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Abstract

Games on graphs are a well studied subset of combinatorial games. Balance and

strategies for winning are often looked at in these games. One such combinatorial

graph game is Grim. Many of the winning strategies of Grim are already known.

We note that many of these winning strategies are only available to the first player.

Hoping to develop a fairer Grim, we look at Grim played under a slighlty different

rule set. We develop winning strategies and known outcomes for this altered Grim.

Throughout, we discuss whether our altered Grim is a fairer game then the original.

iii
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Chapter 1

Introduction

The study of games has become known in pop culture recently with the input of game

shows, where millions of dollars are on the line for winning a relatively simple game.

Results have been found on Jeopardy, and the Price is Right, among others [6]. But,

game theory has been around much longer, dating back to 1713 [7]. Since then, games

were mostly studied independently until Sprague-Grundy [5] developed a theorem in

1939 that allowed games to be studied more generally. We reap the benefits of their

work in this paper. We will be looking specifically at games on graphs.

Graph theory is slightly younger than game theory, being first introduced by Euler

in 1735 via the Königsberg bridges problem [4]. Graph theory today is vital within

the fields of computer science and social networking. Put simply, graph theory is

the study of objects and their connections. Before this year, the most prominent

pop culture example of graph theory would have been the 6 degrees of Kevin Bacon.

But, as of 2020, you can see its effects whenever anyone tests positive for COVID-19.

People that were in direct contact must quarantine, while those two degrees away

may quarantine, and so on.

Graphs are useful for games as they are naturally pictorial. In this paper, we use

graphs as the base of our game Grim. Grim is an subtraction game similar to Nim,
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except Grim is played on graphs. This is how it got the name.

Like the Price is Right or Jeopardy, we will study the winning strategies of Grim.

Unlike in those game shows, the games we study will not depend on probability

or “luck.” We will be able to prove who should win before anyone makes a move,

assuming each player follows a winning strategy throughout the game.

We begin in Chapter 2 by introducing some graph theory definitions as well as

some game theory concepts necessary for our study. In Chapter 3, we look at the

known results on Grim along with some results on the compensation turn order we use

in this paper. Finally, we look at some new results on Grim using our compensation

turn order in Chapter 4. We begin by looking at Grim on specific families of graphs

like paths and cycles and then conclude by examining Grim played on various families

of complete graphs.
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Chapter 2

Graph Theory Definitions

Graph theory is the study of objects and their interactions: who is connected to

whom on social media; which animal eats which in nature; what highway crosses

what road; just to name a few. Unlike the bulk of mathematical areas, the formal

idea of graph theory is a relatively new concept, with most discoveries coming in the

last 50 years. In this chapter we will introduce some basic graph theory terminology

as well as introduce those ideas common to playing games on graphs. The following

definitions are consistent with Introduction to Graph Theory by West[9]. This book

is also useful for those hoping to gain a deeper understanding of graph theory than

is found in this paper.

2.1 Graph Theory Definitions

Definition 2.1.1. A graph G = (V (G), E(G)) is a pair composed of a set of vertices

V (G) and a set of edges E(G), where each element e in E(G) is a pair of vertices;

that is, e = (x, y) for x, y ∈ V (G). If a pair of vertices has an edge, we say those

vertices are adjacent. The size of the vertex set is denoted as |V (G)|, or |V | if the

graph is understood.
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It should be noted that edge pairs do not have to be unique. This leads us to the

following definitions.

Definition 2.1.2. A loop is an edge that connects a vertex to itself: e = (x, x) for

some x ∈ V (G). Multiple edges are the same edge that occur more than once in

the edge set. That is, for e1, e2 ∈ E(G), e1 = e2. For graphs with multiple edges, we

regard E(G) to be a multiset.

The ideas of loops and multiple edges have many practical uses in the study of

graph theory. However, in this paper, we will restrict our view to only simple graphs.

Definition 2.1.3. A simple graph is a graph without loops or multiple edges.

We see can clearly see the difference between a simple graph and a graph with

loops and multiple edges in Figure 2.1.1.

Graphs are often represented by a picture. We may visually represent a graph by

drawing dots for the vertices and edges as lines that connect the appropriate vertices.

x

w

v

t

tx
wx

wvtv

xw

tt

(a) A graph with loops and multiple
edges. The edge set is E(G1) =
{tx, wx, xw,wv, tt, tv}

.

x

w

v

t

tx wx

wvtv

(b) A simple graph. The edge set is
E(G2) = {tx, wx,wv, tv}.

Figure 2.1.1: Two graphs, G1 and G2, that have the same vertex set {t, w, v, x}. No-
tice the graph in Figure 2.1.1a is not simple while the graph depicted in Figure 2.1.1b
is a simple graph.

One of the most fundamental ways to record the interactions between vertices and

edges in a graph is to count the number of edges associated with some vertex.
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Definition 2.1.4. The degree of a vertex x is the number of edges of the form xy

in E(G) for some y in V (G). A pendant vertex is a vertex with degree one. An

isolated vertex is a vertex with degree zero.

We see a graph where its vertices are labeled by their degree in Figure 2.1.2.

1 0

4
2

3

2

Figure 2.1.2: A graph G on six vertices. Each vertex is labeled with its degree. Notice
how the vertex of degree 0 does not have any connecting edges.

Another key idea is the idea of how many “pieces” a graph is composed of. That

is, can we navigate from some vertex to another along a series of edges in the graph

or does no such path exist?

