
List-Decoding Homomorphism Codes with
Arbitrary Codomains
László Babai1

University of Chicago, Chicago IL, USA
laci@cs.uchicago.edu

https://orcid.org/0000-0002-2058-685X

Timothy J. F. Black2

University of Chicago, Chicago IL, USA
timblack@math.uchicago.edu

https://orcid.org/0000-0003-2469-9867

Angela Wuu3

University of Chicago, Chicago IL, USA
wu@math.uchicago.edu

Abstract
The codewords of the homomorphism code aHom(G,H) are the affine homomorphisms between
two finite groups, G and H, generalizing Hadamard codes. Following the work of Goldreich–
Levin (1989), Grigorescu et al. (2006), Dinur et al. (2008), and Guo and Sudan (2014), we
further expand the range of groups for which local list-decoding is possible up to mindist, the
minimum distance of the code. In particular, for the first time, we do not require either G
or H to be solvable. Specifically, we demonstrate a poly(1/ε) bound on the list size, i. e.,
on the number of codewords within distance (mindist − ε) from any received word, when G is
either abelian or an alternating group, and H is an arbitrary (finite or infinite) group. We
conjecture that a similar bound holds for all finite simple groups as domains; the alternating
groups serve as the first test case.

The abelian vs. arbitrary result permits us to adapt previous techniques to obtain efficient
local list-decoding for this case. We also obtain efficient local list-decoding for the permutation
representations of alternating groups (the codomain is a symmetric group) under the restriction
that the domain G = An is paired with codomain H = Sm satisfying m < 2n−1/

√
n.

The limitations on the codomain in the latter case arise from severe technical difficulties
stemming from the need to solve the homomorphism extension (HomExt) problem in certain
cases; these are addressed in a separate paper (Wuu 2018).

We introduce an intermediate “semi-algorithmic” model we call Certificate List-Decoding
that bypasses the HomExt bottleneck and works in the alternating vs. arbitrary setting. A certi-
ficate list-decoder produces partial homomorphisms that uniquely extend to the homomorphisms
in the list. A homomorphism extender applied to a list of certificates yields the desired list.

2012 ACM Subject Classification Mathematics of computing → Coding theory, Mathematics
of computing → Probabilistic algorithms

Keywords and phrases Error-correcting codes, Local algorithms, Local list-decoding, Finite
groups, Homomorphism codes

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2018.29

Related Version A full version of this paper appears on arXiv [4], https://arxiv.org/abs/
1806.02969.

1 Partially supported by NSF Grants CCF 1423309 and CCF 1718902. The views expressed in the paper
are those of the authors and do not necessarily reflect the views of the NSF.

2 Partially supported by L. Babai’s cited NSF grants.
3 Partially supported by L. Babai’s cited NSF grants.

© László Babai, Timothy J. F. Black, and Angela Wuu;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2018).
Editors: Eric Blais, Klaus Jansen, José D. P. Rolim, and David Steurer; Article No. 29; pp. 29:1–29:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/160477875?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:laci@cs.uchicago.edu
https://orcid.org/0000-0002-2058-685X
mailto:timblack@math.uchicago.edu
https://orcid.org/0000-0003-2469-9867
mailto:wu@math.uchicago.edu
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.29
https://arxiv.org/abs/1806.02969
https://arxiv.org/abs/1806.02969
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


29:2 List-Decoding Homomorphism Codes with Arbitrary Codomains

1 Introduction

1.1 Brief history

Let G and H be finite groups, to be referred to as the domain and the codomain, respectively.
A map ψ : G→ H is an affine homomorphism if

(∀a, b, c ∈ G)(ψ(a)ψ(b)−1ψ(c) = ψ(ab−1c)) . (1)

Equivalently, ψ is a translate of a homomorphism, i. e., there exists a homomorphism
ϕ : G→ H and an element h ∈ H such that (∀g ∈ G)(ψ(g) = ϕ(g) ·h). We write Hom(G,H)
and aHom(G,H) to denote the set of homomorphisms and affine homomorphisms, respectively.
Let HG denote the set of all functions f : G→ H. We represent an (affine) homomorphism
ψ by the list of pairs (g, ψ(g)) for g ∈ S where S is a set of (affine) generators of G.

We view aHom(G,H) as a (nonlinear) code within the code space HG (the space of
possible “received words”) and refer to this class of codes as homomorphism codes.

Homomorphism codes are candidates for efficient local list-decoding up to minimum dis-
tance (mindist) and in many cases it is known that their minimum distance is (asymptotically)
equal to the list-decoding bound.

This line of work goes back to the celebrated paper by Goldreich and Levin (1989) [12]
who found local list-decoders for Hadamard codes, i. e., for homomorphism codes with domain
G = Zn2 and codomain H = Z2. This result was extended to homomorphism codes of abelian
groups (both the domain and the codomain abelian) by Grigorescu, Kopparty, and Sudan
(2006) [14] and Dinur, Grigorescu, Kopparty, and Sudan (2008) [10] and to the case of
supersolvable domain and nilpotent codomain by Guo and Sudan (2014) [16], cf. [9].

While homomorphism codes have low (logarithmic or worse) rates, they tend to have
remarkable list-decoding properties. In particular, in all cases studied so far (including
the present paper), for an arbitrary received word f ∈ HG, and any ε > 0, the number
of codewords within radius (mindist − ε) is bounded by poly(1/ε) (as opposed to some
faster-growing function of ε, as permitted in the theory of list-decoding). This is an essential
feature for the complexity-theoretic application (hard-core predicates) by Goldreich and
Levin. Let L denote the list of codewords within distance (mindist− ε) of the received word.

We call an |L| ≤ poly(1/ε) bound economical, and a class of homomorphism codes
permitting such a bound combinatorially economically list-decodable (CombEcon).
(With some abuse of the language, we shall talk about “a CombEcon code” in reference to
members of a class of codes defined by the context. We apply the analogous convention to
other asymptotic properties of classes of codes to be defined below as well.)

By efficient list-decoding we mean performing poly(log|G|, 1/ε) randomized queries to
the received word and performing poly(log|G|, log|H|, 1/ε) additional work to produce a
list of ≤ poly(1/ε) affine homomorphisms that includes all affine homomorphisms within
(mindist− ε) of the received word.

We call a CombEcon code AlgEcon (algorithmically economically list-decodable)
if it permits efficient decoding within radius (mindist− ε) in this sense. So the cited results
show that homomorphism codes with abelian domain and codomain, and more generally
with supersolvable domain and nilpotent codomain, are CombEcon and AlgEcon.

