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a b s t r a c t

We introduce the idea of Assur graphs, a concept originally devel-
oped and exclusively employed in the literature of the kinemat-
ics community. This paper translates the terminology, questions,
methods and conjectures from the kinematics terminology for one
degree of freedom linkages to the terminology of Assur graphs as
graphs with special properties in rigidity theory. Exploiting the
recent works in combinatorial rigidity theory we provide mathe-
matical characterizations of these graphs derived from ‘minimal’
linkages. With these characterizations, we confirm a series of con-
jectures posed by Offer Shai, and offer techniques and algorithms
to be exploited further in future work.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Working in the theory of mechanical linkages, the concept of ‘Assur groups’ was developed by
Leonid Assur (1878–1920), a professor at the Saint-Petersburg Polytechnical Institute. In 1914 he
published a treatise (reprinted in [2]) entitled Investigation of plane bar mechanisms with lower pairs
from the viewpoint of their structure and classification. In the kinematics literature it is common
to introduce ‘Assur groups’ (selected groups of links) as special minimal structures of links and
joints with zero mobility, from which it is not possible to obtain a simpler substructure of the
same mobility [13]. Initially Assur’s paper did not receive much attention, but in 1930 the well
known kinematician I.I. Artobolevskiĭ, a member of the Russian academy of sciences, adopted Assur’s
approach and employed it in his widely used book [1]. From that time on Assur groups have been
widely employed in Russia and other eastern European countries, while their use in the west is not
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so common. However, from time to time Assur groups are reported in research papers for diverse
applications such as: position analysis of mechanisms [11]; finding dead-center positions of planar
linkages [13] and others.
The mechanical engineering terminology for linkages (kinematics) and their standard counting

techniques are introduced via an example in the next section. Central to Assur’s method is the decom-
position of complex linkages into fundamental, minimal pieces whose analyses could then bemerged
to give an overall analysis. Many of these approaches for Assur groups were developed from a range
of examples, analyzed geometrically and combinatorially, but never defined withmathematical rigor.
In parallel, rigidity of bar and joint structures as well as motions of related mechanisms have been

studied for several centuries by structural engineers and mathematicians. Recently (since 1970) a
focused development of a mathematical theory using combinatorial tools was successful in many
applications. For example for planar graphs there is a simple geometric duality theory, which, if
applied to mechanisms and frameworks yields a relation between statics and kinematics: any locked
planar mechanism is dual to an unstable planar isostatic framework (determinate truss) [14,6].
The purpose of this paper is twofold. First, we want to draw together the vocabulary and questions

of mechanical engineering with the rigidity theory terminologies of engineering and mathematics.
Second,wewant to apply themathematical tools of rigidity theory, including the connections between
statics and kinematics, to give precision and new insights into the decomposition and analysis of
mechanical linkages.
Themathematical tools we need are briefly sketched with references provided in Sections 2.3–2.7.

Our main result is the description of Assur graphs (our term for Assur groups) in Engineering terms
(Sections 2.1 and 2.2) and its reformulation in mathematical terms. We show that our mathematical
reformulation allows us in a natural way to embed Assur’s techniques in the theory of frameworks
(Section 3) and bring the results back to linkages. In the process we verify several conjectured
characterizations presented byOffer Shai in his talk concerning the generation of Assur graphs and the
decomposition of linkages into Assur graphs, at the 2006 ViennaWorkshop on Rigidity and Flexibility
Section 3.1. We also give algorithmic processes for decomposing general linkages into Assur graphs,
as well as for generating all Assur graphs (Sections 3.2 and 3.3).
In a second paper [15], we will apply the geometric theory of bar-and-joint framework rigidity

in the plane to explore additional properties and characterizations of Assur graphs. This exploration
includes singular (stressed) positions of the frameworks, explored using reciprocal diagrams, and the
introduction of ‘drivers’, which appear in passing in the initial example in the next section.

2. Preliminaries

In the first two sub-sections we present the mechanical engineering vocabulary, problems and
approaches through an example. These offer the background and the motivation for the concepts of
the paper, but do not yet give the formal mathematical definitions. In the remaining five sub-sections
we give the framework basics needed to mathematically describe these approaches.

