25 research outputs found

    New Hybrid Schemes for PAPR Reduction in OFDM Systems

    Get PDF
    الـ 3GPP قدمت مشروع LTE لتلبية الطلبات المتزايدة لخدمات الاتصالات ذات السرعة العالية والجودة العالية. يستخدم نظام الـ LTE تقنية مضاعفة تقسيم التردد المتعامد (OFDM) في شكل (OFDMA) في الوصلة الهابطة (Downlink) وشكل الـ (SCFDMA) في الوصلة الصاعدة (Uplink) مجتمعة مع تقنية الـ MIMO لتقديم معدل بيانات عالي، قدرة عالية، وحصانة ضد القنوات متعددة المسارات. ومع ذلك لا يزال ارتفاع نسبة القدرة العظمة إلى المتوسط (PAPR) لإشارة الـ LTE المرسلة هي المشكلة الرئيسية التي تعمل على تدهور كفاءة النظام بشك عام وإمكانية استهلاك الطاقة. لذلك كرست الكثير من البحوث للحد من تدهور الأداء بسبب مشكلة الـ PAPR في أنظمة LTE-OFDM. تعتبر طرق ضغط الإشارة (Companding Methods) جزءاً من الطرق المعروفة والتي تعتبر سهلة ومنخفضة التعقيد، وبلا قيود على شكل التضمين وحجم عدد الحوامل (Subcarrier Size)، ولها خصائص طيفية جيدة، ومع ذلك فإن هذه الطرق تقلل الـ PAPR بمقدار ضئيل. وقد اقترح هذا البحث سبعة طرق هجينة جديدة على أساس مزيج من Zaddoff Chu Matrix Transform (ZCT) مع ست أساليب مختلفة من طرق ضغط الإشارة وهي Rooting Companding (RCT)، New Error Function Companding (NERF)، Absolute Exponential Companding (AEXP)، Logarithmic Rooting Companding (LogR)، Cosine Companding (COS)، وTangent Rooting Companding (TanhR). بالإضافة إلى ذلك تم تطوير الطريقة الهجينة السابعة وتجمع الـ Zaddoff Chu Matrix Transform (ZCT) مع طريقة جديدة مقترحة تسمى Advanced AEXP (AAEXP). أظهرت النتائج أن هذه الطرق المتطورة تجمع بين خصائص طريقة الـ ZCT مع خصائص طرق ضغط الإشارة، وتحقق أداء أمثل وانخفاضاً أفضل من حيث PAPR وBER. كما حققت طريقة الـ ZCT+AAEXP أفضل النتائج مقارنة بالطرق الأخرى.The 3rd Generation Partnership Project (3GPP) introduced LTE to meet increasingly demands for communication services with high speed and quality. LTE uses OFDM in the form of OFDMA in the downlink and SCFDMA in the uplink combined with MIMO offering high data rate, high capacity and immunity against multipath channels. However, still the high PAPR of the LTE transmitted signal is the major problem affecting overall system performance degradation and power efficiency. A plenty of research has been devoted to reduce the performance degradation due to the PAPR problem inherent to LTE OFDM systems. A portion of the current techniques such companding methods have low-complexity, no constraint on modulation format and subcarrier size, good distortion and spectral properties; however, they have limited PAPR reduction capabilities. This paper proposes seven new hybrid schemes including Zaddoff Chu Matrix Transform (ZCT) precoding and six modern companding methods; Rooting Companding (RCT), New Error Function Companding (NERF), Absolute Exponential Companding (AEXP), Logarithmic Rooting Companding (LogR), Cosine Companding (COS) and Tangent Rooting Companding (TanhR) companding. Furthermore, the seventh proposed hybrid scheme has been added incorporating ZCT precoding with new proposed companding called Advanced AEXP (AAEXP) companding. The developed methods are combining properties of both ZCT & Compandings, and achieving superior PAPR performance and optimal BER. Simulations results illustrate that the new seven proposed hybrid schemes can achieve better PAPR reduction, and BER performance and the best achievement has been achieved by ZCT+AAEXP scheme

    A Novel PAPR Reduction in Filter Bank Multi-Carrier (FBMC) with Offset Quadrature Amplitude Modulation (OQAM) Based VLC Systems

    Get PDF
    The peak to average power ratio (PAPR) is one of the major problem with multicarrier-based systems. Due to its improved spectral efficiency and decreased PAPR, Filter Bank Multicarrier (FBMC) has recently become an effective alternative to the orthogonal multiplexing division (OFDM). For filter bank multicarrier communication/offset quadrature amplitude modulation-Visible light communication (FBMC/OQAM-VLC) systems is proposed a PAPR reduction technique. The suggested approach overlaps the proposed FBMC/OQAM-based VLC data signal with the existing signals. Non-redundant signals and data signals do not overlap in the frequency domain because data signals are scattered on odd subcarriers whereas built signals use even subcarriers. To reduce the effects of large-amplitude signal reduction, the suggested technique converts negative signals into positive signals rather than clipping them off as in conventional FBMC-based VLC systems. The PAPR reduction and bit error rate (BER) are realized using a scaling factor in the transformed signals. Complementary cumulative distribution function(CCDF) and BER are used to calculate the performance of the proposed approach. The presented study found that FBMC/OQAM-VLC systems to achieve a good trade-off between PAPR reduction and BER

    An Overview of PAPR Reduction Techniques for an MC-CDMA System

    Get PDF
    Abstract-MC-CDMA is the most promising technique for high bit rate and high capacity transmission in wireless communication. One of the challenging issues of MC-CDMA system is very high PAPR due to large number of sub-carriers which reduces the system efficiency. This paper describes the various PAPR reduction techniques for MC-CDMA system. Criterion for the selection of PAPR reduction technique and also the comparison between the reduction techniques has been discussed

    A Review on PAPR Reduction in Perspective of BER Performance in MIMO-OFDM Based Next Generation Wireless Systems.

