM4D, at first constructs three-dimensional volumes, by tracking blocks along trajectories defined by the motion vectors, and then groups together mutually similar volumes by stacking them along an additional fourth dimension. Each group is transformed through a decorrelating four-dimensional separable transform, and then it is collaboratively filtered by coeffcients shrinkage. The effectiveness of shrinkage is due to the sparse representation of the transformed group. Sparsity is achieved because of different type of correlation among the groups: local correlation along the two dimensions of the blocks, temporal correlation along the motion trajectories, and nonlocal spatial correlation along the fourth dimension. As a conclusive step, the different estimates of the filtered groups are adaptively aggregated and subsequently returned to their original position, to produce a final estimate of the original video. The proposed filtering procedure leads to excellent results in both objective and subjective visual quality, since in the restored video sequences the effect of the noise or of the compression artifacts is noticeably reduced, while the significant features are preserved. As demonstrated by experimental results, V-BM4D outperforms the state of the art in video denoising. /Kir1

    Probabilistic modeling of wavelet coefficients for processing of image and video signals

    Get PDF
    Statistical estimation and detection techniques are widely used in signal processing including wavelet-based image and video processing. The probability density function (PDF) of the wavelet coefficients of image and video signals plays a key role in the development of techniques for such a processing. Due to the fixed number of parameters, the conventional PDFs for the estimators and detectors usually ignore higher-order moments. Consequently, estimators and detectors designed using such PDFs do not provide a satisfactory performance. This thesis is concerned with first developing a probabilistic model that is capable of incorporating an appropriate number of parameters that depend on higher-order moments of the wavelet coefficients. This model is then used as the prior to propose certain estimation and detection techniques for denoising and watermarking of image and video signals. Towards developing the probabilistic model, the Gauss-Hermite series expansion is chosen, since the wavelet coefficients have non-compact support and their empirical density function shows a resemblance to the standard Gaussian function. A modification is introduced in the series expansion so that only a finite number of terms can be used for modeling the wavelet coefficients with rendering the resulting PDF to become negative. The parameters of the resulting PDF, called the modified Gauss-Hermite (NIGH) PDF, are evaluated in terms of the higher-order sample-moments. It is shown that the MGH PDF fits the empirical density function better than the existing PDFs that use a limited number of parameters do. The proposed MGH PDF is used as the prior of image and video signals in designing maximum a posteriori and minimum mean squared error-based estimators for denoising of image and video signals and log-likelihood ratio-based detector for watermarking of image signals. The performance of the estimation and detection techniques are then evaluated in terms of the commonly used metrics. It is shown through extensive experimentations that the estimation and detection techniques developed utilizing the proposed MGH PDF perform substantially better than those that utilize the conventional PDFs. These results confirm that the superior fit of the MGH PDF to the empirical density function resulting from the flexibility of the MGH PDF in choosing the number of parameters, which are functions of higher-order moments of data, leads to the better performance. Thus, the proposed MGH PDF should play a significant role in wavelet-based image and video signal processin

    Adaptive Nonlocal Signal Restoration and Enhancement Techniques for High-Dimensional Data

    Get PDF
    The large number of practical applications involving digital images has motivated a significant interest towards restoration solutions that improve the visual quality of the data under the presence of various acquisition and compression artifacts. Digital images are the results of an acquisition process based on the measurement of a physical quantity of interest incident upon an imaging sensor over a specified period of time. The quantity of interest depends on the targeted imaging application. Common imaging sensors measure the number of photons impinging over a dense grid of photodetectors in order to produce an image similar to what is perceived by the human visual system. Different applications focus on the part of the electromagnetic spectrum not visible by the human visual system, and thus require different sensing technologies to form the image. In all cases, even with the advance of technology, raw data is invariably affected by a variety of inherent and external disturbing factors, such as the stochastic nature of the measurement processes or challenging sensing conditions, which may cause, e.g., noise, blur, geometrical distortion and color aberration. In this thesis we introduce two filtering frameworks for video and volumetric data restoration based on the BM3D grouping and collaborative filtering paradigm. In its general form, the BM3D paradigm leverages the correlation present within a nonlocal emph{group} composed of mutually similar basic filtering elements, e.g., patches, to attain an enhanced sparse representation of the group in a suitable transform domain where the energy of the meaningful part of the signal can be thus separated from that of the noise through coefficient shrinkage. We argue that the success of this approach largely depends on the form of the used basic filtering elements, which in turn define the subsequent spectral representation of the nonlocal group. Thus, the main contribution of this thesis consists in tailoring specific basic filtering elements to the the inherent characteristics of the processed data at hand. Specifically, we embed the local spatial correlation present in volumetric data through 3-D cubes, and the local spatial and temporal correlation present in videos through 3-D spatiotemporal volumes, i.e. sequences of 2-D blocks following a motion trajectory. The foundational aspect of this work is the analysis of the particular spectral representation of these elements. Specifically, our frameworks stack mutually similar 3-D patches along an additional fourth dimension, thus forming a 4-D data structure. By doing so, an effective group spectral description can be formed, as the phenomena acting along different dimensions in the data can be precisely localized along different spectral hyperplanes, and thus different filtering shrinkage strategies can be applied to different spectral coefficients to achieve the desired filtering results. This constitutes a decisive difference with the shrinkage traditionally employed in BM3D-algorithms, where different hyperplanes of the group spectrum are shrunk subject to the same degradation model. Different image processing problems rely on different observation models and typically require specific algorithms to filter the corrupted data. As a consequent contribution of this thesis, we show that our high-dimensional filtering model allows to target heterogeneous noise models, e.g., characterized by spatial and temporal correlation, signal-dependent distributions, spatially varying statistics, and non-white power spectral densities, without essential modifications to the algorithm structure. As a result, we develop state-of-the-art methods for a variety of fundamental image processing problems, such as denoising, deblocking, enhancement, deflickering, and reconstruction, which also find practical applications in consumer, medical, and thermal imaging
    corecore