In all work on the subject, this efficiency depends on the computational representation of
the groups used (presentation in terms of generators and relators, black-box access, black-box
groups, permutation groups, matrix groups, etc.). We shall make the representation required
explicit in all algorithmic results.
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1.2 Our contributions
1.2.1 Combinatorial bounds
In this paper we further expand the range of groups for which efficient local list-decoding is
possible up to the minimum distance. In particular, for the first time, we do not require
either G or H to be solvable. In fact, in our combinatorial and semi-algorithmic results
(see below), the codomain is an arbitrary (finite or infinite) group. We say that a
class G of finite groups is universally CombEcon if for all G ∈ G and arbitrary (finite or
infinite) H, the code aHom(G,H) is CombEcon. This paper is the first to demonstrate the
existence of significant universally CombEcon classes.

I Convention 1. When speaking of a homomorphism code aHom(G,H), the domain G will
always be a finite group, but the codomain H will, in general, not be restricted to be finite.

I Theorem 2 (Main combinatorial result). Finite abelian and alternating groups are universally
CombEcon.

We explain this result in detail. By distance we mean normalized Hamming distance.

(Restatement of Theorem 2.) Let the domain G be a finite abelian or alternating group
and H an arbitrary (finite or infinite) group. Let mindist denote the minimum distance of
the homomorphism code aHom(G,H) and let ε > 0. Let f ∈ HG be an arbitrary received
word. Then the number of codewords within (mindist− ε) of f is at most poly(1/ε).
I Remark. We give two proofs of this result. The first proof is nonconstructive and is based
on a broadly applicable sphere packing argument (see Sec. 3.2). The second proof is more
closely based on the structure of the alternating groups and depends on a result about
random generation with extremely high probability (see Theorem 20). This approach yields a
very simple semi-algorithmic result (certificate list-decoding, see Sec. 1.2.3) and leads, using
deeper tools [21], to our main algorithmic result, Theorem 6.

For abelian domains we prove a bound of O(ε−C−5) on the length of the list, i. e., the
number of codewords within (mindist− ε) of the received word where O(ε−C) is the degree
in the corresponding {abelian→ abelian} bound. (Currently C ≈ 105 [16].) For alternating
domains we prove a bound of Õ(ε−7) on the length of the list.

Our choice of the alternating groups as the domain is our test case of what we believe is
a general phenomenon valid for all finite simple groups.

I Conjecture 3. The class of finite simple groups is universally CombEcon.

The following problem is also open.

I Problem 4. Is the class of all finite groups universally CombEcon?

We suspect the answer to be negative.
Let us say that the depth of a subgroup M in a group G is the length ` of the longest

subgroup chain M = M0 < M1 < · · · < M` = G. We say that a subgroup is shallow if it
has bounded depth.

Theorem 2 also holds for a hierarchy of wider classes of finite groups we call shallow
random generation groups or “SRG groups.” This hierarchy includes the class of alternating
groups. The defining feature of SRG groups is that a bounded number of random elements
generate, with extremely high probability, a shallow subgroup.

Our combinatorial tools allow us to play on the relatively well-understood top layers of
the subgroup lattice of the (alternating or SRG) domain, avoiding the dependence on the
codomain in the combinatorial and semi-algorithmic context.

APPROX/RANDOM 2018
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I Remark. Our results list-decode certain classes of codes up to distance (mindist− ε) for
positive ε. In many cases, mindist is the list-decoding boundary; examples show that the
length of the list may blow up when ε is set to zero. Classes of such examples with abelian
domain and codomain were found by Guo and Sudan [16]. We add classes of examples with
alternating domains (see Appendix B).

1.2.2 Algorithms
On the algorithmic front, the combinatorial bound in the {abelian→ arbitrary} case permits
us to adapt the algorithm of [14] to obtain efficient local list-decoding. We say that a class
G of finite groups is universally AlgEcon if for all G ∈ G and arbitrary finite H, the code
aHom(G,H) is AlgEcon. The validity of such a statement depends not only on the class G
but also on the representation of the domain and the codomain.

I Corollary 5. Let G be a finite abelian group and H an arbitrary finite group. Under
suitable assumptions on the representation of G and H, the homomorphism code aHom(G,H)
is AlgEcon.

In other words, abelian groups are universally AlgEcon.
We need to clarify the “suitable representation.” It suffices to have G in its primary

decomposition and to have black-box access to H. These concepts, and other options for G,
are discussed in Appendix A.

A permutation representation of degree m of a group G is a homomorphism G → Sm,
where the codomain is the symmetric group of degree m. We obtain efficient local list-
decoding for the permutation representations of alternating groups under a rather generous
restriction on the size of the permutation domain.

I Theorem 6 (Main algorithmic result). Let G = An be the alternating group of degree n
and H = Sm the symmetric group of degree m. Then aHom(G,H) is AlgEcon, assuming
m < 2n−1/

√
n.

The limitations on the codomain arise from the severe technical difficulties encountered.
In contrast to all previous work, in the alternating case the minimum distance does

not necessarily correspond to a subgroup of smallest index in the group G/N where N is
the “irrelevant kernel,” i. e., the intersection of the kernels of all G → H homomorphisms
(see Sec. C). This necessitates the introduction of the homomorphism extension (HomExt)
problem, a problem of interest in its own right, which remains the principal bottleneck for
algorithmic progress.

By a G → H partial map we mean a function γ : dom(γ) → H where dom(γ) ⊆ G.
The homomorphism extension problem HomExt asks whether a G→ H partial map
extends to a G → H homomorphism. The HomExtλ problem asks this only for maps γ
whose domain generates a subgroup of density µ(〈dom γ〉) > λ in G.

The HomExtλ problem was solved by Wuu [21] in the special case required for Theorem 6.

1.2.3 Certificate list-decoding
To bypass the HomExt bottleneck, we introduce a new model we call Certificate List-
Decoding. In this model the output is a short (poly(1/ε)-length) list of G → H partial
maps that includes, for each affine homomorphism ϕ within (mindist − ε) of the received
word, a certificate of ϕ, i. e., a partial affine homomorphism that uniquely extends to ϕ.
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We say that a homomorphism code is economically certificate-list-decodable (Cert-
Econ) if such a list can be efficiently generated.

Note that, by definition, AlgEcon =⇒ CertEcon =⇒ CombEcon.
We say that a class G of finite groups is universally CertEcon if for all G ∈ G and

arbitrary (finite or infinite) H, the code aHom(G,H) is CertEcon.

I Theorem 7 (Main semi-algorithmic result). Alternating groups are universally CertEcon.

In fact we show that SRG groups are universally CertEcon.
By the density of a partial map γ we mean the density of the subgroup 〈dom(γ)〉 in G.