Definition 2.1.5. A graph is connected if, given any vertex x ∈ V (G), there exists

a path to any other vertex y ∈ V (G). If for some vertices x and y there is no path

from x to y in G, then G is said to be disconnected.

In the case that we only want to consider part of a graph, we can restrict our view

to some subset of vertices and edges.

Definition 2.1.6. A subgraph H of a graph G is a graph whose vertex set is some

subset V (H) ⊆ V (G) and edge set E(H) ⊆ E(G) such that e ∈ E(H) if and only if

both endpoints of e lie in V (H).

In particular, we might want to consider a combination of the two previous ideas

and look at connected subgraphs.

Definition 2.1.7. A component of a graph G is any connected subgraph of G that

is not contained in another connected subgraph of G.
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That is, a component is a maximal connected subgraph: a connected subgraph

that cannot be made any larger. The ideas of connectedness and components are

illustrated in Figure 2.1.3.

(a) A connected graph G. (b) A disconnected subgraph H. Note
that H is made up of 2 components.

Figure 2.1.3: A graph G and one of its subgraphs, H. Notice that H does not have
the same vertex set as G and, unlike G, it is not connected.

We may take a graph G and perform one or more operations on the graph to

create a new graph G′.

Definition 2.1.8. The operation of deleting a vertex x from a graph G removes

x from the vertex set V (G) as well as every edge of the form xy, y ∈ V (G), in the

edge set E(G).

The removal of a vertex might result in a graph that is no longer connected, as in

Figure 2.1.4.

(a) A connected graph G with a vertex
identifed in red.

(b) The graph G′ after removing the red
vertex from G. Notice that G′ is com-
posed of three components.

Figure 2.1.4: In Figure 2.1.4a we see a simple graph with a single vertex identified
in red. In Figure 2.1.4b the red vertex has been deleted, which also results in the
removal of any edge connected to that vertex. As a result, the remaining graph is no
longer connected.



2.1. Graph Theory Definitions 7

2.1.9 Families of Graphs

While the above definitions apply to all simple graphs, considering groups of graphs

that have similar structure can often bring broader insight to the problem at hand.

Below we will explore some of the more common groups, or families, of graphs.

A family of graphs is a group of graphs that all have similar structure. Often, we

generate these graphs by specifying some parameter, such at the number of vertices,

and use this to create a predefined visual form. As a note, the number of vertices is

always defined to be any positive integer unless otherwise noted. Let us first look at

one of the more simple family of graphs, path graphs.

Definition 2.1.10. A path graph on n vertices, denoted Pn, is a connected graph

where two vertices have degree 1 and every other vertex has degree 2.

An example of a path of length five is seen in Figure 4.2.3a.

If one adds an edge between the two vertices of degree 1, then the path becomes

a cycle.

Definition 2.1.11. A cycle graph on n > 2 vertices, denoted Cn, is a connected

graph where every vertex has degree 2.

An example of a cycle with eight vertices is seen in Figure 4.2.4c.

We can also take the idea of a cycle and add in a central vertex as well as a series

of edges so that every original vertex is adjacent to this new vertex. This change

would produce a new type of graph: a wheel graph.

Definition 2.1.12. A wheel graph on n > 3 vertices, denoted Wn, is a connected

graph where one vertex, denoted the hub, has degree (n− 1) and every other vertex

has degree 3.

An example of a wheel on five vertices is seen in Figure 4.2.3c.

We may also consider the family of graphs where every vertex is connected to

every other vertex. That is, the edge set is “complete.”
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(a) A path of length five,
P5.

(b) A cycle on eight ver-
tices, C8.

(c) A wheel on five vertices,
W5.

Figure 2.1.5: Examples of some of the common families of graphs. Each has a prede-
fined structure with unique characteristics that makes them ideal to consider when
exploring open problems.

Definition 2.1.13. A complete graph on n vertices, denoted Kn, is a simple graph

in which every vertex has degree n − 1. That is, there is one edge between any two

vertices in Kn.

An example of a complete graph on four vertices is given in Figure 2.1.6a.

We may also separate the vertex set into two parts and connect those vertices

that lie in different partitions.

Definition 2.1.14. A multipartite graph is a graph in which its vertices are divided

into multiple partitions with no edges between vertices of different partitions. A

bipartite graph has the vertices separated into two partitions.

Definition 2.1.15. A complete bipartite graph is a simple bipartite graph such

that there is an edge between two vertices if and only if they are in different partite

sets. For partite sets of size n,m ∈ N respectively, this is denoted Kn,m.

An example of a complete bipartite graph with partitions of three and four vertices

is given in Figure 2.1.6b.

Generalizing this idea of splitting the vertex set into partitions, we can also define

a complete multipartite graph.

Definition 2.1.16. A complete multipartite graph is a simple multipartite graph

such that there is an edge between two vertices if an only if they are in different partite

sets. For partite sets of size t1, t2, . . . , tn ∈ N , we denote this graph as Kt1,t2,...,tn .
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An example of a complete multipartite graph with three partitions is given in

Figure 2.1.6c.

(a) The complete graph on
four vertices, K4.

(b) The complete bipar-
tite graph with partitions of
size three and four, K3,4.

(c) The complete multipar-
tite graph with partitions of
size three, three and two,
K3,3,2.