2.1. Linkages and Assur graphs

A linkage is a mechanism consisting of rigid bodies, the links, held together by joints. Since we only
consider linkages in the plane, all our joints are pin joints, or pins. A complex linkagemay be efficiently
studied by decomposing it into simple pieces, the Assur groups. (Engineers use the termgroup tomean
a specified set of links. In mathematics the word group is used for an algebraic structure, but most of
the tools we will use come from graph theory, so the word graph seems more natural and we will use
it as soon as we start our mathematical section). We introduce these ideas via an example.
Fig. 1 depicts an excavator attached with a linkage system. In the following, we illustrate how the

schematic drawing of this system is constructed and how it is decomposed into Assur groups.
In order to get a uniform scheme, termed structural scheme, it is common to represent all the

connections between the links by revolute joints as appears in Fig. 2. Here joints 01 and 03 attach
the excavator to the vehicle (fixed ground) and these special joints are marked with a small hatched
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Fig. 1. The excavator with its kinematic system.

Fig. 2. The unified structural scheme of the kinematic system of the excavator.

triangle, and are called pinned joints. All other joints are called inner joints. A link which can be altered
(e.g. by changing its length) is called a driving link. A driving link can be thought of as driving or
changing the distance between its endpoints like the pistons in our excavator example, whichmay be
modeled in the structural scheme by a rotation of an inserted link 1.
Once the engineering system is represented in the structural scheme, to start the analysis, all the

driving links are deleted and replaced by pinned joints (mathematically speaking the driving links are
contracted and their endpoints identified). In the current example, links 1 and 4 are deleted and joints
A and D are pinned. Then, the system is decomposed into three Assur groups, each consisting of two
links, one inner joint and two pinned joints. In the literature the Assur groups of this type are referred
to as dyads [12]. The order of the decomposition is important. If an inner joint of a group, G1, becomes
a pinned joint in group G2, then G1 should precede G2.
In our example (see Fig. 3), the unique order of decomposition is: Dyad1 = {2, 3}; Dyad2 = {5, 6};

Dyad3 = {7, 8}.

2.2. Degree of freedom of a mechanism: Grübler’s equation

The degree of freedom (DOF) of a linkage is the number of independent coordinates or
measurements required to define its position.
In mechanical engineering [12], Grübler’s equation relates the (least number of internal) degrees

of freedom F of a linkage mechanism to the number L of links and the number J of joints in the
mechanism. In the plane, if Ji is the number of joints from which i links emanate, i ≥ 2 then

F = 3(L− 1)− 2
∑

(i− 1)Ji. (1)
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Fig. 3. Assur group decomposition of the structural scheme of the kinematic system of the excavator.

Fig. 4. In some cases Grübler’s equation provides a false answer (a), due to an overcounted subgraph. In others (b) it correctly
predicts a pinned isostatic framework (determinate truss).

In the example above L = 9 because the fixed ground is considered a link, and
∑
(i − 1)Ji = 11,

because the revolute joint E is counted twice as it pins links 5, 6, and 7. By Grübler’s equation we
get F = 3(9 − 1) − 2 · 11 = 2, which is correct as there are two driving links (two distances being
controlled). If these two driving links are removed and their ends pinned (identified) as in the example
analysis, we have only 7 links left and the number of revolute joints is now 9, so F = 0. This is another
indication that the drivers work independently.
Note that Grübler’s equation only gives a lower bound on the DOF and there are many cases where

the actual DOF is larger than the predicted one [12]. If a linkage contains a sub-collection of links
pinned in such a way among themselves that the Grübler count is negative for the sub-collection,
then the predictedDOF for the linkagemight be smaller than the actual DOF (see Fig. 4a). This situation
can be detected and corrected by combinatorial means as we will describe in Laman’s Theorem, see
Section 2.5 Theorem 1.
Counting techniques, however, cannot detect special geometries, e.g. parallelism or symmetry of

links, which also might lead to a false Grübler DOF prediction. Wewill examine this type of geometric
singularity of a combinatorially correct graph in [15].

2.3. Frameworks

For a linkage in which all the links are bars, with revolute joints at the two endpoints of the bar, we
can rewrite Grübler’s equation in terms of graph theory, by introducing a graph whose vertices, V , are
the joints and whose edges, E, are the bars. With Vi denoting the set of vertices of valence i, Grübler’s
equation becomes

F = 3(|E| − 1)− 2
∑

(i− 1)Ji = 3(|E| − 1)− 2
∑
i|Vi| + 2

∑
|Vi|

= 3|E| − 3− 4|E| + 2|V | = 2|V | − 3− |E|.