A λ-certificate list-decoder produces partial maps of density ≥ λ. The HomExtλ problem
asks to solve HomExt for partial maps of density ≥ λ.

It is immediate that a λ-certificate list-decoder, combined with a HomExtλ solver,
suffices for list-decoding aHom(G,H). This is the route we take to proving Theorem 6.

For a received word f and an affine homomorphism ϕ within distance mindist− ε of f ,
a domain certificate of ϕ is a subset S of the domain such that f restricted to S is a
certificate of ϕ. Our semi-algorithmic results will actually produce lists of domain-certificates
without requiring any access to the codomain.

1.2.4 Mean-list-decoding and domain extension

We define the (G,H)-irrelevant kernel N as the intersection of the kernels of all G → H

homomorphisms. We show that if aHom(G/N,H) is CombEcon then so is aHom(G,H).
The corollaries include a CombEcon result for {arbitrary→ abelian} homomorphism codes

because of the known CombEcon result for {abelian→ abelian} homomorphism codes [10].
More generally we have a CombEcon result for {arbitrary→ nilpotent} homomorphism codes
in view of the CombEcon result for {nilpotent→ nilpotent} homomorphism codes [16, 9]).
Analogous results hold for CertEcon and AlgEcon under suitable assumptions on access to
the groups.

The main tool underlying these results is the notion of mean-list-decoding, where we study
not the distance to one received word but the average distance to a family of received words.
Our main result in this area establishes the equivalence of CombEcon for list-decoding and
mean-list-decoding; and analogous results for CertEcon and AlgEcon.

We discuss these results in some detail in Appendix C. The mean-list-decoding technique
was inspired by the concatenated code technique used in [16].

1.2.5 Hom versus aHom

The reader may ask, why we (and all prior work) consider affine homomorphisms rather than
homomorphisms. The reason is that affine homomorphisms are the more natural objects
in this context. First, this object is more homogeneous. For instance, for finite H, under
random affine homomorphisms, the image of any element g ∈ G is uniformly distributed
over H. This uniformity also serves as an inductive tool: when extending the domain from a
subgroup G0 to a group G, the action of any homomorphism ϕ ∈ Hom(G,H) can be split
into actions on the cosets of G0 in G. Those actions are affine homomorphisms. On the other
hand we also note that list-decoding Hom(G,H) and aHom(G,H) are essentially equivalent
tasks.

APPROX/RANDOM 2018



29:6 List-Decoding Homomorphism Codes with Arbitrary Codomains

I Proposition 8 (Hom versus aHom). Let G be a finite group, and H a group.
(a) [15, Prop. 2.5] If |Hom(G,H)| ≥ 2, then mindist(Hom(G,H)) = mindist(aHom(G,H)).
(b) For X ∈ {Comb,Cert,Alg}, if Hom(G,H) is XEcon then aHom(G,H) is XEcon. For

X ∈ {Cert,Alg}, this statement requires that nearly uniform random elements of G be
available.

I Remark. The length of the aHom list for distance mindist−ε is not greater than 1
1−mindist+ε

times the length of the Hom list.

2 Notation and terminology

2.1 Group theoretic notation
Our general group theory reference is [19]. For the theory of permutation groups we refer to
[11].

For finite sets B ⊆ A where A 6= ∅, we write µ(B) = µA(B) = |B|/|A| for the density of
B in A. We use the notation [n] = {1, . . . , n}.

For G and M groups, we write M ≤ G to indicate that M is a subgroup of G. For a
group H and T ⊆ H, the centralizer CH(T ) consists of those elements of H that commute
with all elements of T . For T ⊆ H we write 〈T 〉 to denote the subgroup generated by T .

For a set Ω, the symmetric group Sym(Ω) consists of all permutations of Ω. We write
Sn = Sym([n]). Permutation groups acting on Ω are subgroups of Sym(Ω); their degree is
|Ω|. The alternating group An ≤ Sn consists of the even permutations. For G ≤ Sym(Ω)
and ∆ ⊆ Ω, the pointwise stabilizer G(∆) consists of those σ ∈ G that fix ∆ pointwise. The
setwise stabilizer G∆ is defined analogously.

2.2 Computational representation of groups
Our general reference to algorithmic group theory is [20].

Commonly used explicit representations include permutation groups, matrix groups,
various representations of abelian groups such as the primary decomposition and the canonical
form, etc. The latter are explained in Appendix A.1.

Black-box access is a general concept of oracle access to group operations. A black-box
group is a finite group with (1) elements encoded by strings of uniform length, (2) black-box
access, and (3) a given list of names of generators.

These concepts are explained in Appendix A.2.

3 Strategy

Let f ∈ aHom(G,H) be a received word and let L be the list of codewords within distance
(mindist− ε) of f . The combinatorial problem is to find a bound of the form |L| ≤ poly(1/ε).
First we use a sphere-packing argument to split L into a moderate number of buckets (more
manageable subsets).

3.1 Notation: agreement, equalizer
The agreement agr(f, g) of two functions f, g in the code space HG is the proportion of
inputs on which f and g agree, i. e.,

agr(f, g) = |Eq(f, g)|
|G|

, (2)
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where Eq(f, g) = {x ∈ G | f(x) = g(x)} is the equalizer (agreements set) of f and g. So, the
distance between f and g is 1− agr(f, g). Following established notation, we write ΛG,H to
denote the maximum agreement between pairs of distinct elements of aHom(G,H),

ΛG,H = max{agr(ϕ,ψ) | ϕ,ψ ∈ Hom(G,H), ϕ 6= ψ}, (3)

or ΛG,H = 0 if the only G → H homomorphism is the trivial one. So, the minimum
distance of the code Hom(G,H) is 1− ΛG,H . By Proposition 8(a), the minimum distance of
aHom(G,H) is also 1− ΛG,H . When G and H are clear from context, we write Λ = ΛG,H .

For a homomorphism code C (either Hom(G,H) or aHom(G,H)) and λ > 0, we write

L(C, f, λ) = {ϕ ∈ C | agr(f, ϕ) ≥ λ}. (4)

So the list L defined in the preamble of Section 3 is L = L(aHom(G,H), f,Λ + ε).

3.2 A sphere packing argument
We shall use a sphere packing argument to split the list into more manageable parts.
We begin with a strong negative correlation inequality.

I Definition 9 (Strong negative correlation). Let τ > 0. Let A1, . . . , Ak be events in
a probability space. We say that A1, . . . , Ak are τ -strongly negatively correlated if
Pr(Ai ∩Aj) ≤ Pr(Ai) Pr(Aj)− τ for all i 6= j.