Figure 2.1.6: Examples of different types of families of complete graphs. Notice that
the idea of “complete” comes from having the maximum number of edges allowed
from the given vertex partitioning.

2.2 Games on Graphs

A game is a form of recreation that is structured. Generally, this structure includes

concepts like rules, players, and teams. We can combine the ideas from Section 2.1

and the general notion of a game to discuss playing games on graphs. The definitions

given below are consistent with those in [2].

2.2.1 Combinatorial Game Theory

As the idea of a game covers a broad spectrum of concepts, we will narrow our focus

to one specific family of games: combinatorial games.

Definition 2.2.2. A game is combinatorial if there are two players who take al-

ternating turns. The winner under normal play is the one that makes the last legal

move.
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As with most work done in combinatorial games, we will focus on games involving

only two players. Here we will address the two players as Player 1 and Player 2, where

Player 1 plays first.

Definition 2.2.3. A game is impartial if, for any given position, Player 1 and Player

2 have the same options.

One example of an impartial game is Nim. Below, we shall consider a simplified

version, wherein players take turn removing either 1 or 2 items from a single pile of

items. The object of the game is to take the last object from the pile. Let’s look at

a simple example with a pile of size six, shown in Figure 2.2.1.

(a) Player 1 removes one
item.

(b) Player 2 matches by re-
moving one item.

(c) Player 1 removes one
item.

(d) Player 2 takes two
items.

(e) Player 1 wins!

Figure 2.2.1: A small game of Nim played with one pile of six items. Items in red
indicate those taken by Player 1 and items in blue indicate those removed by Player
2.

Assume Player 1 takes one item, leaving Player 2 a pile of five items. In Fig-

ure 2.2.1b, Player 2 then also decides to take one item, leaving Player 1 a pile of four

items. In move three, Figure 2.2.1c, we have Player 1 taking one item, leaving three

items for Player 2. In Player 2’s second turn, Figure 2.2.1d, they take two items and

Player 1 wins by taking the final item, as seen in Figure 2.2.1e.

Let us introduce some combinatorial game theory notation to help us analyze the

above example game.
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Definition 2.2.4. [2] A game is in P position if the previous player has a winning

strategy. A game is in N position if the next player has a winning strategy. This

notation has three properties:

1. Every move from a P position goes to an N position.

2. There exists a move from each N position to some P position.

3. The terminal position for the game is a P position.

We should note here that if a game starts in N position, then Player 1 has a

winning strategy, since Player 1 is the next player. Similarly, Player 2 has a winning

strategy for every game in P position.

The game of Nim has been rigorously studied and found that, under optimal play,

this game is in P position. Since this was not the outcome since Player 1 won, we can

assume one of the two players played suboptimally. This leads us to the definition of

optimal play.

Definition 2.2.5. Optimal play means that both players play perfectly. If a player

has a winning strategy, they will take it.

Unsurprisingly, we assume optimal play when we study games like the one posed

above. For this version of Nim, every pile which has a size that is a multiple of 3 is

in P position. Every other pile is N position. Playing optimally, Player 2 can always

use their move to give player 1 a pile of size n where n ≡ 0 (mod 3). They do this

by taking one item when Player 1 takes two and vice versa. It is simple enough to

see this strategy. You can see in Figure 2.2.2b that Player 2 can take two items to

leave Player 1 with pile of size three.

Some games are not as clear cut in determining an optimal strategy for play. For

example, what if we played a game on a graph where, at each turn, we removed a

vertex of degree at least one and the winner was the player who could make the last
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(a) Player 1 starts. (b) Player 2 moves. (c) Player 1 moves. (d) Player 2 wins!

Figure 2.2.2: A game of Nim played optimally. This game consists of one pile of
six objects. While a similar game was played in Figure 2.2.1, this game is played
optimally by both players, making Player 2 the winner.

such move. Is there a strategy for such play? This leads us to the game that is the

primary focus of this research, Grim.

2.2.6 Grim

As noted above, Grim is a game played on a graph where each player chooses a non-

isolated vertex and deletes it from the graph. Let us formally define such a game.

Definition 2.2.7. Grim is an impartial graph game. It is played with two players

where each player deletes a vertex from the current graph on their turn. If any

vertices became isolated due to a vertex deletion, these vertices are also deleted. A

legal move for Grim is the deletion of a vertex. The player to make the last legal

move wins the game.

Definition 2.2.8. Given the current state of the game G, the follower H is the

state of the game after a move. In Grim, the state of the game is a graph, and the

follower is a subgraph.

We note that this was not optimal play on Grim. As stated before, we require

that game be played optimally. Thus it is necessary to look at some known results

on Grim.
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(a) Opening graph on
which Grim is played.

(b) The isolated vertex
deletion rule is applied.

(c) The follower graph after
one move.

Figure 2.2.3: A game of Grim. We see that the first player deletes the red vertex.
This move also removes the green vertex because it becomes an isolated vertex. The
second player chooses either of the remaining vertices and wins the game.



14

Chapter 3

Known Results

The graph game Grim has been explored in two papers, by Adam et al. [1] and

Barretto, Basi, and Miyaki [3]. Here we explore these known results before introducing

our new research on an adapted turn order. Given this adaptation, we will also

considered a paper by Benjamin Gaines and James Welsh [8], which explores, in a

general sense, the idea of variations on turn orders when playing a game.

