274 research outputs found

    Combinatorial characterization of the Assur graphs from engineering

    Get PDF
    AbstractWe introduce the idea of Assur graphs, a concept originally developed and exclusively employed in the literature of the kinematics community. This paper translates the terminology, questions, methods and conjectures from the kinematics terminology for one degree of freedom linkages to the terminology of Assur graphs as graphs with special properties in rigidity theory. Exploiting the recent works in combinatorial rigidity theory we provide mathematical characterizations of these graphs derived from ‘minimal’ linkages. With these characterizations, we confirm a series of conjectures posed by Offer Shai, and offer techniques and algorithms to be exploited further in future work

    Symmetry adapted Assur decompositions

    Get PDF
    Assur graphs are a tool originally developed by mechanical engineers to decompose mechanisms for simpler analysis and synthesis. Recent work has connected these graphs to strongly directed graphs, and decompositions of the pinned rigidity matrix. Many mechanisms have initial configurations which are symmetric, and other recent work has exploited the orbit matrix as a symmetry adapted form of the rigidity matrix. This paper explores how the decomposition and analysis of symmetric frameworks and their symmetric motions can be supported by the new symmetry adapted tools.Comment: 40 pages, 22 figure

    Assur decompositions of direction-length frameworks

    Get PDF
    A bar-joint framework is a realisation of a graph consisting of stiff bars linked by universal joints. The framework is rigid if the only bar-length preserving continuous motions of the joints arise from isometries. A rigid framework is isostatic if deleting any single edge results in a flexible framework. Generically, rigidity depends only on the graph and we say an Assur graph is a pinned isostatic graph with no proper pinned isostatic subgraphs. Any pinned isostatic graph can be decomposed into Assur components which may be of use for mechanical engineers in decomposing mechanisms for simpler analysis and synthesis. A direction-length framework is a generalisation of bar-joint framework where some distance constraints are replaced by direction constraints. We initiate a theory of Assur graphs and Assur decompositions for direction-length frameworks using graph orientations and spanning trees and then analyse choices of pinning set

    Rigidity of Linearly Constrained Frameworks

    Get PDF
    We consider the problem of characterising the generic rigidity of bar-joint frameworks in R d in which each vertex is constrained to lie in a given affine subspace. The special case when d = 2 was previously solved by I. Streinu and L. Theran in 2010. We will extend their characterisation to the case when d ≥ 3 and each vertex is constrained to lie in an affine subspace of dimension t, when t = 1, 2 and also when t ≥ 3 and d ≥ t(t−1). We then point out that results on body-bar frameworks obtained by N. Katoh and S. Tanigawa in 2013 can be used to characterise when a graph has a rigid realisation as a d-dimensional body-bar framework with a given set of linear constraints

    Rigidity through a Projective Lens

    Get PDF
    In this paper, we offer an overview of a number of results on the static rigidity and infinitesimal rigidity of discrete structures which are embedded in projective geometric reasoning, representations, and transformations. Part I considers the fundamental case of a bar−joint framework in projective d-space and places particular emphasis on the projective invariance of infinitesimal rigidity, coning between dimensions, transfer to the spherical metric, slide joints and pure conditions for singular configurations. Part II extends the results, tools and concepts from Part I to additional types of rigid structures including body-bar, body−hinge and rod-bar frameworks, all drawing on projective representations, transformations and insights. Part III widens the lens to include the closely related cofactor matroids arising from multivariate splines, which also exhibit the projective invariance. These are another fundamental example of abstract rigidity matroids with deep analogies to rigidity. We conclude in Part IV with commentary on some nearby areas
    • …
    corecore