So if the edges of a graph embedded in the plane are interpreted as rigid bars and the vertices as
revolute joints, the graph needs to have at least 2|V | − 3 edges in order to have no internal degrees
of freedom, an observation made already by Maxwell. The count 2|V | − 3 will be central to the rest of
the paper.
By a framework we mean a graph G = (V , E) together with a configuration p of V into Euclidean

space, for our purpose the Euclidean plane. We will always assume that the two ends of an edge (a
bar) are distinct points. A motion of the framework is a displacement of the vertices which preserves
the distance between adjacent vertices, and a framework is rigid if the only motions which it admits
arise from congruences.
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Let us assume that the location pi of a vertex is a continuous function of time, so that we can
differentiate with respect to time. If we consider the initial velocities, p′i , of the endpoints pi of a single
edge (i, j) under a continuous motion of a framework, then, to avoid compressing or extending the
edge, it must be true that the components of those velocities in the direction parallel to the edge are
equal, i.e.

(pi − pj) · (p′i − p′j) = 0. (2)
A function assigning vectors to each vertex of the framework such that Eq. (2) is satisfied at each edge
is called an first-order motion. If the only first-order motions are trivial, that is, they arise from first-
order translations or first-order rotations of R2, then we say that the framework is first-order rigid in
the plane. First-order rigidity implies rigidity, see for example [5].
In our excavator example not all links are bars. In the structural scheme link 8 is modeled by a bar

because it contains only two pins, while link 3, which contains 5 pins appears as a ‘‘body’’. We can
replace such a body by a rigid subframework on these 5 vertices (or more). In general, any linkage
consisting of rigid bodies held together by pin joints can be modeled as a framework by replacing the
bodies with rigid frameworks.

2.4. The rigidity matrix

Any graph G can be considered a subgraph of the complete graph Kn on the vertex set V =
{1, . . . , n}, where n is large enough. Let p be a fixed configuration (embedding) of V into R2.
Eq. (2) defines a system of linear equations, indexed by the edges (i, j), in the variables for the

unknown velocities p′i . The matrix R(p) of this system is a real n(n − 1)/2 by 2nmatrix and is called
the rigidity matrix. As an example, we write out coordinates of p and of the rigidity matrix R(p), in the
case n = 4.

p = (p1, p2, p3, p4) = (p11, p12, p21, p22, p31, p32, p41, p42);
p11 − p21 p12 − p22 p21 − p11 p22 − p12 0 0 0 0
p11 − p31 p12 − p32 0 0 p31 − p11 p32 − p12 0 0
p11 − p41 p12 − p42 0 0 0 0 p41 − p11 p42 − p12
0 0 p21 − p31 p22 − p32 p31 − p21 p32 − p22 0 0
0 0 p21 − p41 p22 − p42 0 0 p41 − p21 p42 − p22
0 0 0 0 p31 − p41 p32 − p42 p41 − p31 p42 − p32

 .
A framework (V , E, p) is infinitesimally rigid (in dimension 2) if and only if the submatrix of R(p)

consisting of the rows corresponding to E has rank 2n − 3. We say that the vertex set V is in generic
position if the determinant of any submatrix of R(p) is zero only if it is identically equal to zero in
the variables p′i . For a generically embedded vertex set, linear dependence of the rows of R(p) is
determined by the graph induced by the edge set under consideration. The rigidity properties of a
graph are the same for any generic embedding. A graph G on n vertices is generically rigid if the rank
ρ of its rigidity matrix RG(p) is 2n − 3, where RG(p) is the submatrix of R(p) containing all rows
corresponding to the edges of G, for a generic embedding of V . The (generic) DOF of G is defined to be
2n− 3− ρ.

2.5. Results for the plane

Linear dependence of the rows of the rigidity matrix defines a matroid on the set of rows and for
generic configurations we speak about independent edge sets rather than independent rows of R(p).
For a generic embedding of n vertices into R2 we call the matroid on the complete graph obtained
from R(p) the generic rigidity matroid in dimension 2 on n vertices,R2(n).
The following theorem characterizesR2(n).

Theorem 1 (Laman [9]). The independent sets of R2(n) are those sets of edges which satisfy Laman’s
condition:

|F | ≤ 2|V (F)| − 3 for all F ⊆ E, F 6= ∅. (3)
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Fig. 5. Building up an independent set of edges by: 2-valent vertex (a) and edge-split (b).

Fig. 6. A Henneberg sequence constructing an isostatic graph.