3.1 Known Results for Grim

First, in [1], Adams et al. find that playing Grim on a weighted graph would be

identical to playing it on an unweighted graph.

Theorem 3.1.1. [1] Let G be a weighted graph with V (G) = v1, . . . , vn and with ti

being the weight of vertex vi, for all i = 1, . . . , n. We denote by G(v1, v2, . . . , vn) the

(t1, t2, . . . , tn)-blowup of the graph obtained by reducing (if possible) the weight of each

vertex of G to one. Then, the outcome of playing Grim on G or on G(v1, . . . , vn) is

the same.

The above result extends to all weighted graphs, allowing us to restrict our view

to simple graphs.
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Adams et al. also used principles of automorphisms to create a series of corollaries

aimed at some common families of graphs as well as a union of two graphs.

Corollary 3.1.2. [1] Let n ∈ N.

1. If n is odd, and n ≥ 3, then Pn is an N position.

2. If n is even, and n ≥ 4, then Cn is a P position.

3. If n is odd, and n ≥ 5, then Wn is an N position.

4. G ∪G is a P position, for all non-empty graphs G.

Notice that three out of the four results depend on the vertex parity in the graph

family. If one could control the parity while they retaining the family of the graph,

they could guarantee a win on every game. An example of controlling the parity is

given in Figure 3.1.1.

(a) The opening graph. (b) Player 2 mimics Player 1’s move.

(c) Player 1 moves. (d) Player 2 wins!

Figure 3.1.1: An example of G∪G. Player 2 simply has to mimic Player 1’s move to
win the game.

Moreover, Adams et al. also developed many results on families of complete graphs,

both the general complete graph as well as bipartite and tripartite complete graphs.

Lemma 3.1.3. [1] Let m,n ∈ N.

1. Kn is in N position if and only if n is even.

2. K1,n is in N position for all |V |.
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3. Assume m,n > 1. Km,n is in N position if and only if |V | is odd.

4. K1,1,n is in N position.

5. Assume n ≥ 2 then K1,2,n is in N position.

6. Assume m,n ≥ 3 then K1,m,n is in N position if and only if |V | is odd.

We see an example of part 3 of Lemma 3.1.3 in Figure 3.1.2.

(a) The opening graph. (b) Player 2 moves. (c) Player 1 wins!

Figure 3.1.2: A game of Grim on K2,3. As per Lemma 3.1.3, this graph is in N
position.

The ideas used in the proofs above were extendable, and in [1] the following general

statement on playing Grim on complete multipartite graphs was given.

Lemma 3.1.4. [1] Let G = Kn1,n2,...,nt, where ni ∈ N for all i = 1, . . . , t.

1. Assume t ≥ 3 and ni ≥ 2, for all i = 2, . . . , t. Then G is in N position if and

only if |V | is odd.

2. Assume n1 = 1, t ≥ 4 and ni ≥ 3, for all i = 2, . . . , t. Then G is in N position

if and only if |V | is odd.

We will see in the next chapter that the idea of vertex parity in these results will

prove useful in proving similar results on a new turn order.

Barreto et al. [3] used many of the above results to develop theorems on four-

partite graphs.

Lemma 3.1.5. [3] Let m,n ∈ N. Then,
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1. K13,n where n ≥ 1, is an N position if and only if |V | is even.

2. K12,2,n where n ≥ 2, is an N position if and only if |V | is even.

3. K12,3,n is an N position for all n ≥ 3.

4. K12,m,n where m,n ≥ 4, is an N position if and only if |V | is odd.

An example of part 1 of Lemma 3.1.5 on K13,2 can be seen in Figure 3.1.3.

(a) The opening graph, K13.2. (b) Player 2 takes a non-singleton vertex.

(c) Player 1 has to make a move on K3. (d) Player 2 wins!

Figure 3.1.3: A game of Grim on K13,2. As per Lemma 3.1.5, this graph is in P
position.

We end this section with two more results on multipartite graphs.

Lemma 3.1.6. [3] For n, t ∈ N, where n, t ≥ 2, K1t,2,n is in N position if and only

if |V | is even.

Lemma 3.1.7. [3] For n ∈ N, where n ≥ 2, K12,22,n is in N position if and only if

|V | is even.

3.2 Known Results on an Alternate Turn Order

for an Impartial Game

The typical turn order in a two person impartial game can be written symbolically as

1, 2, 1, 2, 1, 2, 1, 2, 1, 2, . . . Has it ever seemed like the first person to play in any given
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game has an unfair advantage? For comparison, think when you are choosing teams,

the first person has an advantage because they can choose the very best person for

the activity. They have more options than every person after them. The same is true

in Grim and in other impartial games. The first player has more options in terms

of removing a vertex than the second player, allowing Player 1 to win more games.

However, this seems unfair and some have studied the effects of alternate turn orders

in order to compensate for this, including Gaines and Welsh in [8].

Definition 3.2.1. [8] In the compensation turn order, Player 1 takes the first

move, then Player 2 gets both the second and third moves. The game then returns

to normal alternating order on the fourth move, with Player 1’s turn. The order is

1, 2, 2, 1, 2, 1, 2, . . ., symbolically.

This idea was introduced as a way to make up for the disadvantage Player 2 has

because they go second. The question becomes, does this work? That is, by giving

Player 2 two moves in a row at the start of the game, can this change the overall

outcome of the game? In [8], they showed it had a less balanced effect.

