
Near-Optimal Noisy Group Testing

via Separate Decoding of Items

Jonathan Scarlett

National University of Singapore

scarlett@comp.nus.edu.sg

Volkan Cevher

LIONS, EPFL

volkan.cevher@epfl.ch

Abstract—In this paper, we revisit an efficient algorithm for
noisy group testing in which each item is decoded separately
(Malyutov and Mateev, 1980), and develop novel performance
guarantees via an information-theoretic framework for general
noise models. For the noiseless and symmetric noise models, we
find that the asymptotic number of tests required for vanishing
error probability is within a factor log 2 ≈ 0.7 of the information-
theoretic optimum at low sparsity levels, and that when a small
fraction of incorrectly-decoded items is allowed, this guarantee
extends to all sublinear sparsity levels. In many scaling regimes,
these are the best known theoretical guarantees for any noisy
group testing algorithm.

I. INTRODUCTION

In this paper, we consider the group testing problem [1], in

which one seeks to determine a small subset S of “defective”

items within a larger set of items {1, . . . , p} based on a number

of tests. In the noiseless setting, each test takes the form

Y =
∨

i∈S

Xi, (1)

where the test vector X = (X1, . . . , Xp) ∈ {0, 1}p indicates

which items are included in the test, and Y is the resulting

observation. That is, the output indicates whether at least

one defective item was included in the test. One wishes to

minimize the total number of tests n while still ensuring the

reliable recovery of S.

We let the defective set S be uniform on the
(

p
k

)

subsets

of {1, . . . , p} of cardinality k. For convenience, we will

sometimes equivalently refer to a vector β ∈ {0, 1}p whose

j-th entry indicates whether or not item j is defective:

βj = 1{j ∈ S}. (2)

We consider i.i.d. Bernoulli testing, where each item is placed

in a given test independently with probability ν
k

for some

constant ν > 0. The vector of n observations is denoted

by Y ∈ {0, 1}n, and the corresponding measurement matrix

(each row of which contains a single measurement vector

X = (X1, . . . , Xp)) is denoted by X ∈ {0, 1}n×p.

Generalizing (1), we consider a broad class of noisy group

testing models. Denoting the i-th entry of Y by Y (i) and the

i-th row of X by X(i), the measurement model is given by

(Y (i)|X(i)) ∼ PY |N(S,X(i)), (3)

where N(S,X(i)) =
∑p

j=1 1{j ∈ S ∩ X
(i)
j = 1} denotes

the number of defective items in the test. That is, we consider

arbitrary noise distributions PY |N for which Y (i) depends on

X(i) only through N(S,X(i)), with conditional independence

among the tests i = 1, . . . , n. For each item j = 1, . . . , p, the

j-th column of X is written as Xj ∈ {0, 1}n.

While most of our results will be written in terms of general

noise models of the form (3), we also pay particular attention

to two specific models: The noiseless model in (1), and the

symmetric noise model with parameter ρ > 0:

Y =
(

∨

i∈S

Xi

)

⊕ Z, (4)

where Z ∼ Bernoulli(ρ), and ⊕ denotes modulo-2 addition.

Given X and Y, a decoder forms an estimate Ŝ of S,

or equivalently, an estimate β̂ of β. We consider two related

performance measures. In the case of exact recovery, the error

probability is given by

Pe := P[Ŝ 6= S], (5)

and is taken over the realizations of S, X, and Y (the decoder

is assumed to be deterministic). In addition, we consider a less

stringent performance criterion in which we allow for up to

dpos ∈ {0, . . . , p−k−1} false positives and dneg ∈ {0, . . . , k−
1} false negatives, yielding an error probability of

Pe(dpos, dneg) := P
[

|Ŝ\S| > dpos ∪ |S\Ŝ| > dneg
]

. (6)

A. Separate Decoding of Items

In this paper, we study a decoding method introduced in

an early work of Malyutov and Mateev [5] (see also [6], [7]),

which we refer to as separate decoding of items. Specifically,

we adopt this terminology to mean any decoding scheme in

which β̂j is only a function of Xj and Y, i.e.,

β̂j = φj(Xj ,Y), j = 1, . . . , p (7)

for some functions {φj}
p
j=1. All of our results will choose

φj not depending on j; more specifically, following [5], each

decoder is of the following form for some γ > 0:1

φj(Xj ,Y) = 1

{ n
∑

i=1

log
PY |Xj ,βj

(Y (i)|X
(i)
j , 1)

PY (Y (i))
> γ

}

, (8)

1Here and subsequently, the function log(·) has base e, and the correspond-
ing information quantities are in units of nats.
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II. ACHIEVABILITY RESULTS WITH EXACT RECOVERY

In this section, we develop the theoretical results for exact

recovery leading to the asymptotic bounds for the noiseless

and noisy settings in shown Figure 1. To do this, we first

establish non-asymptotic bounds on the error probability, then

present the tools for performing an asymptotic analysis, and

finally give the details of the applications to specific models.