Laman’s Theorem was proved in 1970 and it was this theorem that promoted the use of matroids
to attack rigidity questions. There are many equivalent axiom systems known for matroids. These can
be used to reveal structural properties of various types and their relationships. The fact that matroids
are exactly those structures for which independent sets can be constructed greedily has important
algorithmic consequences.
From the count condition in the inequalities (3) for independent edge sets it is straight forward to

deduce count conditions for bases of R2(n) (edge sets inducing minimally rigid or isostatic graphs),
as well as for minimally dependent sets, or circuits, which will play a fundamental role in our analysis
and will be treated in the next section.
Independent sets of R2(n)may be constructed inductively [17]. Given an independent edge set E

in R2(n), we can extend E by new edges provided that the inequalities (3) are not violated. Starting
with an independent set (e.g. a single edge):

(a) We can attach a new vertex v by two new edges x = (v, u) and y = (v,w) to the subgraph of G
induced by E and E ∪ {x, y} is independent, see Fig. 5a. This is also called 2-valent vertex addition.

(b) Similarly, we can attach a new vertex v by three new edges to the endpoints of an edge e ∈ E plus
any other vertex in the subgraph of G induced by E, and E \ e∪{x, y, z} is independent, see Fig. 5b.
This operation is called edge-split, because the new vertex v is thought of as splitting the edge e.

TheseHenneberg techniques developed in [17] have become standard in rigidity theory, see also [7],
and when we resort to ‘‘the usual arguments’’ within some of the proofs to come, we have these
standard proof techniques in mind. For further reference we state the following well known result.

Theorem 2 (Henneberg [17]). Any independent set in R2(n) can be obtained from a single edge by a
sequence of 2-valent vertex additions and edge-splits.

Fig. 6 illustrates a sequence described in Theorem 2.

2.6. Rigidity circuits

Minimally dependent sets, or circuits, in R2(n) are edge sets C satisfying |C | = 2|V (C)| − 2 and
every proper non-empty subset of C satisfies inequality (3). Note that these circuits, called rigidity
circuits, always have an even number of edges.Wewill, as is commonly done, not distinguish between
edge sets and the graphs they induce.
Similarly to the inductive constructions of independent sets (see Fig. 5), all circuits in R2(n) can

be constructed from a tetrahedron (the complete graph on four vertices) by two simple operations,
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Fig. 7. 2-sums taken along the lined up edge pairs combine circuits into a larger circuit.

Fig. 8. Framework (a) is pinned isostatic because framework (b) is isostatic.

see [3], namely edge-split as in Fig. 5b, and 2-sum, where the 2-sumof two (disjoint) graphs is obtained
by ‘‘gluing’’ the graphs along an edge and removing the glued edge, see Fig. 7.

Theorem 3 (Berg and Jordan [3]). Any circuit inR2(n) can be obtained from K4 by a sequence edge-splits
and 2-sums.

2.7. Isostatic pinned framework

Given a framework associated with a linkage, we are interested in its internal motions, not the
trivial ones, so following themechanical engineers we pin the framework by prescribing, for example,
the coordinates of the endpoints of an edge, or in general by fixing the position of the vertices of some
rigid subgraph, see Fig. 8. We call these vertices with fixed positions pinned, the others inner. (Inner
vertices are sometimes called free or unpinned in the literature.) Edges among pinned vertices are
irrelevant to the analysis of a pinned framework. We will denote a pinned graph by G(I, P; E), where
I is the set of inner vertices, P is the set of pinned vertices, and E is the set of edges, where each edge
has at least one endpoint in I .
A pinned graph G(I, P; E) is said to satisfy the Pinned Framework Conditions if |E| = 2|I| and for all

subgraphs G′(I ′, P ′; E ′) the following conditions hold:

1. |E ′| ≤ 2|I ′| if |P ′| ≥ 2,
2. |E ′| ≤ 2|I ′| − 1 if |P ′| = 1, and
3. |E ′| ≤ 2|I ′| − 3 if P ′ = ∅.