Theorem 3.2.2. [8] Let G be an impartial game, played with the compensation vari-

ant. If the first player can on their first turn go to either a terminal position, or to

some N position with no possible moves to other N positions or terminal positions,

then the first player will win. Otherwise, the second player will win.

Gaines and Welsh go on to use this theorem on the impartial games Chomp and

Nim that show the distinct advantage Player 2 has under the compensation variant.

The theorems below show that point clearly.

Chomp is a combinatorial game where each player takes turns removing a square

from a rectangle of squares. When removing a square, the player also removes every

square above and to the right. The person that takes the last remaining square loses.
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Theorem 3.2.3. [8] Under the compensation variant, for every starting position of

Chomp with at least 3 rows and 3 columns, the second player will win.

Theorem 3.2.4. [8] Under the compensation variant, for every starting position of

Nim with n ≥ 3 heaps where at least two heaps have more than one object, the second

player will win.

An example of Theorem 3.2.4 on three heaps is seen in Figure 3.2.1.

(a) The opening game:
three piles with sizes 2, 2,
and 1.

(b) Player 2’s first move. (c) Player 2’s second move.

(d) Player 1 can only re-
move one item.

(e) Player 2 wins!

Figure 3.2.1: A game of Nim on 3 heaps of size 2,2 and 1. Because of the compensation
variant, Player 2 can leave Player 1 with 2 heaps of size 1, guaranteeing themselves
the victory.

The cases described in these theorems make up the majority of possible games of

Nim and Chomp. This leads us to believe the compensation turn order will affect the

game of Grim in a similar way.
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Chapter 4

New Results

In this section, we will look at some new results on Grim using the compensation

variant. We hoped that this turn order might produce a fairer game of Grim. However,

it seems that the new turn order does the opposite, as we will show.

4.1 New Results on Standard Turn Order

We first note some properties of games under normal rules which are helpful in proving

results about our compensation turn order.

Theorem 4.1.1. Under normal rules of Grim, if a graph G is the disjoint union of

two graphs, G1 and G2, where G1 and G2 are in P position, then G is in P position.

Proof. By Definition 2.2.4, every move from a P position goes to an N position.

Without loss of generality, we say that Player 1’s move creates a follower of G2 that

is in N position. Thus, the follower of G is the disjoint union of a graph in P position

and a graph in N position.

Again, by Definition 2.2.4, there exists a move from each N position to some P

position. Player 2 should take this move on G2, resulting in a follower that is the

disjoint union of 2 graphs both in P position.
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Since this is how the game started, Player 2 can continue to follow this pattern.

By Definition 2.2.4, the terminal position for a graph is in P position. Eventually,

Player 2 will make a move that completely eliminates one of the disjoint graphs, since

they are the only ones that are able to create followers in P position. The follower of

this move is a graph in P position. Since it is now Player 1’s turn and the remaining

graph is P position, Player 2 will win. Since Player 2 has a strategy to win G, G is

in P position.

Corollary 4.1.2. Under normal rules of Grim, if a graph G is the union of 2 graphs,

G1 and G2, where G1 is in P position and G2 is in N position, then G is in N

position.

Proof. By Definition 2.2.4, there exists a move from each N position to some P

position. Player 1 should take this move on G2. Thus, the follower is the disjoint

union of two graphs both in P position. By Theorem 4.1.1, this follower is in P

position. By Definition 2.2.4, every move from a P position must go to an N position.

Thus, G is not in P position and must then be in N position.

4.2 Results on the Compensation Turn Order

From here we will be looking strictly at games under the compensation turn order.

Recall that this allows Player 2 two moves after Player 1’s initial move, then returns

to alternating between Player 1 and Player 2 taking moves until someone is declared

the winner. This leads us to Observation 4.2.1 below.

Observation 4.2.1. By Player 2’s second turn, we can apply known results on P or

N position to the graph at hand, since the turn order is back to the normal alternating

order.

This observation is the basis of proof for the following lemma.
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Lemma 4.2.2. If Player 2 is given a graph in P position on their first turn, then

Player 2 has a winning strategy.

Proof. By the definition of P position, Player 2’s first move creates a follower in N

position. Since the game reverts to standard rules by Player 2’s second turn, Player

2 has a winning strategy.

We will use these ideas to obtain results on multiple families of graphs.

Observation 4.2.3. Note that P4 and P5 can be won in two turns. A player creates

the follower P2 or P3 then finishes the game on the second turn.

Theorem 4.2.4. For all n, Player 2 has a strategy to win Cn.

Proof. For n = 3 or 4, Player 1 creates a path of length 2 or 3, respectively, which

can be won by Player 2 on their first move. For a cycle on 5 or 6 vertices, Player 1

creates P4 or P5, respectively, as followers. These are won by Player 2 on their second

turn as seen by Observation 4.2.3.

Consider Cn with n > 6. Without loss of generality, Player 1 creates the follower

Pn−1. We show that Player 2 has a winning strategy in two moves. If n− 1 is even,

Player 2 removes a vertex to create the follower Pn−1
2
∪ Pn−3

2
. On their second turn

they remove a vertex of degree 1 from the larger path, creating as a follower two

copies of Pn−3
2

.

If n− 1 is odd, then Player 2 removes a vertex to create the follower Pn
2
∪ Pn−4

2
.