I Lemma 10 (Strong negative correlation bound). Let τ > 0. Let A1, . . . , Ak be τ -strongly
negatively correlated events in a probability space. Then k ≤ 1

4τ + 1.

Proof. For 1 ≤ i ≤ k, let Zi be the indicator random variable (characteristic function) of
the event Ai; so E(Zi) = Pr(Ai) and Var(Zi) = Pr(Ai)(1−Pr(Ai)) ≤ 1

4 . For the covariances
(i 6= j) we have Cov(Zi, Zj) = E[ZiZj ]− E[Zi]E[Zj ] ≤ −τ. So,

0 ≤ Var
(∑

i

Zi

)
=
∑
i

Var(Zi) +
∑
i 6=j

Cov(Zi, Zj) ≤
k

4 − k(k − 1)τ. (5)

Solving for k gives the bound as claimed. J

In our applications, P will be the uniform distribution µ over a finite set and we shall always
have Pr(Ai) ≥ Λ + ε.

I Lemma 11 (Sphere packing bound). Let G be a finite group, H a group, and ε > 0. Let
f : G→ H be a received word. Let Ψ ⊆ L = L(aHom(G,H), f,Λ + ε) be a subset of the list
that is maximal under the constraint that agr(ψ1, ψ2) ≤ Λ2 for all distinct ψ1, ψ2 ∈ Ψ. Then

|Ψ| ≤ 1
4(2Λ + ε)ε + 1 ≤ 1

4ε2 + 1. (6)

Proof. Observe that the sets Eq(ψ, f) for ψ ∈ Ψ have density ≥ Λ + ε and they are
ε(2Λ + ε)-strongly negatively correlated. Apply Lemma 10. J

I Lemma 12. Let L = L(aHom(G,H),Λ + ε). If |L| ≤ p(1/Λ, 1/ε) for some monotone
function p(., .) then |L| ≤ p(2/ε2, 1/ε)+1/(2ε2). In particular, in the definition of CombEcon,
we may replace the bound poly(1/ε) by poly(1/Λ, 1/ε) without changing the meaning.

Proof. For Λ > ε2/2, we are done. For Λ ≤ ε2/2 we have |L| ≤ 1 + 1/(2ε2) by Lemma 10
because the sets Eq(f, ϕ) for ϕ ∈ L are (ε2/2)-strongly negatively correlated. J

APPROX/RANDOM 2018
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For ψ ∈ Ψ, we define the bucket Lψ by

Lψ = {ϕ ∈ L | agr(ϕ,ψ) > Λ2} (7)

The union of the buckets includes the list L. Since the number of buckets is |Ψ| ≤ 1+1/(4ε2),
we only need to bound the size of each bucket by poly(1/ε).

Our strategy to bound bucket size differs depending on the type of the domain G.

3.3 Bounding the list size for abelian groups
To prove that abelian groups are universally CombEcon, we prove that the codomain
has a small number of abelian subgroups such that each homomorphism in the list L
maps the domain G into one of those abelian subgroups. This reduces the problem to
showing CombEcon for {abelian→ abelian} homomorphism codes, which was done by Dinur,
Grigorescu, Kopparty, and Sudan [10].

We work now with homomorphisms instead of affine homomorphisms; we will appeal to
Proposition 8 to obtain affine results.

I Theorem 13. Let G be a finite abelian group and H an arbitrary group. Let f ∈ HG be a
received word. Then there exists a set A of finite abelian subgroups of the codomain H with
|A| ≤ 1

4(2Λ + ε)ε2 + 1
ε
such that for all ϕ ∈ L = L(Hom(G,H), f,Λ + ε), there is M ∈ A

such that ϕ(G) ≤M .

We will find A by working separately on each bucket. We define, for each ψ ∈ Ψ, a set
Aψ of finite abelian subgroups of H such that
(i) for all ϕ ∈ Lψ, there is M ∈ Aψ such that ϕ(G) ≤M ,
(ii) |Aψ| ≤ 1/ε.
It follows from (i) that we can set A =

⋃
ψ∈ΨAψ, so Theorem 13 follows from (ii) and the

sphere packing bound (Lemma 11).
To define the set Aψ, we introduce the following concept. Let H be a group, B ≤ H and

T ⊆ H. The abelian enlargement of T by B is the group generated by T and the elements of
B that commute with all elements of T , i. e.,

enlB(T ) = 〈T,CH(T ) ∩B〉. (8)

Note that if both 〈T 〉 and B are finite abelian groups then so is enlB(T ); this is the only case
in which we shall be interested. When T = {h} is a singleton, we write enlB(h) for enlB(T ).

Fix ψ ∈ Ψ. Let Aψ be the set of all subgroups M ≤ H that occur as M = enlψ(G)(ϕ(G))
for some ϕ in the bucket Lψ. We shall show that every M ∈ Aψ is equal to enlψ(G)(f(g))
for at least an ε proportion of g ∈ G. The idea is that since ϕ and ψ have large agreement,
most of ϕ(G) is contained in ψ(G). So even if we take a single random element g ∈ G, it is
likely that the enlargement of ϕ(g) by ψ(G) already contains all of ϕ(G). Specifically, we
show the following.

I Proposition 14. Let ϕ,ψ ∈ Hom(G,H) and g ∈ G such that 〈g,Eq(ψ,ϕ)〉 = G. Then
ϕ(G) ≤ enlψ(G)(ϕ(G)) = enlψ(G)(ϕ(g)).

And, since f and ϕ have high agreement, it is likely that ϕ(g) = f(g). We elaborate on
this strategy in Section 4.
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3.4 Bucket estimation for alternating groups
Subgroups of polynomial index in alternating groups are well understood; they are described
by a result known as the Jordan–Liebeck Theorem (JLT), see [11, Theorem 5.2A].

I Theorem 15 (Jordan–Liebeck). Let n ≥ 10 and let r be an integer with 1 ≤ r < n/2.
Suppose K ≤ An has index |An : K| <

(
n
r

)
. Then for some ∆ ⊆ [n] with |∆| < r we have

(An)(∆) ≤ K ≤ (An)∆.

Here (An)(∆) denotes the pointwise stabilizer of ∆ in An and (An)∆ the setwise stabilizer
of ∆.

We use JLT multiple times in this section.
Ignoring the trivial case Λ = 0, it is easy to show that for G = An with n ≥ 5 we have

Λ ≥ 1/
(
n
2
)
. It then follows from JLT that for n ≥ 10 we have Λ = 1/

(
n
s

)
for s ∈ {1, 2}. In

the light of Lemma 12 it suffices to find a poly(n, 1/ε) bound on the size of each bucket.