We call a pinned graph G(I, P; E) pinned isostatic if E = 2|I| and G̃ = G∪KP is rigid as an unpinned
graph, where KP is a complete graph on a vertex set containing all pins (but no inner vertices). In other
words, we ‘‘replace’’ the pinned vertex set by a complete graph containing the pins and call G(I, P; E)
isostatic, if choosing any basis in that replacement produces an (unpinned) isostatic graph.
A pinned graph G(I, P; E) realized in the plane, with P for the pins, and p for all the vertices, is a

pinned framework. A pinned framework is rigid if the matrix RG̃ has rank 2|I|, where RG̃ is the rigidity
matrix of G̃with the columns corresponding to the vertex set of Kp removed, independent if the rows
of RG̃ corresponding to E are independent, and isostatic, if it is rigid and independent. The vertices I of
a pinned framework are in generic position if any submatrix of the rigidity matrix is zero only if it is
identically equal to zero with the coordinates of the inner vertices as variables. The coordinates of the
pins are prescribed constants.
Fig. 8 shows an example of a pinned isostatic G and a corresponding basis Ĝ of G̃.
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It is common in engineering to choose pins in advance and their placement Pmight not be generic,
in fact not even in general position (no three points collinear), as it is sometimes necessary to have all
pins on a line. The following result shows that this is not a problem.

Theorem 4. Given a pinned graph G(I, P; E), the following are equivalent:
(i) There exists an isostatic realization of G.
(ii) The Pinned Framework Conditions are satisfied.
(iii) For all placements P of P with at least two distinct locations and all generic positions of I the resulting

pinned framework is isostatic.

Proof. Let G̃ = G ∪ KP ′P ′ k P , and F a maximal independent edge set of KP ′ . Then by Theorem 1 we
deduce that E∪F is isostatic if and only if the Pinned Framework Conditions are satisfied, so (i)⇔ (ii).
In order to show (ii)⇒ (iii)we first show thatwe can extend F to F∪E by aHenneberg sequence of

2-valent vertex additions and edge-splits (see Fig. 5). To this end we de-construct G̃ first by removing
inner vertices as follows. Assume that |I| > 1. Since |E| = 2|I| and I spans at most 2|I| − 3 edges, we
must have at least three edges joining the set of inner vertices I to the pinned vertices P . Therefore, if
we sum over the valence of inner vertices, and denote the set of edges with both endpoints in I by Ei,
the ones with one endpoint in I by Ep, we obtain

∑
val(i) = 2|Ei| + |Ep| = 2|I| + |Ei| ≤ 4|I| − 3. So

there will be some inner vertices of valence 2 or 3. If at this stage there is some vertex of degree 2, we
can just remove it, to create a smaller graph with the same isostatic count. If there is some vertex of
degree 3, then by the usual arguments [7,17], it can be removed, and replaced by a new edge joining
two of its neighbors, which were not yet joined in a remaining rigid subgraph (e.g. not both pinned),
to create a smaller subgraph with the isostatic count. This produces a reverse sequence of smaller and
smaller isostatic graphs until we have no inner vertices.
To obtain a realization, place P in an arbitrary position Pwith at least two distinct vertices. Create

an isostatic graphwhose vertex set contains P , by, for example, ordering the vertices in P with distinct
positions arbitrarily, P = {p1, p2, . . .}, adding edges between consecutive vertices and attaching an
extra vertex, p0 by edges (p0, pi). This graph is clearly isostatic, provided the point p0 is not placed on
the line through pi and pi+1 for any i, because it has the correct edge count and is rigid since it consists
of a string of non-collinear triangles.
To complete the proof, we work back up the sequence of subgraphs we created in the de-

construction process. We assume the current graph is realized as isostatic. When the next graph is
created by adding a 2-valent vertex, then adding such a vertex in any position except on the line
joining its two attachments gives a new isostatic realization.
When the next graph is created by an edge-split, note that at least one of the neighbors of the

new vertex is inner, so this added inner vertex can be placed in a generic position ensuring that the
three new attachments are not collinear. Therefore, by the usual arguments [7,17], this insertion is
also isostatic when placed along the line of the bar being removed, and therefore also when placed in
any generic position. Since (iii) trivially implies (i), the proof is complete. �

A pinned graph G(I, P; E) satisfying the Pinned Framework Conditions must have at least two pins
and in every isostatic realization of G there must be at least two distinct pin locations. Placing all pins
in the same location never yields an isostatic framework, but we can make an important observation
about the DOF of such a ‘‘pin collapsed’’ framework.

Theorem 5. Let G(I, P; E) be a pinned graph satisfying the Pinned Framework Conditions. Identifying the
pinned vertices to one vertex p∗ yields a graph G∗(V , E), V = I

⋃
{p∗} and the DOF of G∗ is one less than

the number of rigidity circuits contained in G∗.