On Player 2’s second turn, they remove a vertex of degree 2 from the larger path such

that the resulting follower is two copies of Pn−4
2

. By Corollary 3.1.2, a graph made

up of two disjoint copies of the same graph is in P position. Thus, Player 2 has a

strategy to win Cn.

An example of Theorem 4.2.4 on C8 can be seen in Figure 4.2.1.
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(a) Given a graph C8, Player 1 deletes an
arbitrary vertex to create the follower P7.

(b) Since 8 − 1 = 7 is odd, Player 2
removes a vertex to create the follower
P4 ∪ P2

(c) Player 2 then removes a vertex of de-
gree 2 such that the resulting follower is
P2 ∪ P2.

(d) Player 1 must make a move on a
graph in P position and thus loses.

Figure 4.2.1: An example of the compensation game played on C8 using the strategy
of Theorem 4.2.4.

Theorem 4.2.5. If n is odd and n ≥ 5, then Player 2 has a strategy to win on Wn.

Proof. At the start of the game, Player 1 has two options: (1) they either remove

the hub or (2) they remove a vertex on the exterior cycle. If Player 1 chooses to

remove the original hub, then Player 2 will remove a vertex on the exterior cycle. If

Player 1 removes a vertex on the exterior cycle, then Player 2 should remove the hub.

Regardless, the follower of Player 2’s first turn is a path of length n− 2. Since n was

odd and n ≥ 5, n−2 is odd and n−2 ≥ 3. By Corollary 3.1.2, Pn−2 is in N position.

Since it is Player 2’s turn, Player 2 has a strategy to win the game.

We see an example of Theorem 4.2.5 on W9 can be seen in Figure 4.2.2.

Theorem 4.2.6. For all n > 3, Player 2 has a winning strategy on Pn.

Proof. On Player 1’s first turn, they create one of two scenarios for Player 2: either

a path, or the disjoint union of two paths.

We first address the case where Player 1 creates a single path as a follower. To

play optimally, Player 2 should remove a pendant vertex or a vertex adjacent to a
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(a) Given a graph W9,
Player 1 can delete the hub
or a vertex on the exterior
cycle. In this case, Player 1
deletes an exterior vertex.

(b) Since Player 1 did not
remove the hub, Player 2
removes the hub to create
the follower P7.

(c) Since 7 is odd, P7 is
in N by Theorem 3.1.2.
Thus Player 2 has a win-
ning strategy.

Figure 4.2.2: Here is an example of the Compensation game played on W9 using the
strategy of Theorem 4.2.5.

pendant vertex. Specifically, Player 2 should use their first move to create a path of

odd length k as a follower. By Corollary 3.1.2, Pk is now in N position. Since the

remaining graph is in N position on Player 2’s second turn, Player 2 has a strategy

to win.

Next, we consider the case where Player 1’s initial move created a follower that

is the disjoint union of two paths. We call the disjoint graphs H and Q respectively.

There are three possible cases: Either H and Q are both in P position, H and Q

are both in N position, or one of H and Q is in P position while the other is in N

position.

Case 1: By Theorem 4.1.1, the union of two graphs that are both in P position

is in P position. Since it is Player 2’s first turn, Player 2 has a strategy to win by

Lemma 4.2.2

Case 2: By Definition 2.2.4, there exists a move from each N position to some

P position. Player 2 should take this move on H. Thus the follower is the disjoint

union of two graphs, where one is in P position and the other is in N position. By

Corollary 4.1.2, this follower is in N position. Since the remaining graph is in N

position on Player 2’s second turn, Player 2 has a strategy to win.

Third case: Without loss of generality, assume H is in P position and Q is in N
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position. If the length of Q is greater than 3, then Player 2 should remove either 1 or

2 vertices on Q to create the follower of Q, Pk, where k is odd. By Corollary 3.1.2,

the follower of Q is still in N position. If Q = P3, then Player 2 should remove one

vertex to create P2 as the follower of Q, since P2 is in N position. Thus the follower

of the entire graph is the union of a path in N position and a path in P position.

By Corollary 4.1.2, this follower is in N position. Since it is Player 2’s turn, Player

2 has a winning strategy.

The scenario does exist where Q = P2. If H = P4, then Player 2 should create the

followers P2 ∪ P3, P2 ∪ P2 on his next two turns respectively. Thus Player 1 is given

P2 ∪ P2 which is in P position by Corollary 3.1.2, which means that Player 2 has a

winning strategy.

If H = Pn where n > 4, then Player 2 should create the follower P2 ∪ P2 ∪ Pn−3. We

should quickly note that since H was in P position, n was even by Corollary 3.1.2

and thus (n − 3) is odd. By part 4 of Corollary 3.1.2, P2 ∪ P2 is in P position and

by part 1 of Corollary 3.1.2, Pn−3 is in N position. By Corollary 4.1.2, this follower

is in N position. Since it is Player 2’s turn, Player 2 has a winning strategy.

We have shown that Player 2 has a winning strategy in every case. Therefore,

Player 2 has a winning strategy for all Pn where n > 3.

An example of Theorem 4.2.6 is seen in Figure 4.2.3.

(a) Player 1 removes a non-
pendant vertex from P8.

(b) Since P4 is in P po-
sition, Player 1 removes a
pendant vertex from P3.

(c) P2 is in N position and
P4 is still in P position, so
the entire graph is in N po-
sition on Player 2’s second
turn.

