198 research outputs found

    A Subband-Based SVM Front-End for Robust ASR

    Full text link
    This work proposes a novel support vector machine (SVM) based robust automatic speech recognition (ASR) front-end that operates on an ensemble of the subband components of high-dimensional acoustic waveforms. The key issues of selecting the appropriate SVM kernels for classification in frequency subbands and the combination of individual subband classifiers using ensemble methods are addressed. The proposed front-end is compared with state-of-the-art ASR front-ends in terms of robustness to additive noise and linear filtering. Experiments performed on the TIMIT phoneme classification task demonstrate the benefits of the proposed subband based SVM front-end: it outperforms the standard cepstral front-end in the presence of noise and linear filtering for signal-to-noise ratio (SNR) below 12-dB. A combination of the proposed front-end with a conventional front-end such as MFCC yields further improvements over the individual front ends across the full range of noise levels

    A detection-based pattern recognition framework and its applications

    Get PDF
    The objective of this dissertation is to present a detection-based pattern recognition framework and demonstrate its applications in automatic speech recognition and broadcast news video story segmentation. Inspired by the studies of modern cognitive psychology and real-world pattern recognition systems, a detection-based pattern recognition framework is proposed to provide an alternative solution for some complicated pattern recognition problems. The primitive features are first detected and the task-specific knowledge hierarchy is constructed level by level; then a variety of heterogeneous information sources are combined together and the high-level context is incorporated as additional information at certain stages. A detection-based framework is a â divide-and-conquerâ design paradigm for pattern recognition problems, which will decompose a conceptually difficult problem into many elementary sub-problems that can be handled directly and reliably. Some information fusion strategies will be employed to integrate the evidence from a lower level to form the evidence at a higher level. Such a fusion procedure continues until reaching the top level. Generally, a detection-based framework has many advantages: (1) more flexibility in both detector design and fusion strategies, as these two parts can be optimized separately; (2) parallel and distributed computational components in primitive feature detection. In such a component-based framework, any primitive component can be replaced by a new one while other components remain unchanged; (3) incremental information integration; (4) high level context information as additional information sources, which can be combined with bottom-up processing at any stage. This dissertation presents the basic principles, criteria, and techniques for detector design and hypothesis verification based on the statistical detection and decision theory. In addition, evidence fusion strategies were investigated in this dissertation. Several novel detection algorithms and evidence fusion methods were proposed and their effectiveness was justified in automatic speech recognition and broadcast news video segmentation system. We believe such a detection-based framework can be employed in more applications in the future.Ph.D.Committee Chair: Lee, Chin-Hui; Committee Member: Clements, Mark; Committee Member: Ghovanloo, Maysam; Committee Member: Romberg, Justin; Committee Member: Yuan, Min

    Tandem approach for information fusion in audio visual speech recognition

    Get PDF
    Speech is the most frequently preferred medium for humans to interact with their environment making it an ideal instrument for human-computer interfaces. However, for the speech recognition systems to be more prevalent in real life applications, high recognition accuracy together with speaker independency and robustness to hostile conditions is necessary. One of the main preoccupation for speech recognition systems is acoustic noise. Audio Visual Speech Recognition systems intend to overcome the noise problem utilizing visual speech information generally extracted from the face or in particular the lip region. Visual speech information is known to be a complementary source for speech perception and is not impacted by acoustic noise. This advantage brings in two additional issues into the task which are visual feature extraction and information fusion. There is extensive research on both issues but an admissable level of success has not been reached yet. This work concentrates on the issue of information fusion and proposes a novel methodology. The aim of the proposed technique is to deploy a preliminary decision stage at frame level as an initial stage and feed the Hidden Markov Model with the output posterior probabilities as in tandem HMM approach. First, classification is performed for each modality separately. Sequentially, the individual classifiers of each modality are combined to obtain posterior probability vectors corresponding to each speech frame. The purpose of using a preliminary stage is to integrate acoustic and visual data for maximum class separability. Hidden Markov Models are employed as the second stage of modelling because of their ability to handle temporal evolutions of data. The proposed approach is investigated in a speaker independent scenario for digit recognition with the existence of diverse levels of car noise. The method is compared with a principal information fusion framework in audio visual speech recognition which is Multiple Stream Hidden Markov Models (MSHMM). The results on M2VTS database show that the novel method achieves resembling performance with less processing time as compared to MSHMM