Proof. Since |E| = 2|I| = 2|V | − 2, G∗ contains too many edges to be isostatic. If G∗ is rigid, it is
overbraced by exactly one edge, hence contains exactly one rigidity circuit. If Gp is not rigid, each of
the rigidity circuits in G∗ must contain p∗. If two rigidity circuits intersected in a vertex other than p∗,
the union of their edge sets, together with the pinned subgraph would violate the Pinned Subgraph
Conditions. Therefore all circuits in G∗ have exactly the vertex p in common. Removing exactly one
edge from each circuit yields a basis for G∗ inR(G∗), establishing the desired connection between the
DOF and the number of circuits. �
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3. Characterizations of Assur graphs

We start with two citations from the mechanical engineering literature as motivation for our
combinatorial conditions. The following definition appears in [20]: ‘‘An Assur group is obtained from
a kinematic chain of zero mobility by suppressing one or more links, at the condition that there is no
simpler group inside’’. In [16] we find: ‘‘An element of an Assur group is a kinematic chain with free
or unpaired joints on the links which when connected to a stationary link will have zero DOF. A basic
rigid chain is a chain of zero DOF and whose subchains all have DOF greater than zero. In other words
an element of an Assur group is a basic rigid chain with one of its links deleted’’.
These descriptions from the engineering literature are not definitions in the mathematical sense,

but rather use ‘minimality’ informally, as in the original work of Assur. We are now ready to give a
formal definition by confirming a series of equivalent combinatorial characterizations of Assur graphs.
These statements are new, and (iii) and (iv) come from the conjectures offered by Offer Shai at the
workshop.

3.1. Basic characterization of Assur graphs

Theorem 6. Assume G = (I, P; E) is a pinned isostatic graph. Then the following are equivalent:
(i) G = (I, P; E) is minimal as a pinned isostatic graph: that is for all proper subsets of vertices I ′ ∪ P ′,
I ′ ∪ P ′ induces a pinned subgraph G′ = (I ′ ∪ P ′, E ′) with |E ′| ≤ 2|I ′| − 1.

(ii) If the set P is contracted to a single vertex p∗, inducing the unpinned graph G∗ with edge set E, then
G∗ is a rigidity circuit.

(iii) Either the graph has a single inner vertex of degree 2 or each time we delete a vertex, the resulting
pinned graph has a motion of all inner vertices (in generic position).

(iv) Deletion of any edge from G results in a pinned graph that has a motion of all inner vertices (in generic
position).

Proof. (i) implies (iv). If we delete an edge, there must be a motion by the count. If there is a set
of inner vertices that are not moving, in generic position, then these vertices, and their edges to the
pinned vertices, must form a proper isostatic pinned subgraph contradicting condition (i).
(iv) implies (iii). Removing an edge with an endpoint of valence 2 produces a graphwith a pendant

edge. This must be the only inner vertex, since any other inner vertices are not moving, contradicting
(iv). Since removing a single edge results in a motion of all inner vertices, removing all edges incident
with one particular vertex results in a framework with a motion on all the remaining vertices.
Conversely, (iii) implies (i) If the graph contains aminimal proper pinned subgraph, then removing

any vertex outside of this subgraph will produce a motion at most in the vertices outside of the
subgraph. This contradicts (iii).
(i) is equivalent to (ii). If G = (V , P; E) is a pinned isostatic graph, then identifying the vertices

in P to a single vertex p∗ yields a graph G∗ = (V ∗, E∗) with |E∗| = 2(|V | + 1) = |V ∗| − 2, so G∗ is
dependent and if the minimality condition in (i) is satisfied, it must be a rigidity circuit. Conversely,
if G∗ is a rigidity circuit, we can pick an arbitrary vertex of G∗ and call it p∗. Splitting p∗ into a vertex
set P , |P| ≥ 2, (where P may have as many vertices as the valence of p∗ in G∗ allows) and specifying
for each edge with endpoint p∗ a new endpoint from P so that no isolated vertices are left, yields an
isostatic pinned framework satisfying the minimality condition. �

This theorem provides a rigorous mathematical definition: an Assur graph is a pinned graph
satisfying one of the four equivalent conditions in Theorem 6.
Condition (i) is a refinement of the Grübler count (1), in a form which is now necessary and

sufficient.
Condition (ii) translates theminimality condition tominimal dependence inR2(n) and thus serves

as a purely combinatorial description of Assur graphs and may be checked by fast algorithms [8,10].
Conditions (iii) and (iv) are similar in nature. Condition (iii) provides the engineer with a quicker

check for the Assur property for smaller graphs than (iv), since there are fewer vertices than edges
to delete. However, condition (iv) tells the engineer that a driver inserted for an arbitrary edge will
(generically) move all inner vertices. We will expand on this property in [15].



