6,671 research outputs found

    Combinatorial limitations of average-radius list-decoding

    Full text link
    We study certain combinatorial aspects of list-decoding, motivated by the exponential gap between the known upper bound (of O(1/γ)O(1/\gamma)) and lower bound (of Ωp(log(1/γ))\Omega_p(\log (1/\gamma))) for the list-size needed to decode up to radius pp with rate γ\gamma away from capacity, i.e., 1-\h(p)-\gamma (here p(0,1/2)p\in (0,1/2) and γ>0\gamma > 0). Our main result is the following: We prove that in any binary code C{0,1}nC \subseteq \{0,1\}^n of rate 1-\h(p)-\gamma, there must exist a set LC\mathcal{L} \subset C of Ωp(1/γ)\Omega_p(1/\sqrt{\gamma}) codewords such that the average distance of the points in L\mathcal{L} from their centroid is at most pnpn. In other words, there must exist Ωp(1/γ)\Omega_p(1/\sqrt{\gamma}) codewords with low "average radius." The standard notion of list-decoding corresponds to working with the maximum distance of a collection of codewords from a center instead of average distance. The average-radius form is in itself quite natural and is implied by the classical Johnson bound. The remaining results concern the standard notion of list-decoding, and help clarify the combinatorial landscape of list-decoding: 1. We give a short simple proof, over all fixed alphabets, of the above-mentioned Ωp(log(γ))\Omega_p(\log (\gamma)) lower bound. Earlier, this bound followed from a complicated, more general result of Blinovsky. 2. We show that one {\em cannot} improve the Ωp(log(1/γ))\Omega_p(\log (1/\gamma)) lower bound via techniques based on identifying the zero-rate regime for list decoding of constant-weight codes. 3. We show a "reverse connection" showing that constant-weight codes for list decoding imply general codes for list decoding with higher rate. 4. We give simple second moment based proofs of tight (up to constant factors) lower bounds on the list-size needed for list decoding random codes and random linear codes from errors as well as erasures.Comment: 28 pages. Extended abstract in RANDOM 201

    Near-Optimal Noisy Group Testing via Separate Decoding of Items

    Get PDF
    The group testing problem consists of determining a small set of defective items from a larger set of items based on a number of tests, and is relevant in applications such as medical testing, communication protocols, pattern matching, and more. In this paper, we revisit an efficient algorithm for noisy group testing in which each item is decoded separately (Malyutov and Mateev, 1980), and develop novel performance guarantees via an information-theoretic framework for general noise models. For the special cases of no noise and symmetric noise, we find that the asymptotic number of tests required for vanishing error probability is within a factor log20.7\log 2 \approx 0.7 of the information-theoretic optimum at low sparsity levels, and that with a small fraction of allowed incorrectly decoded items, this guarantee extends to all sublinear sparsity levels. In addition, we provide a converse bound showing that if one tries to move slightly beyond our low-sparsity achievability threshold using separate decoding of items and i.i.d. randomized testing, the average number of items decoded incorrectly approaches that of a trivial decoder.Comment: Submitted to IEEE Journal of Selected Topics in Signal Processin

    Lower bounds for constant query affine-invariant LCCs and LTCs

    Get PDF
    Affine-invariant codes are codes whose coordinates form a vector space over a finite field and which are invariant under affine transformations of the coordinate space. They form a natural, well-studied class of codes; they include popular codes such as Reed-Muller and Reed-Solomon. A particularly appealing feature of affine-invariant codes is that they seem well-suited to admit local correctors and testers. In this work, we give lower bounds on the length of locally correctable and locally testable affine-invariant codes with constant query complexity. We show that if a code CΣKn\mathcal{C} \subset \Sigma^{\mathbb{K}^n} is an rr-query locally correctable code (LCC), where K\mathbb{K} is a finite field and Σ\Sigma is a finite alphabet, then the number of codewords in C\mathcal{C} is at most exp(OK,r,Σ(nr1))\exp(O_{\mathbb{K}, r, |\Sigma|}(n^{r-1})). Also, we show that if CΣKn\mathcal{C} \subset \Sigma^{\mathbb{K}^n} is an rr-query locally testable code (LTC), then the number of codewords in C\mathcal{C} is at most exp(OK,r,Σ(nr2))\exp(O_{\mathbb{K}, r, |\Sigma|}(n^{r-2})). The dependence on nn in these bounds is tight for constant-query LCCs/LTCs, since Guo, Kopparty and Sudan (ITCS `13) construct affine-invariant codes via lifting that have the same asymptotic tradeoffs. Note that our result holds for non-linear codes, whereas previously, Ben-Sasson and Sudan (RANDOM `11) assumed linearity to derive similar results. Our analysis uses higher-order Fourier analysis. In particular, we show that the codewords corresponding to an affine-invariant LCC/LTC must be far from each other with respect to Gowers norm of an appropriate order. This then allows us to bound the number of codewords, using known decomposition theorems which approximate any bounded function in terms of a finite number of low-degree non-classical polynomials, upto a small error in the Gowers norm