3.4.1 Nonconstructive proof
Let K denote the set of all subgroups that are the pointwise stabilizer of 2s points:

K = {(An)(∆) | ∆ ⊆ [n], |∆| = 2s} (9)

where s ∈ {1, 2} and Λ = 1/
(
n
s

)
(see above).

We shall refer to the elements of K as label subgroups. We have |K| =
(
n
2s
)
. By JLT for

n ≥ 11, every subgroup of An of index <
(

n
2s+1

)
contains a member of K. It is not difficult

to see that the depth of any K ∈ K in An is 5 if s = 2 (cf. [1]) and 2 if s = 1. (All we need is
that this depth is bounded, which is obvious.)

All homomorphisms ϕ in the bucket Lψ have agreement > Λ2 with one representative
homomorphism ψ; so ϕ and ψ agree on a subgroup of index < 1/Λ2 ≤

(
n

2s+1
)
(for n ≥ 40)

and therefore, by JLT, they agree on some label subgroup. So we can split each bucket Lψ
further into

(
n
2s
)
sub-buckets Lψ,K , where the homomorphisms in Lψ,K agree with ψ on K.

Bound on the size of sub-buckets. To bound the size of a sub-bucket Lψ,K , we describe a
process for choosing a random homomorphism in the sub-bucket. For a positive integer d,
we choose d random elements of G. If there is a unique homomorphism ϕ that agrees with f
on the d random inputs, and agrees with ψ on K, we choose this homomorphism.

Now we combine the following two straightforward observations.

I Observation 16. Let K ≤ G be a subgroup, ψ ∈ Hom(G,H) a homomorphism, d a
nonnegative integer, and g1, . . . , gd ∈ G. If µ(〈K, g1, . . . , gd〉) > Λ, then there is at most one
homomorphism ϕ ∈ Hom(G,H) such that K ≤ Eq(ψ,ϕ) and g1, . . . , gd ∈ Eq(f, ϕ).

I Observation 17. Let 0 ≤ λ < 1. Let G be a finite group, K ≤ G a subgroup, and S ⊆ G
a subset. Suppose µ(S) > λ. Let ε = µ(S)− λ and d = depthG(K). Then,

Pr
g1,...,gd∈G

[g1, . . . , gd ∈ S and µ(〈K, g1, . . . , gd〉) > λ] ≥ εd. (10)

It follows that if d ≥ depthAn
K (K ∈ K) then each homomorphism in the sub-bucket Lψ,K

gets chosen with probability at least εd and therefore |Lψ,K | ≤ 1/εd. By the foregoing, we
may choose d = 2s+ 1, so |Lψ,K | ≤ 1/ε2s+1.

Combining our bounds on the number of buckets, the number of sub-buckets per bucket,
and size of each sub-bucket, we conclude that |L| = O(ε−2s−3Λ−2) and therefore |L| =
O(ε−2s−7) = O(ε−11) by Lemma 12.
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This concludes our first proof that the alternating groups are universally CombEcon. The
proof is non-constructive because it relies on the sphere packing argument.

3.4.2 Constructive proof
Our second strategy for list decoding {alternating→ arbitrary} exploits a property of the
alternating groups which we call shallow random generation (SRG).

A group G is SRG if, roughly, a small number of random elements of G are extremely
likely to generate a low-depth subgroup.

I Definition 18 (Shallow random generation). Let k, d ∈ N. We say that a finite group G is
(k, d)-shallow generating if

Pr
g1,...,gk∈G

[depth(〈g1, . . . , gk〉) > d] < (Λ∗G)k, (11)

where Λ∗G = minH{ΛG,H | ΛG,H 6= 0}.
A class G of finite groups has shallow random generation (G is SRG) if there exist

k, d ∈ N such that all G ∈ G are (k, d)-shallow generating.

Alternating groups are an example of a class of SRG groups.

I Theorem 19. The class of alternating groups is SRG. Specifically, for sufficiently large n,
the group An is (2, 5)-shallow generating.

The proof uses the following result that says that two random elements of an alternating
group are extremely likely to act as an alternating or symmetric group on a large subset of
the permutation domain [6].

I Theorem 20 (Babai). Let π, σ be a pair of independent uniform random elements from
Sn. For 0 ≤ t ≤ n/3, let E(n, t) denote the following event: The subgroup K = 〈π, σ〉 acts
as Sr or Ar on r elements of the permutation domain for some r ≥ n− t. Then,

Pr(E(n, t)) = 1−
(

n

t+ 1

)−1
+O

((
n

t+ 2

)−1
)
. (12)

The constant implied by the big-O notation is absolute.

To prove Theorem 19 we use Theorem 20 with t = 4, noting that Λ∗An
= 1/

(
n
2
)
and

depthAn
(An−4) = 5.

From Observations 16 and 17 one can infer that SRG classes of groups are CombEcon.
This view allows us not only to combinatorially list-decode {SRG→ arbitrary}, but also to
certificate list-decode; certificates are given by f restricted to a small number of random
elements of G.

I Definition 21. A domain certificate S ⊆ G is a domain-Λ-certificate if µ(〈S〉) > Λ.

I Theorem 22 (SRG implies CertEcon, via domain certificates). Let k ∈ N and c > 0. Let G
be a (k, d)-shallow generating group and H a group. Let f : G→ H and ε > 0. Let Υ be a
list of

⌈ 1
εk+d ln

( 4
εk+d

)⌉
independently chosen subsets of G, each of size k + d. Then, with

probability at least 3/4, Υ is a domain-Λ-certificate-list of L(aHom(G,H), f,Λ + ε).

I Remark. From Theorem 19 with k = 2, d = 5 we infer that for {An → arbitrary}, the
length of the list is Õ(ε−7).
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We say that a class G is λ-CertEcon if it is CertEcon with the additional requirement
that for all certificates γ in our certificate list, we must have µ(〈dom γ〉) > λ.

I Theorem 23. If G is an SRG class of groups, then G is universally Λ-CertEcon.

Here we assume that the domain G is given as a black-box group. In order to obtain
domain-certificates, no access to the codomain H is needed. To obtain actual certificates
(G→ H partial functions), we only need black-box access to H.

3.5 Cert + HomExt = Alg

A Λ-certificate list-decoder and a HomExtΛ solver combine to an algorithmic list decoder.
Wuu [21] solved the homomorphism extension problem in the following case.

I Theorem 24 (Wuu). Assume m < 2n−1/
√
n and λ = 1/poly(n). Then the

HomExtλ(An, Sm) search problem can be solved in poly(n,m) time.

Combining the previous two theorems, we obtain our main algorithmic result.