1100 B. Servatius et al. / European Journal of Combinatorics 31 (2010) 1091–1104

Fig. 9. Assur graphs.

Fig. 10. Corresponding circuits for Assur graphs.

Fig. 11. Decomposable—not Assur graphs.

Fig. 12. The first step of a decomposition for isostatic frameworks in 11—with identified subcircuit(s).

Some examples of Assur graphs are drawn in Fig. 9 and their corresponding rigidity circuits in
Fig. 10.

3.2. Decomposition of general isostatic frameworks

We now show that a general isostatic framework can be decomposed into a partially ordered
set of Assur graphs. The given framework can be re-assembled from these pieces by a basic linkage
composition. Fig. 11 shows isostatic pinned frameworks and Fig. 12 indicates their decomposition
while Fig. 13 indicates their re-assembly.
Given two linkages as pinned frameworks H = (W ,Q ; F) and G = (V , P; E) and an injective map

C : Q → V ∪ P , the linkage composition C(H,G) is the linkage obtained from H andW by identifying
the pins Q of H with their images C(Q ).

Lemma 1. Given two pinned isostatic graphs H = (W ,Q , F), G = (V , P; E), the composition C(H,G)
creates the new composite pinned graph: C = (V ∪W , P, E ∪ F) which is also isostatic.

Proof. By the counts, we have |F | = 2|W |, and |E| = 2|V |, so |E ∪ F | = 2|W ∪ V |. A similar analysis
of the subgraphs confirms the isostatic status. �
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Fig. 13. Recomposing the pinned isostatic graphs in Fig. 11 from their Assur components.

Fig. 14. An isostatic pinned framework (a) has a unique decomposition into Assur graphs (b) which is represented by a partial
order or Assur scheme (c).

Under this operation, the Assur graphs will be the minimal, indecomposable graphs. We can show
that every pinned isostatic graph G is a unique composition of Assur graphs, which we will call the
Assur components of G.

Theorem 7. A pinned graph is isostatic if and only if it decomposes into Assur components. The
decomposition into Assur components is unique.
Proof. Take the isostatic pinned framework, and identify the ground pins. This is now a dependent
graph. Using properties of R2(n), see [4], we can identify minimal dependent subgraphs—which, by
Theorems5 and6, areAssur components after the pins are separated. These are the initial components.
When all of these initial components are contracted in step two,we seek additional Assur components.
We iterate the process until only the ground is left. �

The decomposition process described in the proof of Theorem 7 naturally induces a partial order
on the Assur components of an isostatic graph: component A ≤ B if B occurs at a higher level, and B
has at least one vertex of A as a pinned vertex. The algorithm for decomposing the graph guarantees
that A ≤ Bmeans that B occurs at a later stage than A. This partial order can be represented in an Assur
scheme as in Fig. 14. This partial order, with the identifications needed for linkage composition, can
be used to re-assemble the graph from its Assur components.
Replacing any edge in an isostatic framework produces a 1 DOF linkage. The decomposition

described in Theorem 7 permits the analysis of this linkage in layers. In fact, we can place drivers in
each Assur component to obtain linkages with several degrees of freedom and their complex behavior
can be simply described by analyzing the individual Assur components. This process of adding drivers
is studied in more detail in [15].

3.3. Generating Assur graphs

We summarize inductive techniques to generate all Assur graphs. Engineers find such techniques
of interest to generate basic building blocks for synthesizing new linkages.
The dyad is the only Assur graph on three vertices. There is no Assur graph on four vertices. An

Assur graph, whose corresponding rigidity circuit is K4 is called a basic Assur graph.
To generate all Assur graphs (on five or more vertices) we use Theorem 6(ii) together with

Theorem 3 to generate all rigidity circuits. To get from a rigidity circuit C to an Assur graph, we choose
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Fig. 15. An edge-split takes an Assur graph with at least four vertices to an Assur graph.

Fig. 16. 2-sum of Assur graphs gives a new Assur graph with a removed pin.

