305 research outputs found

    Two-dimensional patterns with distinct differences; constructions, bounds, and maximal anticodes

    Get PDF
    A two-dimensional (2-D) grid with dots is called a configuration with distinct differences if any two lines which connect two dots are distinct either in their length or in their slope. These configurations are known to have many applications such as radar, sonar, physical alignment, and time-position synchronization. Rather than restricting dots to lie in a square or rectangle, as previously studied, we restrict the maximum distance between dots of the configuration; the motivation for this is a new application of such configurations to key distribution in wireless sensor networks. We consider configurations in the hexagonal grid as well as in the traditional square grid, with distances measured both in the Euclidean metric, and in the Manhattan or hexagonal metrics. We note that these configurations are confined inside maximal anticodes in the corresponding grid. We classify maximal anticodes for each diameter in each grid. We present upper bounds on the number of dots in a pattern with distinct differences contained in these maximal anticodes. Our bounds settle (in the negative) a question of Golomb and Taylor on the existence of honeycomb arrays of arbitrarily large size. We present constructions and lower bounds on the number of dots in configurations with distinct differences contained in various 2-D shapes (such as anticodes) by considering periodic configurations with distinct differences in the square grid

    The combinatorics of binary arrays

    Get PDF
    This paper gives an account of the combinatorics of binary arrays, mainly concerning their randomness properties. In many cases the problem reduces to the investigation on difference sets.postprin

    A unified approach to combinatorial key predistribution schemes for sensor networks

    Get PDF
    There have been numerous recent proposals for key predistribution schemes for wireless sensor networks based on various types of combinatorial structures such as designs and codes. Many of these schemes have very similar properties and are analysed in a similar manner. We seek to provide a unified framework to study these kinds of schemes. To do so, we define a new, general class of designs, termed “partially balanced t-designs”, that is sufficiently general that it encompasses almost all of the designs that have been proposed for combinatorial key predistribution schemes. However, this new class of designs still has sufficient structure that we are able to derive general formulas for the metrics of the resulting key predistribution schemes. These metrics can be evaluated for a particular scheme simply by substituting appropriate parameters of the underlying combinatorial structure into our general formulas. We also compare various classes of schemes based on different designs, and point out that some existing proposed schemes are in fact identical, even though their descriptions may seem different. We believe that our general framework should facilitate the analysis of proposals for combinatorial key predistribution schemes and their comparison with existing schemes, and also allow researchers to easily evaluate which scheme or schemes present the best combination of performance metrics for a given application scenario

    On the Derivative Imbalance and Ambiguity of Functions

    Full text link
    In 2007, Carlet and Ding introduced two parameters, denoted by NbFNb_F and NBFNB_F, quantifying respectively the balancedness of general functions FF between finite Abelian groups and the (global) balancedness of their derivatives DaF(x)=F(x+a)−F(x)D_a F(x)=F(x+a)-F(x), a∈G∖{0}a\in G\setminus\{0\} (providing an indicator of the nonlinearity of the functions). These authors studied the properties and cryptographic significance of these two measures. They provided for S-boxes inequalities relating the nonlinearity NL(F)\mathcal{NL}(F) to NBFNB_F, and obtained in particular an upper bound on the nonlinearity which unifies Sidelnikov-Chabaud-Vaudenay's bound and the covering radius bound. At the Workshop WCC 2009 and in its postproceedings in 2011, a further study of these parameters was made; in particular, the first parameter was applied to the functions F+LF+L where LL is affine, providing more nonlinearity parameters. In 2010, motivated by the study of Costas arrays, two parameters called ambiguity and deficiency were introduced by Panario \emph{et al.} for permutations over finite Abelian groups to measure the injectivity and surjectivity of the derivatives respectively. These authors also studied some fundamental properties and cryptographic significance of these two measures. Further studies followed without that the second pair of parameters be compared to the first one. In the present paper, we observe that ambiguity is the same parameter as NBFNB_F, up to additive and multiplicative constants (i.e. up to rescaling). We make the necessary work of comparison and unification of the results on NBFNB_F, respectively on ambiguity, which have been obtained in the five papers devoted to these parameters. We generalize some known results to any Abelian groups and we more importantly derive many new results on these parameters

    On the symmetry of Welch- and Golomb-constructed Costas arrays

    Get PDF
    AbstractWe prove that Welch Costas arrays are in general not symmetric and that there exist two special families of symmetric Golomb Costas arrays: one is the well-known Lempel family, while the other, although less well known, leads actually to the construction of dense Golomb rulers

    Distinct difference configurations: multihop paths and key predistribution in sensor networks

    Get PDF
    A distinct difference configuration is a set of points in Z2 with the property that the vectors (difference vectors) connecting any two of the points are all distinct. Many specific examples of these configurations have been previously studied: the class of distinct difference configurations includes both Costas arrays and sonar sequences, for example. Motivated by an application of these structures in key predistribution for wireless sensor networks, we define the k-hop coverage of a distinct difference configuration to be the number of distinct vectors that can be expressed as the sum of k or fewer difference vectors. This is an important parameter when distinct difference configurations are used in the wireless sensor application, as this parameter describes the density of nodes that can be reached by a short secure path in the network. We provide upper and lower bounds for the k-hop coverage of a distinct difference configuration with m points, and exploit a connection with Bh sequences to construct configurations with maximal k-hop coverage. We also construct distinct difference configurations that enable all small vectors to be expressed as the sum of two of the difference vectors of the configuration, an important task for local secure connectivity in the application
    • …
    corecore