    Get PDF
    Today, high speed and trustworthy wireless communication over mobile is the requirement of society. As the mobile applications and the users are rapidly increasing, it is obligatory to have more reliable, high speed wireless network with high throughput, which will combat the disadvantages in existing system in this multiuser environment. In wireless system the received signal may be corrupted due to noise and interferences such as ‘inter symbol interference’ and ‘inter carrier interference’ when subjected to multi-path fading. Also the performance the system may be affected due to poor ‘bit error rate’ and high ‘peak to average power ratio’ value, which further affect the signal power and spectral efficiency of transmitted signal. The blend of ‘orthogonal frequency division multiplexing’ and ‘multi input multi output’ antenna system referred as MIMO-OFDM system, which offers the improvement in quality of service and higher throughput to satisfy the tomorrow’s need. This review article mainly focuses on various technologies adopted by different researchers for enhancing the ‘bit error rates’, ‘peak to average power ratio’, ‘signal to noise ratio’ and ‘spectral efficiency’ performances in wireless systems. We continue by highlighting the limitations and comparing results of conventional methods, schemes and algorithms proposed by different researchers.  We also focus on the multiple antenna system (MIMO), which is designed for future multiuser environment to enhance the capacity or to have high throughput along with good quality services

    Wavelet Methods With Discrete Cosine Transform For Peak-To-Average Power Ratio And Bit Error Rate Reduction In Orthogonal Frequency Division Multiplexing Systems

    Get PDF
    Orthogonal Frequency Division Multiplexing (OFDM) is nowadays applied in wireless networks, Digital Subscriber Line Internet Access, 4G mobile communications, digital television and audio broadcasting. This system has been widely used in high data rate wireless communications systems. High transmission bit rate, high spectral efficiency and robustness to frequency fading channels are the benefit for the application of OFDM. However, there is a major drawback in OFDM systems which is high Peak-to-Average Power Ratio (PAPR). High PAPR will reduce the performance of OFDM. Several techniques has been proposed to reduce PAPR. In this study, two objectives are identified. The first objective is to implement the improved PAPR reduction technique based on DCT on wavelet method. Then, the second objective is to analyze the performance of the proposed method based on PAPR and BER. This study is divided into four stages, understand the concept of OFDM implementation of algorithm, obtaining results and analyzing the simulation results. The simulation results show that improved method of DCT wavelet can reduce PAPR to about 5.111dB (35% PAPR reduction improvement) for 1024 subcarriers by using 64-QAM modulation scheme. Besides that, the Bit Error Rate is calculated to investigate the performance of the system by comparing the number of bits received in errors and the number of bits transmitted. DCT-precoded Wavelet gives 30% of improvement of BER whereas DCT-Wavelet gives 34% of improvement of BE

    Novel DWT-DAPSK based transceivers for DVB-T transmission and next generation mobile networks

    Get PDF
    Digital wireless communication has become one of the most exciting research topics in the electronic engineering field due to the explosive demands for high-speed wireless services, such as cellular video conferencing. The second generation Terrestrial Digital Video Broadcasting (DVB- T2) has been demonstrated to provide digital communication services with very high spectral efficiency and significantly improved performance. Orthogonal Frequency Division Multiplexing (OFDM) systems have been increasingly deployed in mobile networks for their spectral efficiency and optimum bit error rate. An OFDM system is a multi-carrier system which transmits signals from a single source at different frequencies simultaneously as parallel components. A distinguishing feature of the OFDM system is its ability to preserve high bandwidth efficiency in high speed data streams. Among the different types of OFDM systems, wavelet based systems have been demonstrated to have much better bandwidth and channel performance compared to the Discrete Fourier transform (DFT) and Discrete Cosine Transform (DCT) based systems. The DFT and DCT systems suffer from several disadvantages including less bandwidth efficiency due 'to the need for guard interval and highly complex system design. Discrete Wavelet transform (DWT) based OFDM systems naturally overcome these disadvantages by their design methodology and the technique of transmitting concentrated energy over small spectral coefficients. Several types of modulation schemes such as DPSK, QAM are employed in OFDM systems, which introduce certain penalties such as increased bandwidth and complexity of the system design. So a multilevel differential modulation technique namely Differential Amplitude and Phase Shift Keying (64 DAPSK) has been proposed as an alternative solution. DAPSK-OFDM is very suitable for high date-rate digital mobile radio channel with additive white Gaussian noise (A WGN). In this research work it has been f demonstrated that a combination of DWT -OFDM with DAPSK modulation can be employed to achieve very low peak-to-average power ratio (PAPR), improved bit error ratio (BER), and much reduced inter symbol interference (ISI) & inter-carrier interference (IeI) in wireless mobile network applications. A mathematical model has been proposed for the DWT-OFDM system with DAPSK modulation scheme in this work. The system performance has been evaluated via simulation using Matlab Simulink package and also verified using Matlab programming. This proposed DWT-OFDM with 64DAPSK hybrid system is demonstrated to have better BER (by an order of magnitude for an SNR of 25dB) performance and improved P APR (by 7.2dB) and interference values. It is also demonstrated that including companding with this system results in further reduction of PAPR. Finally, the simulation results also demonstrate that DWT-DAPSK scheme can be successfully employed in DVTB-T2 systems due to its very high spectral efficiency, much improved BER and significantly reduced PAPR performance

    On PAPR Reduction Techniques in Mobile WiMAX

    Get PDF
    corecore