    Deep neural networks in acoustic model

    Get PDF
    L'estudiant m'ha contactat amb el requeriment d'una oferta per matricular-se i aquesta oferta respon a la seva petició. Després de confirmar amb Secretaria Acadèmica que està acceptat a destinació, deixem títol, descripció, objectius, i tutor extern per determinar quan arribi a destí.Do implementation of a training of a deep neural network acoustic model for speech recognitio

    Deep learning methods in speaker recognition: a review

    Full text link
    This paper summarizes the applied deep learning practices in the field of speaker recognition, both verification and identification. Speaker recognition has been a widely used field topic of speech technology. Many research works have been carried out and little progress has been achieved in the past 5-6 years. However, as deep learning techniques do advance in most machine learning fields, the former state-of-the-art methods are getting replaced by them in speaker recognition too. It seems that DL becomes the now state-of-the-art solution for both speaker verification and identification. The standard x-vectors, additional to i-vectors, are used as baseline in most of the novel works. The increasing amount of gathered data opens up the territory to DL, where they are the most effective

    Sound Object Recognition

    Get PDF
    Humans are constantly exposed to a variety of acoustic stimuli ranging from music and speech to more complex acoustic scenes like a noisy marketplace. The human auditory perception mechanism is able to analyze these different kinds of sounds and extract meaningful information suggesting that the same processing mechanism is capable of representing different sound classes. In this thesis, we test this hypothesis by proposing a high dimensional sound object representation framework, that captures the various modulations of sound by performing a multi-resolution mapping. We then show that this model is able to capture a wide variety of sound classes (speech, music, soundscapes) by applying it to the tasks of speech recognition, speaker verification, musical instrument recognition and acoustic soundscape recognition. We propose a multi-resolution analysis approach that captures the detailed variations in the spectral characterists as a basis for recognizing sound objects. We then show how such a system can be fine tuned to capture both the message information (speech content) and the messenger information (speaker identity). This system is shown to outperform state-of-art system for noise robustness at both automatic speech recognition and speaker verification tasks. The proposed analysis scheme with the included ability to analyze temporal modulations was used to capture musical sound objects. We showed that using a model of cortical processing, we were able to accurately replicate the human perceptual similarity judgments and also were able to get a good classification performance on a large set of musical instruments. We also show that neither just the spectral feature or the marginals of the proposed model are sufficient to capture human perception. Moreover, we were able to extend this model to continuous musical recordings by proposing a new method to extract notes from the recordings. Complex acoustic scenes like a sports stadium have multiple sources producing sounds at the same time. We show that the proposed representation scheme can not only capture these complex acoustic scenes, but provides a flexible mechanism to adapt to target sources of interest. The human auditory perception system is known to be a complex system where there are both bottom-up analysis pathways and top-down feedback mechanisms. The top-down feedback enhances the output of the bottom-up system to better realize the target sounds. In this thesis we propose an implementation of top-down attention module which is complimentary to the high dimensional acoustic feature extraction mechanism. This attention module is a distributed system operating at multiple stages of representation, effectively acting as a retuning mechanism, that adapts the same system to different tasks. We showed that such an adaptation mechanism is able to tremendously improve the performance of the system at detecting the target source in the presence of various distracting background sources

    Word And Speaker Recognition System

    Get PDF
    In this report, a system which combines user dependent Word Recognition and text dependent speaker recognition is described. Word recognition is the process of converting an audio signal, captured by a microphone, to a word. Speaker Identification is the ability to recognize a person identity base on the specific word he/she uttered. A person's voice contains various parameters that convey information such as gender, emotion, health, attitude and identity. Speaker recognition identifies who is the speaker based on the unique voiceprint from the speech data. Voice Activity Detection (VAD), Spectral Subtraction (SS), Mel-Frequency Cepstrum Coefficient (MFCC), Vector Quantization (VQ), Dynamic Time Warping (DTW) and k-Nearest Neighbour (k-NN) are methods used in word recognition part of the project to implement using MATLAB software. For Speaker Recognition part, Vector Quantization (VQ) is used. The recognition rate for word and speaker recognition system that was successfully implemented is 84.44% for word recognition while for speaker recognition is 54.44%
    corecore