A. Additional Notation

We define some further notation in addition to that in the

introduction. Our analysis will apply for any given choice of

the defective set S, due to the symmetry of the observation

model (3) and the i.i.d. test matrix X. Hence, throughout this

section we will focus on the specific set S = {1, . . . , k}. In

particular, we assume that item 1 is defective, and we define

PY |X1
accordingly:

PY |X1
(y|x1) = PY |X1,β1

(y|x1, 1). (11)

Hence, the summation in (8) can be written as

ın1 (Xj ,Y) :=

n
∑

i=1

ı1(X
(i)
j , Y (i)), (12)

where

ı1(x1, y) := log
PY |X1

(y|x1)

PY (y)
. (13)

Following the terminology of the channel coding literature

[20]–[22], we refer to this quantity as the information den-

sity. Denoting the distribution of a single entry of X by

PX ∼ Bernoulli
(

ν
k

)

, we find that the average of (13) with

respect to (X1, Y ) ∼ PX × PY |X1
is the mutual information

I1 in (10). With the above distributions in place, we define

Pn
X(x1) =

∏n
i=1 PX(x

(i)
1 ), Pn

Y (y) =
∏n

i=1 PY (y
(i)), and

Pn
Y |X1

(y|x1) =
∏n

i=1 PY |X1
(y(i)|x

(i)
1 ).

When we specialize our results to the noiseless and sym-

metric noise models, we will choose

ν = νsymm :=

{

unique value such that

(

1−
ν

k

)k

=
1

2

}

(14)

= (log 2)(1 + o(1)). (15)

For k → ∞ (as we consider), there is essentially no difference

between setting ν = νsymm or ν = log 2, but we found the

former to be slightly more convenient mathematically.

B. Initial Non-Asymptotic Bound

The following theorem provides an initial non-asymptotic

upper bound on the error probability for general models. The

result is proved using simple thresholding techniques that

appeared in early studies of channel coding [23], [24], and

have also been applied previously in the context of group

testing [5], [8], [11].

Theorem 1. (Non-asymptotic, exact recovery) For a general

group testing model with with Bernoulli
(

ν
k

)

testing and sep-

arate decoding of items according to (8), we have

Pe ≤ kP[ın1 (X1,Y) ≤ γ] + (p− k)e−γ , (16)

where (X1,Y) ∼ Pn
X(x1)P

n
Y |X1

(y|x1), and γ is as in (8).

Proof. For the exact recovery criterion, correct decoding re-

quires the k defective items to pass the threshold test, and the

p− k non-defective items to fail the threshold test. Hence, by

the union bound, we have

Pe ≤ kP[ın1 (X1,Y) ≤ γ] + (p− k)P[ın1 (X1,Y) > γ], (17)

where (X1,Y,X1) ∼ Pn
X(x1)P

n
Y |X1

(y|x1)P
n
X(x1), i.e., X1

is an independent copy of X1 (recall that the columns of X

are i.i.d.). We bound the second term by writing

P[ın1 (X1,Y) > γ]

=
∑

x1,y

Pn
X(x1)P

n
Y (y)1

{

log
Pn
Y |X1

(y|x1)

Pn
Y (y)

> γ

}

(18)

≤
∑

x1,y

Pn
X(x1)P

n
Y |X(y|x1)e

−γ (19)

= e−γ , (20)

where (18) follows from the preceding joint distribution and

the definition of ın1 , and (20) bounds Pn
Y (y) according to the

event in the indicator function, and then bounds the indicator

function by one. Combining (17) and (20) completes the proof.

C. Asymptotic Analysis

In order to apply Theorem 1, we need to characterize the

probability appearing in the first term. The idea is to exploit

the fact that ın1 (X1,Y) is an i.i.d. sum, and hence concentrates

around its mean. While the following corollary is essentially

a simple rewriting of Theorem 1, it makes the application

of such concentration bounds more transparent Here and

subsequently, asymptotic notation such as →, o(·), O(·) is with

respect to p→ ∞, and we assume that k → ∞ with k = o(p).