Figure 4.2.3: Here is an example of the Compensation game played on P8 using the
strategy of Theorem 4.2.6, case 3.
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4.2.7 Complete Graphs and Complete Multipartite Graphs

We now move on to complete graphs and complete multipartite graphs. These graphs

were very dependent on the parity of |V | under normal rules. This dependency on

parity also arises under the compensation variant.

Theorem 4.2.8. For n ≥ 4, Player 2 has a winning strategy on Kn if and only if

|V | is even.

Proof. Assume that n = |V | is even. By the nature of complete graphs, regardless of

which vertex Player 1 removes, the follower is Kn−1. Similarly, Player 2 must create

the follower Kn−2. Since n was even, n− 2 is even. By Lemma 3.1.3, this graph is in

N position. Since it is Player 2’s turn, Player 2 has a winning strategy.

Assume that Player 2 has a winning strategy on Kn. By the nature of complete

graphs, Player 1 must create the follower Kn−1. Similarly, Player 2 must create the

follower Kn−2. Player 2 still has a winning strategy on Kn−2. Since we have gone

past our compensation variant and it is player 2’s turn, Kn−2 is in N position. By

Lemma 3.1.3, n− 2 is even. Thus, n is even.

Hence, for n ≥ 4, Player 2 has a winning strategy on Kn if and only if |V | is

even.

(a) K4 (b) K3 (c) K2

Figure 4.2.4: A compensation Game of Grim on K4.

An example of Theorem 4.2.8 can be seen in Figure 4.2.4.

Theorem 4.2.9. Assume m,n > 2. Then Player 2 has a winning strategy on Km,n

if |V | is odd. Moreover, for m,n > 3, if Player 2 has a winning strategy, |V | is odd.
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Proof. Assume that |V | = m+n is odd. Without loss of generality, Player 1 removes a

vertex to create the follower Km−1,n. Player 2, playing optimally, removes a vertex in

the other partition to create the follower Km−1,n−1. Since m,n > 2, then m−1, n−1 >

1. Also, |V | = (m − 1) + (n − 1) = m + n − 2 is odd because (m + n) is odd. By

Lemma 3.1.3, Km−1,n−1 is in N position. Since it is Player 2’s turn, Player 2 has a

winning strategy.

Assume Player 2 has a winning strategy. Then, without loss of generality, Player 1

creates the follower Km−1,n. Player 2 then creates either follower H = Km−1,n−1 or

H = Km−2,n, which in either case has |V (H)| = m + n − 2. Since Player 2 had a

winning strategy, the graph is now in N position. By Lemma 3.1.3, this is only true

if |V (H)| = m + n− 2 is odd. Thus m + n = |V (G)| is odd.

An example of Theorem 4.2.9 can be seen in Figure 4.2.5.

(a) The opening graph.
Player 1 creates the fol-
lower K3,3.

(b) Player 2 creates the fol-
lower K3,2.

(c) The game reverts back
to original rules and Player
2 has a winning strategy on
this graph.

Figure 4.2.5: A game of Grim on K3,4 using the compensation variant. As per
Theorem 4.2.9, Player 2 has a winning strategy.

Theorem 4.2.10. Assume n ≥ 4. Then, Player 2 has a winning strategy on K1,2,n.

Proof. The three possible followers Player 1 can create after their first turn are K2,n,

K1,1,n, and K1,2,n−1. For the first two of these cases, Player 2 wins on their second

turn by removing either the pair of vertices or the two singleton vertices, respectively.

Now, assume Player 1 creates the follower K1,2,n−1. On Player 2’s first turn, they
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should create the follower K1,2,n−2. Since n ≥ 4, then n − 2 ≥ 2. By Lemma 3.1.3,

this is in N position. Since it is Player 2’s turn, Player 2 has a strategy to win.

Theorem 4.2.11. Assume m,n ≥ 4. Then Player 2 has a winning strategy on K1,m,n

if |V | is odd.

Proof. Assume |V | = 1+m+n is odd. The two possible followers Player 1 can create

after their first turn are Km,n and, without loss of generality, K1,m−1,n.

Regardless, Player 2 creates the follower Km−1,n on their first turn. Since 1+m+n

was odd, 1 + m + n− 2 = (m− 1) + n is odd. Also m− 1, n ≥ 1 since m,n ≥ 4. By

Lemma 3.1.3, the graph is in N position. Since it is Player 2’s turn, Player 2 has a

strategy to win.

Theorem 4.2.12. Let G = Kn1,n2,...,nt, where ni ∈ N for all i = 1, . . . , t. Assume

t ≥ 3 and ni ≥ 3, for all i = 2, . . . , t. Then Player 2 has a winning strategy on G if

|V | is odd.

Proof. Without loss of generality, assume Player 1 removes a vertex from the partition

n1. This leaves the follower G1 = K(n1−1),n2,...,nt . Under optimal play, Player 2

should remove a vertex from any partition except n1 − 1. Without loss of generality,

Player 2 removes a vertex from the partition of size n2 to create the follower G2 =

K(n1−1),(n2−1),...,nt . Since n1, n2 ≥ 3 and |V | is odd, then n1−1, n2−1 ≥ 2 and |V |−1

is odd. Thus G2 satisfies Lemma 3.1.4 and is in N position. Since it is Player 2’s

turn, Player 2 has a strategy to win.