Fig. 17. Pin rearrangement (maintaining the fact of at least two pins).

a vertex p∗ of C and split it into two or more pins (as in the proof of Theorem 6). The choice of p∗, the
splitting of p∗ into a set P of pins (2 ≤ |P| ≤ val(p∗)), and choosing for each edge incident to p∗ an
endpoint from P allows us to construct several Assur graphs from one rigidity circuit, see Fig. 17. We
say that G(I, P; E) and G′(I, P ′, E) are related by pin rearrangement if G∗ = G′∗ (see Fig. 17).
The operations of edge-split and 2-sum, which were used to generate rigidity circuits inductively,

can also be used directly on Assur graphs to generate new Assur graphs from old, see Figs. 15 and
16. In particular, the operation of 2-sum may be of practical value if, for space reasons for example, a
pinned vertex is to be eliminated, see Fig. 16.

Theorem 8. All Assur graphs on 5 or more vertices can be obtained from basic Assur graphs by a sequence
of edge-splits, pin-rearrangements and 2-sums of smaller Assur graphs.

Since mechanical engineers might want to have additional tools readily available for generating
Assur graphs, one can seek additional operations under which the class of Assur graphs is closed.
Vertex-split (creating two vertices of degree at least three) is another operation which takes a rigidity
circuit to a rigidity circuit, and therefore takes an Assur graph with at least three vertices to a larger
Assur graph (Fig. 18). This is, in a specific sense, the dual operation to edge-split [4].More generally, [4]
explores a number of additional operations for generating larger circuits from smaller circuits. Each
of these processes will take an Assur graph to a larger Assur graph.
The inductive constructions for Assur graphs can be used to provide a visual certificate sequence for

an Assur graph. If we are given a sequence of edge-splits and 2-sums starting from a dyad and ending
with G, see Fig. 19, it is trivial to verify that G is an Assur graph.We constructed such a sequence in the
proof of Theorem 4. It is well known, see [17], that there are exponential algorithms to produce such a
certificate. However, there are other fast algorithms, for example the so called pebble games, see [8,10]
to detect all the rigidity properties of graphs that can be adapted to verify the Assur property.
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Fig. 18. Vertex-split taking an Assur graph to an Assur graph.

Fig. 19. Certificate sequence for the final Assur graph.

4. Concluding comments

The paper introduces, for the first time, the concept of Assur graphs, in the rigorous mathematical
terminology of rigidity theory. This work paves a new channel for cooperation between the commu-
nities in kinematics and in rigidity theory. An example for such channel is the material appearing in
Section 2.7 showing how to transform determinate trusses used by the kinematicians into isostatic
frameworks, widely employed by the rigidity theory and structural engineering communities.
At this point, it is hard to predict all the practical applications that are to benefit from this new

relation between the disciplines. Nevertheless, we anticipate practical results from the use of rigidity
theory inmechanisms as introduced in the paper. Examples of such results, include using rigid circuits
from rigidity theory to find the proper decomposition sequence of pinned isostatic framework into
Assur components (Section 3.2) and generation of Assur graphs by applying two known operations to
their corresponding rigidity circuits (Section 3.3).
It is expected that new opportunities will be opened up, for example, for mechanical engineers

to comprehend topics in rigidity theory that are used today in many disciplines, including biology,
communications and more. Mechanical engineers in the west may be motivated to use the Assur
graphs (Assur groups) concept as it is widely applied in eastern Europe and Russia.
Decomposing a larger linkage into Assur graphs and analyzing these pieces one at a time is

an effective way to analyze the overall motion, working in layers. This paper has given a precise
mathematical foundation for the Assur method as well as a proof of its correctness and completeness.
We have followed standard engineering practice and developed the theory in the language of bar-

and-joint frameworks, but of course there is no need to replace a larger link (rigid body) with an
isostatic bar-and-joint subframework to apply the counting techniques. It is simply convenient to do
so in order to streamline notation and graphics. All of our results may be reworded in terms of body
and bar structures or body and pin frameworks. This presentationwould bemuch closer to the original
example in Figs. 1 and 2 and the counts of Section 2.2.
To extend this type of analysis to 3D linkages, the lack of good characterization of isostatic bar-

and-joint frameworks in 3D is an initial obstacle. However, if we focus on body-and-bar or body-and-
hinge structures (the analog of body-and-bar and body-and-pin frameworks in the plane) then the
generic DOF of these structures is computable by analogous counting techniques [18,19], and all our
combinatorial methods will carry over successfully.
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