I Theorem 25 (Main algorithmic result). aHom(An, Sm) is AlgEcon, assuming m < 2n−1/
√
n.

4 Homomorphism Codes with finite abelian domain and arbitrary
codomain

In this section we describe the details of the proof that finite abelian groups are universally
combinatorially and algorithmically economically list-decodable. The key technical result is
Theorem 13, which says that there are a small number of abelian subgroups of the codomain
such that every homomorphism in the list maps into one of these subgroups.

In Section 4.1, we state characterizations of ΛG,H when G is abelian. In Section 4.2 we
state facts about abelian enlargements (see definition in Section 3.3). Using this tool, in
Section 4.3 we prove Theorem 13 (the key result mentioned in the previous paragraph) and
infer that abelian groups are universally CombEcon. In Section 4.4 we adapt the algorithm
of [10, 16], to give an algorithm to locally list-decode these codes.

We remark that these codes usually cannot be list-decoded beyond radius 1− (ΛG,H + ε)
(see Remark at the end of Section 1.2.1).

4.1 ΛG,H when G is abelian

The following characterization of ΛG,H for G abelian is clear.

I Fact 26. Let G be a finite abelian group and H a group. The following are equivalent for
any prime p.
(a) ΛG,H = 1/p.
(b) p is the smallest prime number such that p divides |G| and H has an element of order p.
(c) p is the smallest prime number dividing |G : N |, where N is the (G,H)-irrelevant kernel.
If no such p exists in (b) or (c), then |Hom(G,H)| = 1 and ΛG,H = 0.

Guo [15, Theorem 1.1] gave a characterization of ΛG,H when G and H are finite groups
with G solvable or H nilpotent.
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4.2 Abelian enlargements
Throughout this section, let G be a finite abelian group, and H a group (finite or infinite).
We prove facts about abelian enlargements, which were defined in Section 3.3.

I Lemma 27. Let B ≤ H a finite abelian subgroup, and T ⊆ H a subset such that 〈T 〉 is a
finite abelian group. For U ⊆ enlB(T ), we have that enlB(T ) = enlB(T ∪ U).

Proof. First, we show that enlB(T ) ≤ enlB(T ∪ U). Since enlB(T ) is abelian, we have that

CH(T ) ∩B ≤ enlB(T ) ≤ CH(enlB(T )) ≤ CH(U). (13)

So,

CH(T ) ∩B ≤ CH(T ) ∩ CH(U) ∩B = CH(T ∪ U) ∩B ≤ enlB(T ∪ U). (14)

Since also T ⊆ enlB(T ∪ U), we have that enlB(T ) ≤ enlB(T ∪ U).
Next, we show that enlB(T∪U) ≤ enlB(T ). We have that T ⊆ enlB(T ), that U ⊆ enlB(T ),

and CH(T ∪U)∩B ≤ CH(T )∩B ≤ enlB(T ). So, enlB(T ∪U) = 〈T ∪U,CH(T ∪U)∩B〉 ≤
enlB(T ). J

I Proposition 28. Let ϕ,ψ ∈ Hom(G,H) and A ⊆ G such that 〈A,Eq(ψ,ϕ), kerϕ〉 = G.
Then enlψ(G)(ϕ(A)) = enlψ(G)(ϕ(G)).

Proof. Since G is finite abelian, so are ϕ(G) and ψ(G). Let B = ψ(G). Let T = ϕ(A).
Let U = ϕ(Eq(ψ,ϕ)). Since T,U ⊆ ϕ(G), and ϕ(G) is abelian, U ≤ CH(T ). And, since
U = ψ(Eq(ψ,ϕ)), we have that U ≤ ψ(T ) = B. Thus, U ≤ CH(T ) ∩B ≤ enlB(T ).

Also, 〈T ∪ U〉 = 〈T,U, 1〉 = 〈ϕ(A), ϕ(Eq(ψ,ϕ)), ϕ(kerϕ)〉 = ϕ(〈A,Eq(ψ,ϕ), kerϕ〉) =
ϕ(G).

Therefore, by Lemma 27,

enlψ(G)(ϕ(A)) = enlB(T ) = enlB(T ∪ U) = enlB(〈T ∪ U〉) = enlψ(G)(ϕ(G)). (15)

J

I Corollary 29. Let ϕ, ψ, and A be as above. Then ϕ(G) ≤ enlψ(G)(ϕ(A)).

Proposition 14 is a special case of Proposition 28.

4.3 Combinatorial list-decodability, finite abelian to arbitrary
In this section, we establish that finite abelian groups are universally CombEcon.

Throughout this section, let G be a finite abelian group, and H an arbitrary group (finite
or infinite). Let f : G→ H be a received word. Let ε > 0. Let L = L(Hom(G,H), f,Λ + ε)
be the list (note that in this section we deal with the code of homomorphisms, rather than
affine homomorphisms; however, we can convert between the two; see Section 1.2.5). The list
L is divided into buckets Lψ for ψ ∈ Ψ, where Ψ is as in Lemma 11.

We will see that there is a small set of abelian subgroups M ≤ H such that every
ϕ ∈ L has its image in some M . Dinur, Grigorescu, Kopparty, and Sudan [10] proved that
aHom(G,H) is CombEcon (and in fact, AlgEcon) for all finite abelian groups G and H.
Theorem 13, combined with the DGKS result, lets us conclude that Hom(G,H) (and thus
aHom(G,H)) is CombEcon.
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I Corollary 30. Finite abelian groups are universally CombEcon. Specifically, let C be a
constant such that |L(aHom(G,H), f,Λ + ε)| ≤ ( 1

ε )C for G,H finite abelian groups. Then
|L(aHom(G,H), f,Λ + ε)| ≤ O(( 1

ε )C+4) for G a finite abelian group and H an arbitrary
group.

By [16, 9], the constant C currently stands at ≈ 105.

Proof of Corollary 30. Let A be the collection of subgroups of H guaranteed by Theorem 13.
Then, L ⊆

⋃
M∈A L(Hom(G,M), f,Λ + ε) (on the right hand side we let f be redefined

arbitrarily at points in its domain that do not map to M). So,

|L| ≤
∑
M∈A

`(Hom(G,M),Λ + ε) ≤
(

1
4(2Λ + ε)ε2 + 1

ε

)(
1
ε

)C
. (16)

We then apply the Remark after Proposition 8. J

In the remainder of this subsection, we prove Theorem 13.
Let Ψ be as in Lemma 11. Recall our strategy from Section 3.2 of dividing the list L into

buckets Lψ for ψ ∈ Ψ. We will prove the following.