Theorem 4.2.13. Let G = Kn1,n2,...,nt, where ni ∈ N for all i = 1, . . . , t. Assume

n1 = 1, t ≥ 4 and ni ≥ 3, for all i = 2, . . . , t. Then Player 2 has a winning strategy

on G if |V | is odd.

Proof. Player 1 has two options to start the game. Player 1 will either remove the

singleton vertex or a vertex from one of the other partitions. Regardless, Player 2
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should take the move that Player one didn’t, either removing the singleton vertex

or removing a vertex from one of the other partitions. In either case, and assuming

without loss of generality the non-singleton vertex removed was from the partition

of size n2, Player 2’s first move creates the follower G1 = Kn2−1,...,nt . Since t ≥ 4,

ni ≥ 3, and |V | is odd, then t − 1 ≥ 3, n2 − 1 ≥ 2, and |V | − 1 is odd. Thus G1

satisfies Lemma 3.1.4 and is in N position. Since it is Player 2’s turn, Player 2 has a

strategy to win.

Theorem 4.2.14. Player 2 has a winning strategy on K13,n, where n ≥ 1, if |V | is

even.

Proof. First, consider the case where n = 1. Then G = K4 and Player 1’s initial

move must create the follower K3. By Lemma 3.1.3, this is in P position. By Lemma

4.2.2 Player 2 has a winning strategy on K4.

Next, let n ≥ 3 and recall |V | is even. To start the game, Player 1 can either

create the follower K12,n or K13,n−1. Now, K12,n is in P position by Lemma 3.1.3 and

K13,n−1 is in P position by Lemma 3.1.5 since n − 1 ≥ 1 and |V | is now odd. By

Lemma 4.2.2 Player 2 has a winning strategy on K13,n, where n ≥ 3.

Since we have proved both cases where |V | is even, then Player 2 has a winning

strategy on K13,n, where n ≥ 1, if |V | is even.

Theorem 4.2.15. Player 2 has a winning strategy on K12,2,n, where n ≥ 3, if |V | is

even.

Proof. Player 1 can create three different followers: K12,2,n−1, K13,n, or K1,2,n. Note

that |V | is odd for all of these followers since initially there were an even number of

vertices. For K12,2,n−1, this graph is in P position by Lemma 3.1.5. Similarly, K13,n is

also in P position by Lemma 3.1.5. By Lemma 4.2.2, Player 2 wins in both of these

cases.
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For the third possible follower that Player 1 made, K1,2,n, Player 2 can create the

follower K1,2,n−1 from this graph. By Lemma 3.1.3, this is in N position on Player

2’s second turn, which means Player 2 has a winning strategy. Thus, Player 2 has a

winning strategy on K12,2,n.

Theorem 4.2.16. Player 2 has a winning strategy on K12,3,n for all n ≥ 5.

Proof. On their first move, Player 1 can create three different followers; K1,3,n, K12,2,n,

or K12,3,n−1.

Assume Player 1 creates as a follower the graph K1,3,n or the graph K12,2,n. Then

Player 2 can create the follower K1,2,n. By Lemma 3.1.3, K1,2,n is in N position. Since

it is Player 2’s second turn, Player 2 has a strategy to win.

Alternatively, assume that Player 1 creates the follower K12,3,n−1. Then Player 2

will create the follower K12,3,n−2 when playing optimally. Since n−2 ≥ 3, this is in N

position by Lemma 3.1.5. Since it is Player 2’s second turn, Player 2 has a strategy

to win.

Since Player 2 has a strategy to win on all cases, Player 2 has a strategy to win

on K12,3,n.

Theorem 4.2.17. Player 2 has a winning strategy on K12,m,n for all n ≥ 5 if |V | is

odd.

Proof. At the opening of the game, Player 1 can create two different followers; K1,m,n

or K12,m−1,n. In both cases |V | is even. By Lemma 3.1.3, K1,m,n is in P position.

By Lemma 3.1.5, K12,m−1,n is in P position. Thus, by Lemma 4.2.2, Player 2 has

a winning strategy on both cases and therefore Player 2 has a winning strategy on

K12,m,n.

An example of Theorem 4.2.17 can be seen in Figure 4.2.6.

Theorem 4.2.18. For n ∈ N , where n ≥ 3, Player 2 has a winning strategy on

K12,22,n if |V | is even.
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(a) In this case, Player 1 removes one of
the singleton vertices, creating the follower
K1,4,5.

(b) By Lemma 3.1.5, this is in P position,
so Player 2 wins.

Figure 4.2.6: A game of Grim on K12,4,5 using the compensation variant. As per
Theorem 4.2.17, Player 2 has a winning strategy.

Proof. Assume |V | is even. With their first move Player 1 can create three possible

followers; K13,2,n, K12,22,n−1 or K12,22,n. Since |V |−1 is odd, K13,2,n is in P position by

Lemma 3.1.6 . Additionally, K12,2,n−1 is in P position by Lemma 3.1.7 since |V | − 1

is odd and (n − 1) ≥ 3. Player 2 has a winning strategy on both these followers

by Lemma 4.2.2. Thus Player 1 should create the follower K12,22,n. However, from

this move, Player 2 can create the follower K12,2,n. By Lemma 3.1.6 this graph is in

N position since |V | − 2 is even. Since it is Player 2’s second turn, Player 2 has a

strategy to win. Thus, Player 2 has a strategy to win on K12,22,n because Player 2

has a strategy to win on all possible followers of K12,22,n.
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