Theorem 2. (Asymptotic bound, exact recovery) Under the

setup of Theorem 1, suppose that the information density

satisfies a concentration inequality of the following form:

P[ın1 (X1,Y) ≤ nI1(1− δ2)] ≤ ψn(δ2) (21)

for some function ψn(δ2). Moreover, suppose that the follow-

ing conditions hold for some δ1 → 0 and δ2 > 0:

n ≥
log

(

1
δ1
(p− k)

)

I1(1− δ2)
(22)

k · ψn(δ2) → 0. (23)

Then Pe → 0 under the decoder in (8) with γ = log p−k
δ1

.

Proof. Setting γ = log p−k
δ1

in Theorem 1, we obtain

Pe ≤ kP

[

ın1 (X1,Y) ≤ log
p− k

δ1

]

+ δ1, (24)

By the condition in (22), the probability in (24) is upper

bounded by P[ın1 (X1,Y) ≤ nI1(1 − δ2)], which in turn is

upper bounded by ψn(δ2) by (21). We therefore have from

(24) that Pe ≤ kψn(δ2) + δ1, and hence the theorem follows

from the assumption δ1 → 0 along with (23).



D. Concentration Bounds

In order to apply Theorem 2 to specific models, we need

to characterize the concentration of ın1 (X1,Y) and attain an

explicit expression for ψn(δ2) therein. The following lemma

brings us one step closer to attaining explicit expressions,

giving a general concentration result based on Bernstein’s

inequality [25, Ch. 2].

Lemma 1. (Concentration via Bernstein’s inequality) Defining

cmean := kE[ı(X1, Y )] = kI1 (25)

cvar := kVar[ı(X1, Y )] (26)

cmax := max
x1,y

∣

∣ı(x1, y)
∣

∣, (27)

we have for any δ2 > 0 that

P

[

∣

∣ın1 (X1,Y)− nI1
∣

∣ ≤ nδ2

]

≤ 2 exp

(

− 1
2 · n

k
· c2meanδ

2
2

cvar +
1
3cmeancmaxδ2

)

(28)

We will use Lemma 1 to establish the results shown for the

symmetric noise model in Figure 1 (Right). While we could

also use Lemma 1 for the noiseless model, it turns out that

we can in fact do better via the following.

Lemma 2. (Concentration for noiseless model) Under the

noiseless model with ν = νsymm (cf., (14)), we have for any

δ2 ∈ (0, 1) that

P[ın1 (X1,Y) ≤ nI1(1− δ2)] ≤ exp

(

−
n(log 2)2

k

×
(

(1− δ2) log(1− δ2) + δ2

)

(1 + o(1))

)

(29)

as p→ ∞ and k → ∞ simultaneously.

The proofs of the preceding lemmas can be found in the full

version [26], and are based on Bernstein’s inequality (Lemma

1) and the multiplicative Chernoff bound (Lemma 2).

E. Applications to Specific Models

Noiseless model: For the noiseless group testing model (cf.,

(1)), we immediately obtain the following from Theorem 2

and Lemma 2.

Corollary 1. (Noiseless, exact recovery) For the noiseless

group testing problem with ν = νsymm (cf., (14)) and

k = Θ(pθ) for some θ ∈ (0, 1), we can achieve Pe → 0
with separate decoding of items provided that

n ≥ min
δ2>0

max

{

k log p

(log 2)2(1− δ2)
,

k log k

(log 2)2
(

(1− δ2) log(1− δ2) + δ2
)

}

(1 + η) (30)

for some η > 0.

Proof. It is known that I1 = (log 2)2

k
(1+o(1)) [10], and hence

the first term in (30) follows from (22) with δ1 → 0 sufficiently

slowly. Moreover, by equating ψn(δ2) with the right-hand side

of (29) and performing simple rearranging, we find that the

second term in (30) follows from (23).

Symmetric noise model: For the symmetric noisy model (cf.,

(1)), we make use of Lemma 1, with the constants cmean, cvar
and cmax therein characterized in the following. Here H2 is

the binary entropy function in nats.

Lemma 3. (Bernstein parameters for symmetric noise) Under

the symmetric noise model with a fixed parameter ρ ∈
(

0, 12
)

(not depending on p) and ν = νsymm (cf., (14)), we have

kE[ı(X1, Y )] = (log 2)
(

log 2−H2(ρ)
)

(1 + o(1)) (31)

kVar[ı(X1, Y )] ≤ (log 2)

(

(1− ρ) log2
(

2(1− ρ)
)

+ ρ log2(2ρ)

)

(1 + o(1)) (32)

max
x1,y

∣

∣ı(x1, y)
∣

∣ = log
1

2ρ
(33)

as p→ ∞ and k → ∞ simultaneously.

