19,697 research outputs found

    Positional Games

    Full text link
    Positional games are a branch of combinatorics, researching a variety of two-player games, ranging from popular recreational games such as Tic-Tac-Toe and Hex, to purely abstract games played on graphs and hypergraphs. It is closely connected to many other combinatorial disciplines such as Ramsey theory, extremal graph and set theory, probabilistic combinatorics, and to computer science. We survey the basic notions of the field, its approaches and tools, as well as numerous recent advances, standing open problems and promising research directions.Comment: Submitted to Proceedings of the ICM 201

    Hardness of Graph Pricing through Generalized Max-Dicut

    Full text link
    The Graph Pricing problem is among the fundamental problems whose approximability is not well-understood. While there is a simple combinatorial 1/4-approximation algorithm, the best hardness result remains at 1/2 assuming the Unique Games Conjecture (UGC). We show that it is NP-hard to approximate within a factor better than 1/4 under the UGC, so that the simple combinatorial algorithm might be the best possible. We also prove that for any ϵ>0\epsilon > 0, there exists δ>0\delta > 0 such that the integrality gap of nδn^{\delta}-rounds of the Sherali-Adams hierarchy of linear programming for Graph Pricing is at most 1/2 + ϵ\epsilon. This work is based on the effort to view the Graph Pricing problem as a Constraint Satisfaction Problem (CSP) simpler than the standard and complicated formulation. We propose the problem called Generalized Max-Dicut(TT), which has a domain size T+1T + 1 for every T≥1T \geq 1. Generalized Max-Dicut(1) is well-known Max-Dicut. There is an approximation-preserving reduction from Generalized Max-Dicut on directed acyclic graphs (DAGs) to Graph Pricing, and both our results are achieved through this reduction. Besides its connection to Graph Pricing, the hardness of Generalized Max-Dicut is interesting in its own right since in most arity two CSPs studied in the literature, SDP-based algorithms perform better than LP-based or combinatorial algorithms --- for this arity two CSP, a simple combinatorial algorithm does the best.Comment: 28 page

    Arkhipov's theorem, graph minors, and linear system nonlocal games

    Full text link
    The perfect quantum strategies of a linear system game correspond to certain representations of its solution group. We study the solution groups of graph incidence games, which are linear system games in which the underlying linear system is the incidence system of a (non-properly) two-coloured graph. While it is undecidable to determine whether a general linear system game has a perfect quantum strategy, for graph incidence games this problem is solved by Arkhipov's theorem, which states that the graph incidence game of a connected graph has a perfect quantum strategy if and only if it either has a perfect classical strategy, or the graph is nonplanar. Arkhipov's criterion can be rephrased as a forbidden minor condition on connected two-coloured graphs. We extend Arkhipov's theorem by showing that, for graph incidence games of connected two-coloured graphs, every quotient closed property of the solution group has a forbidden minor characterization. We rederive Arkhipov's theorem from the group theoretic point of view, and then find the forbidden minors for two new properties: finiteness and abelianness. Our methods are entirely combinatorial, and finding the forbidden minors for other quotient closed properties seems to be an interesting combinatorial problem.Comment: Minor updates. Also see video abstract at https://youtu.be/uTudADhT1p

    On the Concavity of Delivery Games

    Get PDF
    Delivery games, introduced by Hamers, Borm, van de Leensel and Tijs (1994), are combinatorial optimization games that arise from delivery problems closely related to the Chinese postman problem (CPP). They showed that delivery games are not necessarily balanced. For delivery problems corresponding to the class of bridge-connected Euler graphs they showed that the related games are balanced. This paper focuses on the concavity property for delivery games. A delivery game arising from a delivery model corresponding to a bridge-connected Euler graph needs not to be concave. The main result will be that for delivery problems corresponding to the class of bridge-connected cyclic graphs, which is a subclass of the class of bridge-connected Euler graphs, the related delivery games are concave.

    Games on interval and permutation graph representations

    Get PDF
    We describe combinatorial games on graphs in which two players antagonistically build a representation of a subgraph of a given graph. We show that for a large class of these games, determining whether a given instance is a winning position for the next player is PSPACE-hard. In contrast, we give polynomial time algorithms for solving some versions of the games on trees

    Combinatorial Games on Graphs

    Get PDF
    Combinatorial games are intriguing and have a tendency to engross students and lead them into a serious study of mathematics. The engaging nature of games is the basis for this thesis. Two combinatorial games along with some educational tools were developed in the pursuit of the solution of these games. The game of Nim is at least centuries old, possibly originating in China, but noted in the 16th century in European countries. It consists of several stacks of tokens, and two players alternate taking one or more tokens from one of the stacks, and the player who cannot make a move loses. The formal and intense study of Nim culminated in the celebrated Sprague-Grundy Theorem, which is now one of the centerpieces in the theory of impartial combinatorial games. We study a variation on Nim, played on a graph. Graph Nim, for which the theory of Sprague-Grundy does not provide a clear strategy, was originally developed at the University of Colorado Denver. Graph Nim was first played on graphs of three vertices. The winning strategy, and losing position, of three vertex Graph Nim has been discovered, but we will expand the game to four vertices and develop the winning strategies for four vertex Graph Nim. Graph Theory is a markedly visual field of mathematics. It is extremely useful for graph theorists and students to visualize the graphs they are studying. There exists software to visualize and analyze graphs, such as SAGE, but it is often extremely difficult to learn how use such programs. The tools in GeoGebra make pretty graphs, but there is no automated way to make a graph or analyze a graph that has been built. Fortunately GeoGebra allows the use of JavaScript in the creation of buttons which allow us to build useful Graph Theory tools in GeoGebra. We will discuss two applets we have created that can be used to help students learn some of the basics of Graph Theory. The game of thrones is a two-player impartial combinatorial game played on an oriented complete graph (or tournament) named after the popular fantasy book and TV series. The game of thrones relies on a special type of vertex called a king. A king is a vertex, k, in a tournament, T, which for all x in T either k beats x or there exists a vertex y such that k beats y and y beats x. Players take turns removing vertices from a given tournament until there is only one king left in the resulting tournament. The winning player is the one which makes the final move. We develop a winning position and classify those tournaments that are optimal for the first or second-moving player

    Grim Under a Compensation Variant

    Get PDF
    Games on graphs are a well studied subset of combinatorial games. Balance and strategies for winning are often looked at in these games. One such combinatorial graph game is Grim. Many of the winning strategies of Grim are already known. We note that many of these winning strategies are only available to the first player. Hoping to develop a fairer Grim, we look at Grim played under a slighlty different rule set. We develop winning strategies and known outcomes for this altered Grim. Throughout, we discuss whether our altered Grim is a fairer game then the original
    • …
    corecore