I Lemma 31. Let ψ ∈ Ψ. There is a set Aψ of finite abelian subgroups of H with |Aψ| ≤ 1
ε

such that for all ϕ ∈ Lψ, there is M ∈ Aψ for which ϕ(G) ≤M .

From this, Theorem 13 follows by taking A =
⋃
ψ∈ΨAψ.

Proof of Lemma 31. Let Aψ = {enlψ(G)(ϕ(G)) | ϕ ∈ Lψ}. Then Aψ is a set of finite abelian
subgroups of H. And, for all ϕ ∈ Lψ, we have that ϕ(G) ≤ enlψ(G)(ϕ(G)) ∈ Aψ.

Let a be a uniform random element of G. For each M ∈ Aψ, let EM be the event that
enlψ(G)(f(a)) = M . We will show that Pr[EM ] ≥ ε. Since the events EM for M ∈ Aψ are
pairwise disjoint, this will imply that |Aψ| ≤ 1

ε .
Consider any M ∈ Aψ. There exists ϕ ∈ Lψ such that enlψ(G)(ϕ(G)) = M . Let N be the

(G,H)-irrelevant kernel. Since N ≤ Eq(ϕ,ψ), we have that |G : Eq(ψ,ϕ)| divides |G : N |,
whose smallest prime factor is 1

Λ by Fact 26.
If a ∈ Eq(f, ϕ) r Eq(ψ,ϕ), then µ(〈a,Eq(ψ,ϕ)〉) ≥ 1

Λµ(Eq(ψ,ϕ)) > 1
ΛΛ2 = Λ, so

〈a,Eq(ψ,ϕ)〉 = G. In this case, by Proposition 14,

enlψ(G)(f(a)) = enlψ(G)(ϕ(a)) = enlψ(G)(ϕ(G)) = M. (17)

Therefore,

Pr[EM ] ≥ Pr[a ∈ Eq(f, ϕ) r Eq(ψ,ϕ)] ≥ agr(f, ϕ)− agr(ψ,ϕ) ≥ ε. (18)

We conclude that |Aψ| ≤ 1
ε . J

4.4 Algorithm
I Definition 32. A primary decomposition of a finite abelian group G is a representation
as a direct product of cyclic groups of prime-power order.

For G a finite abelian group and H an arbitrary group, we can locally list-decode
aHom(G,H). Based on our CombEcon bound for this class of pairs of groups, we adapt the
algorithm of Dinur, Grigorescu, Kopparty, and Sudan from [10, Sec. 5]. Thus, such codes are
AlgEcon. Like [10], we assume that G is given explicitly by an primary decomposition.
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I Theorem 33. Let D be the class of pairs (G,H) where G is a finite abelian group given
explicitly by an primary decomposition, and H is a group with black-box access. Then there
is an algorithm to locally list-decode D in time poly(log|G| · 1

ε ).

Here we assume the unit-cost model of naming elements of H (cf. Def. 34).
Details of our adaptation of the algorithm of Dinur et al. [10] are given in Appendix D.
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A Computational representation of groups

A.1 Finite abelian groups
For finite abelian groups, the representation used by prior authors is the primary decom-
position, i. e., the representation as the direct product of cyclic groups of prime power
order.

The canonical form of finite abelian groups is the representation as the direct product
of cyclic groups of orders n1, . . . , nk where ni | ni+1. Note that any abelian presentation in
terms of generators and relations can be converted, in polynomial time, to the canonical
form using the Smith normal form of integer matrices.

The canonical representation alone will not suffice for the algorithms in prior work; we
need be able to factor the ni in order to convert this to primary representation. This can be
done, for instance, if a superset of the prime divisors of the order of the finite abelian group
G is available.

A.2 Black-box access, black-box groups
Our most general model of access to a group is black-box access. In this model, a “universe”
U is a collection of potential names of group elements. Not all elements of the universe
encode group elements and a group element may have multiple names.

I Definition 34. We say that we have black-box access to a group G if the following holds.
There is a set U of “names” and a surjection r : U → G ∪ ∗ where ∗ is a special symbol. For
u ∈ r−1(U) we say that u is a name of r(u) ∈ G. Given the names of two group elements,
an oracle gives a name of their product/quotient, and recognizes the names of the identity
element. We assume a tape that can hold an element of U in each cell, accessible at unit
cost (“unit-cost model”).

Black-box access does not assume we know the name of any element of G. Nevertheless,
such access may be sufficient in the case of the codomain; in this case we assume the received
word consists of names of elements of the codomain. “Black-box groups” (introduced in [5])
require in addition that a list of generators be know, and that the names be words of uniform
length over a fixed finite alphabet.

I Definition 35. We say that a finite group G is given as a black-box group if the following
hold.
(a) The universe U is Σn where Σ is a fixed finite alphabet. We call n the encoding length

of the group elements.
(b) G is given black-box access over the universe U .
(c) The names of a list of generators of G are given.

It follows in particular that |G| ≤ |Σ|n.
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An important consequence of representation as a black-box group is the availability of
nearly uniform random elements. We say that we sample elements of a finite set Ω ε-nearly
uniformly if the probability of each element to be selected is between (1± ε)/|Ω|.

I Theorem 36 ([2]). Given a finite group G as a black-box group, one can generate names
of independent, nearly uniformly distributed elements of G; the per element cost is polynomial
in the encoding length of the elements and |log(ε)| where ε is the near-uniformity parameter.

In our applications, setting ε = 1/2 will suffice.

B Upper bound on the list-decoding radius

We have shown that the class of homomorphism codes with alternating domain and arbitrary
codomain have list-decoding radius greater than 1− (Λ + ε) for all ε > 0.

On the other hand, we now show that in many cases, a blowup of the list size occurs at
radius 1− Λ, demonstrating that the list-decoding radius is at most 1− Λ in these cases.

The number of homomorphisms within a closed ball of radius 1− Λ of a received word
will be exponential in log|G| and log|H|. We note that |H| ≥ |G| unless Λ = 0.

I Proposition 37. For any n, and λ ∈ {1/n, 1/
(
n
2
)
}, there exists a finite group Hn such that

ΛAn,Hn
= λ and

`(Hom(An, Hn),Λ) = 2Ω(n) ≥ 2Ω
(

3
√

log|H|
)
. (19)

Moreover, for any fixed n ≥ 10, and any integer M , there is a finite group H such that

`(Hom(An, H),Λ) ≥M. (20)

Proof. We use the same construction for both parts. To prove the first claim, let k = n. To
prove the second claim, let k ≥ log2M .