    List-Decoding Homomorphism Codes with Arbitrary Codomains

    Get PDF
    The codewords of the homomorphism code aHom(G,H) are the affine homomorphisms between two finite groups, G and H, generalizing Hadamard codes. Following the work of Goldreich-Levin (1989), Grigorescu et al. (2006), Dinur et al. (2008), and Guo and Sudan (2014), we further expand the range of groups for which local list-decoding is possible up to mindist, the minimum distance of the code. In particular, for the first time, we do not require either G or H to be solvable. Specifically, we demonstrate a poly(1/epsilon) bound on the list size, i. e., on the number of codewords within distance (mindist-epsilon) from any received word, when G is either abelian or an alternating group, and H is an arbitrary (finite or infinite) group. We conjecture that a similar bound holds for all finite simple groups as domains; the alternating groups serve as the first test case. The abelian vs. arbitrary result permits us to adapt previous techniques to obtain efficient local list-decoding for this case. We also obtain efficient local list-decoding for the permutation representations of alternating groups (the codomain is a symmetric group) under the restriction that the domain G=A_n is paired with codomain H=S_m satisfying m < 2^{n-1}/sqrt{n}. The limitations on the codomain in the latter case arise from severe technical difficulties stemming from the need to solve the homomorphism extension (HomExt) problem in certain cases; these are addressed in a separate paper (Wuu 2018). We introduce an intermediate "semi-algorithmic" model we call Certificate List-Decoding that bypasses the HomExt bottleneck and works in the alternating vs. arbitrary setting. A certificate list-decoder produces partial homomorphisms that uniquely extend to the homomorphisms in the list. A homomorphism extender applied to a list of certificates yields the desired list

    Derandomized Parallel Repetition via Structured PCPs

    Full text link
    A PCP is a proof system for NP in which the proof can be checked by a probabilistic verifier. The verifier is only allowed to read a very small portion of the proof, and in return is allowed to err with some bounded probability. The probability that the verifier accepts a false proof is called the soundness error, and is an important parameter of a PCP system that one seeks to minimize. Constructing PCPs with sub-constant soundness error and, at the same time, a minimal number of queries into the proof (namely two) is especially important due to applications for inapproximability. In this work we construct such PCP verifiers, i.e., PCPs that make only two queries and have sub-constant soundness error. Our construction can be viewed as a combinatorial alternative to the "manifold vs. point" construction, which is the only construction in the literature for this parameter range. The "manifold vs. point" PCP is based on a low degree test, while our construction is based on a direct product test. We also extend our construction to yield a decodable PCP (dPCP) with the same parameters. By plugging in this dPCP into the scheme of Dinur and Harsha (FOCS 2009) one gets an alternative construction of the result of Moshkovitz and Raz (FOCS 2008), namely: a construction of two-query PCPs with small soundness error and small alphabet size. Our construction of a PCP is based on extending the derandomized direct product test of Impagliazzo, Kabanets and Wigderson (STOC 09) to a derandomized parallel repetition theorem. More accurately, our PCP construction is obtained in two steps. We first prove a derandomized parallel repetition theorem for specially structured PCPs. Then, we show that any PCP can be transformed into one that has the required structure, by embedding it on a de-Bruijn graph
    corecore