1,545 research outputs found

    A Global Approach for Solving Edge-Matching Puzzles

    Full text link
    We consider apictorial edge-matching puzzles, in which the goal is to arrange a collection of puzzle pieces with colored edges so that the colors match along the edges of adjacent pieces. We devise an algebraic representation for this problem and provide conditions under which it exactly characterizes a puzzle. Using the new representation, we recast the combinatorial, discrete problem of solving puzzles as a global, polynomial system of equations with continuous variables. We further propose new algorithms for generating approximate solutions to the continuous problem by solving a sequence of convex relaxations

    matching, interpolation, and approximation ; a survey

    Get PDF
    In this survey we consider geometric techniques which have been used to measure the similarity or distance between shapes, as well as to approximate shapes, or interpolate between shapes. Shape is a modality which plays a key role in many disciplines, ranging from computer vision to molecular biology. We focus on algorithmic techniques based on computational geometry that have been developed for shape matching, simplification, and morphing

    Deterministic Sparse Pattern Matching via the Baur-Strassen Theorem

    Full text link
    How fast can you test whether a constellation of stars appears in the night sky? This question can be modeled as the computational problem of testing whether a set of points PP can be moved into (or close to) another set QQ under some prescribed group of transformations. Consider, as a simple representative, the following problem: Given two sets of at most nn integers P,Q[N]P,Q\subseteq[N], determine whether there is some shift ss such that PP shifted by ss is a subset of QQ, i.e., P+s={p+s:pP}QP+s=\{p+s:p\in P\}\subseteq Q. This problem, to which we refer as the Constellation problem, can be solved in near-linear time O(nlogn)O(n\log n) by a Monte Carlo randomized algorithm [Cardoze, Schulman; FOCS'98] and time O(nlog2N)O(n\log^2 N) by a Las Vegas randomized algorithm [Cole, Hariharan; STOC'02]. Moreover, there is a deterministic algorithm running in time n2O(lognloglogN)n\cdot2^{O(\sqrt{\log n\log\log N})} [Chan, Lewenstein; STOC'15]. An interesting question left open by these previous works is whether Constellation is in deterministic near-linear time (i.e., with only polylogarithmic overhead). We answer this question positively by giving an n(logN)O(1)n\cdot(\log N)^{O(1)}-time deterministic algorithm for the Constellation problem. Our algorithm extends to various more complex Point Pattern Matching problems in higher dimensions, under translations and rigid motions, and possibly with mismatches, and also to a near-linear-time derandomization of the Sparse Wildcard Matching problem on strings. We find it particularly interesting how we obtain our deterministic algorithm. All previous algorithms are based on the same baseline idea, using additive hashing and the Fast Fourier Transform. In contrast, our algorithms are based on new ideas, involving a surprising blend of combinatorial and algebraic techniques. At the heart lies an innovative application of the Baur-Strassen theorem from algebraic complexity theory.Comment: Abstract shortened to fit arxiv requirement

    On characteristic points and approximate decision algorithms for the minimum Hausdorff distance

    No full text
    We investigate {\em approximate decision algorithms} for determining whether the minimum Hausdorff distance between two points sets (or between two sets of nonintersecting line segments) is at most ε\varepsilon.\def\eg{(\varepsilon/\gamma)} An approximate decision algorithm is a standard decision algorithm that answers {\sc yes} or {\sc no} except when ε\varepsilon is in an {\em indecision interval} where the algorithm is allowed to answer {\sc don't know}. We present algorithms with indecision interval [δγ,δ+γ][\delta-\gamma,\delta+\gamma] where δ\delta is the minimum Hausdorff distance and γ\gamma can be chosen by the user. In other words, we can make our algorithm as accurate as desired by choosing an appropriate γ\gamma. For two sets of points (or two sets of nonintersecting lines) with respective cardinalities mm and nn our approximate decision algorithms run in time O(\eg^2(m+n)\log(mn)) for Hausdorff distance under translation, and in time O(\eg^2mn\log(mn)) for Hausdorff distance under Euclidean motion

    Solving Jigsaw Puzzles By the Graph Connection Laplacian

    Full text link
    We propose a novel mathematical framework to address the problem of automatically solving large jigsaw puzzles. This problem assumes a large image, which is cut into equal square pieces that are arbitrarily rotated and shuffled, and asks to recover the original image given the transformed pieces. The main contribution of this work is a method for recovering the rotations of the pieces when both shuffles and rotations are unknown. A major challenge of this procedure is estimating the graph connection Laplacian without the knowledge of shuffles. We guarantee some robustness of the latter estimate to measurement errors. A careful combination of our proposed method for estimating rotations with any existing method for estimating shuffles results in a practical solution for the jigsaw puzzle problem. Numerical experiments demonstrate the competitive accuracy of this solution, its robustness to corruption and its computational advantage for large puzzles

    Partitioning de Bruijn Graphs into Fixed-Length Cycles for Robot Identification and Tracking

    Full text link
    We propose a new camera-based method of robot identification, tracking and orientation estimation. The system utilises coloured lights mounted in a circle around each robot to create unique colour sequences that are observed by a camera. The number of robots that can be uniquely identified is limited by the number of colours available, qq, the number of lights on each robot, kk, and the number of consecutive lights the camera can see, \ell. For a given set of parameters, we would like to maximise the number of robots that we can use. We model this as a combinatorial problem and show that it is equivalent to finding the maximum number of disjoint kk-cycles in the de Bruijn graph dB(q,)\text{dB}(q,\ell). We provide several existence results that give the maximum number of cycles in dB(q,)\text{dB}(q,\ell) in various cases. For example, we give an optimal solution when k=q1k=q^{\ell-1}. Another construction yields many cycles in larger de Bruijn graphs using cycles from smaller de Bruijn graphs: if dB(q,)\text{dB}(q,\ell) can be partitioned into kk-cycles, then dB(q,)\text{dB}(q,\ell) can be partitioned into tktk-cycles for any divisor tt of kk. The methods used are based on finite field algebra and the combinatorics of words.Comment: 16 pages, 4 figures. Accepted for publication in Discrete Applied Mathematic
    corecore