Suppose λ = 1/n. Let Hn = Akn+1, the direct product of k copies of An+1. Then
ΛAn,Hn = 1/n. Let f : An → Hn by f(g) = (g, . . . , g), the diagonal identity map, where An
is embedded in An+1. For nonempty S ⊆ [n] and j ∈ [n], let h = h(S, j) = (h1, . . . , hk) ∈ Hn,
where hi is the transposition (j, n+ 1) if i ∈ S and 1 otherwise. For each such h, let ϕh ∈
Hom(An, Hn) be given by ϕh(g) = h−1f(g)h. Each ϕh has agreement agr(ϕh, f) = 1/n = Λ
with f . There are n(2k − 1) such h, so `(Hom(An, Hn),Λ) ≥ n(2k − 1).

Suppose λ = 1/
(
n
2
)
. Let Hn = Akn. Then, ΛAn,Hn = 1/

(
n
2
)
. Let f : An → Hn by f(g) =

(g, . . . , g), the diagonal identity map. For nonempty S ⊆ [n] and τ ∈ Sn is a transposition,
let h = hS,τ = (h1, . . . , hk) ∈ Akn, where hi = τ if i ∈ S and 1 otherwise. For each such
h, let ϕh ∈ Hom(An, Hn) be given by ϕh(g) = h−1f(g)h. Each such ϕh has agreement
agr(ϕh, f) = 1/

(
n
2
)
. There are

(
n
2
)
(2k − 1) such h, so `(Hom(An, Hn),Λ) ≥

(
n
2
)
(2k − 1). J

We remark that `(Hom(An, H),ΛAn,H) is not bounded as a function of n for a wide
variety of classes of H.

C Mean-list-decoding, irrelevant kernel, and domain relaxation

In this section we discuss mean-list-decoding, a tool for extending our economical list-decoding
results to wider classes of domain groups. The metric used in mean-list-decoding is not
distance to a single received word, but rather the average distance to a family of received
words. Although apparently more general than list-decoding, mean-list-decoding is actually
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equivalent to list-decoding (in the CombEcon, CertEcon, and AlgEcon sense). An important
implication is that we can extend our list-decoding results to a wider class of domain groups.
Specifically, define the (G,H)-irrelevant kernel to be the intersection of the kernels of all
G→ H homomorphisms. We show (Theorem 40) that for aHom(G,H) to be economically
list-decodable (CombEcon, CertEcon, or AlgEcon), it suffices to show that aHom(G/N,H)
is. As an example, the {abelian → abelian} list-decoding results automatically extend to
{arbitrary→ abelian} results.

For a family F = {fi | i ∈ I} of received words and a word f ∈ HG, we define the
average agreement agr(w,F) of w and F by

agr(w,F) = 1
|F|
∑
i∈I

agr(w, fi). (21)

For a homomorphism code C (either Hom(G,H) or aHom(G,H)), the mean-list L is the
set of codewords whose agreement with F is at least a specified quantity ρ; i. e.,

L = L(C,F, ρ) = {w ∈ C | agr(w,F) ≥ ρ}. (22)

We define CombEconM, CertEconM, and AlgEconM by replacing the received word
f with a family of received words F and replacing “the list” with “the mean-list” in the
definitions of CombEcon, CertEcon, and AlgEcon, respectively. However, the -M concepts
turn out to be equivalent to the non-M, concepts.
I Theorem 38. For a class C of homomorphism codes, C is CombEconM if and only if it is
CombEcon.

Under suitable access assumptions, analogous results hold for CertEcon and AlgEcon.
Theorem 38 follows from the following observation.

I Lemma 39. For all homomorphism codes C (either Hom(G,H) or aHom(G,H)), for all
families F of received words, for all ρ, δ > 0,

|L(C,F, ρ)| ≤ 1
δ

max
f∈F
|L(C, f, ρ+ δ)|. (23)

For groups G and H, and N E G a subgroup of the (G,H)-irrelevant kernel, we note that
any homomorphism (or affine homomorphism) G→ H is the composition of a homomorphism
(or affine homomorphism) G/N → H with the projection map G → G/N . Thus, ΛG,H =
ΛG/N,H .
I Theorem 40. Let G,H be groups and N E G a subgroup of the (G,H)-irrelevant kernel.
If aHom(G/N,H) is CombEcon, then aHom(G,H) is CombEcon.
I Remark. Under suitable access assumptions, analogous results hold for CertEcon and
AlgEcon. These assumptions involve (a) uniform random generation of elements of N , and
(b) oracle access to a transversal, i. e., an injection G/N → G that assigns a representative
element to each coset.

Proof of Theorem 40. Let Λ = ΛG,H = ΛG/N,H .
We prove the theorem in the combinatorial setting. Fix a set S of coset representatives

of N in G. To the function f : G → H we associate the family F = {fn : G/N → H |
n ∈ N} where fn(sN) = f(sn) for all n ∈ N and s ∈ S. Then, agr(ϕ ◦ π, f) = agr(ϕ,F)
for all ϕ ∈ aHom(G/N,H), where π : G → G/N is the projection map. If we identify
ϕ ∈ aHom(G/N,H) with ϕ ◦ π ∈ aHom(G,H), then, for any ε > 0, we have

L(aHom(G,H), f,Λ + ε) = L(aHom(G/N,H),F,Λ + ε). (24)

Now Theorem 40 follows by an application of Theorem 38. J
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D Adaptation of the DGKS algorithm to abelian → arbitrary

In Section 4.4 we mentioned that to prove the {abelian→arbitrary} AlgEcon result, we
combine our CombEcon result for this class of codes with an adaptation of the {abelian →
arbitrary} algorithm from [10]. Here we indicate how our version differs from that algorithm.

First, [10] reduces to the case where H = Zpr . We do not make such a reduction. We let
p be the prime such that Λ = 1

p . Every mention of Zpr should be replaced by H. As in their
algorithm, we take G = G1, . . . , Gk, with each Gi = Zpri

i
. We order the Gi such that p1 = p.

For them, the only important coordinates are the ones where pi = p, but for our purposes,
instances of Zpri should be replaced with Zpri

i
.

In the algorithm Extend of [10], the statement “If c1− c2 is not divisible by p” should be
replaced with “If c1−c2 is not divisible by pi, and if f(y1, c1, s) and f(y2, c2, s) commute with
each other and with ϕ(e1), . . . , ϕ(ei−1).” Here ej denotes a generator of Gj . The system of
equations that follows should be solved under the assumption that the order of a divides pri

i .
We note that when solving the system of equations in Extend, we are working in an

abelian subgroup of H. Actually, even this does not matter; we can solve the given system
of equations without assuming the elements of H commute.

In the algorithm as stated, we assume that the value ΛG,H is known. This assumption
can actually be discarded.
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