The proof is based on directly analyzing the information

density, and can be found in [26]. From this lemma, we

immediately obtain the following.

Corollary 2. (Symmetric noise, exact recovery) For noisy

group testing with ρ ∈
(

0, 12
)

(not depending on p), ν =
νsymm, and k = Θ(pθ) for some θ ∈ (0, 1), we can achieve

Pe → 0 with separate decoding of items provided that

n ≥ min
δ2>0

max

{

k log p

(log 2)(log 2−H2(ρ))(1− δ2)
,

(k log k) ·
(

cvar +
1
3cmeancmaxδ2

)

1
2 · c2meanδ

2
2

}

(1 + η) (34)

for some η > 0, where cmean, cvar, and cmax are respectively

given by the right-hand sides of (31)–(33).

Other noise models: While we specifically applied Lemma

1 to the symmetric noise model, it can also be applied more

generally, yielding an analogous result for any model in which

the quantities cmean, cvar, and cmax in (25)–(27) behave as

Θ(1). In particular, for any such model and any fixed ν > 0,

in the limit as θ → 0, it suffices to have

n ≥
log p

I1
(1 + η) =

k log p

cmean
(1 + η), (35)

for arbitrarily small η > 0. In contrast, for θ strictly greater

than zero, the conditions on n resulting from Bernstein’s

inequality may dominate (35), similarly to Corollary 2.

III. OUTLINE OF EXTENSIONS TO PARTIAL RECOVERY

Due to space constraints, we provide only an outline of

the extension of the preceding analysis to partial recovery,

where false positives and/or false negatives are allowed. The

full details can be found in [26].



The main tool we need is the following, whose proof is in

fact implicit in our analysis for the exact recovery criterion.

Lemma 4. (Auxiliary result for partial recovery) For any

group testing model of the form (3), under the decoder in

(8) with threshold γ > 0, we have the following:

(i) For any j /∈ S, the probability of passing the threshold

test is upper bounded by e−γ .

(ii) Suppose that the information density satisfies a concen-

tration inequality of the form (21) for some function ψn(δ2),
and that the number of tests satisfies n ≥ γ

I1(1−δ2)
. Then for

any j ∈ S, the probability of failing the threshold test is upper

bounded by ψn(δ2).

Letting Npos and Nneg denote the number of false positives

and false negatives, we note that the analysis of exact recovery

shows that E[Npos] and E[Nneg] behave as o(1), from which

Markov’s inequality implies that the probability of any false

positives or negatives vanishes. Instead, when Θ(k) false

positives are allowed, we simply show that E[Npos] = o(k),
and use Markov’s inequality to conclude that the probability of

having Θ(k) false positives tends to zero. The same argument

is used when Θ(k) false negatives are allowed.

Using the the first part of Lemma 4, we find that obtaining

E[Npos] = o(k) instead of the stricter E[Npos] = o(1)
amounts to replacing log p−k

δ1
by log p−k

kδ1
in (22). Moreover,

using the second part of Lemma 4, we find that obtaining

E[Nneg] = o(k) instead of the stricter E[Nneg] = o(1)
amounts to replacing the requirement k · ψn(δ2) → 0 by

ψn(δ2) → 0 in (23).

Consequently, with false positives we can replace k log p
by k log p

k
in the first terms of (30) and (34), and with false

negatives, we can remove the second terms therein. Generally,

when both false positives and false negatives are allowed, we

have the following simple corollary.

Corollary 3. (General noise models, partial recovery) For

any group testing model such that the quantities cmean, cvar,
and cmax in (25)–(27) behave as Θ(1), we can achieve

Pe(dpos, dneg) → 0 with separate decoding provided that

dpos = Θ(k), dneg = Θ(k), and

n ≥
log p

k

I1
(1 + η) =

k log p
k

cmean
(1 + η) (36)

for some η > 0.

Hence, while we only obtained the threshold on the right-

hand side of (36) in the limit θ → 0 under exact recovery (see

(35)), when we allow a small fraction of false positives and

false negatives, this extends to all sublinear sparsity levels. We

again refer to the examples in Figure 1, where we are within

a factor log 2 of the optimal information-theoretic threshold.

To our knowledge, these partial recovery guarantees are the

best known for any practical group testing algorithm for all

θ ∈ (0, 1), in both the noiseless and symmetric noise settings.
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