1,141 research outputs found

    An On-demand Photonic Ising Machine with Simplified Hamiltonian Calculation by Phase-encoding and Intensity Detection

    Full text link
    Photonic Ising machine is a new paradigm of optical computing, which is based on the characteristics of light wave propagation, parallel processing and low loss transmission. Thus, the process of solving the combinatorial optimization problems can be accelerated through photonic/optoelectronic devices. In this work, we have proposed and demonstrated the so-called Phase-Encoding and Intensity Detection Ising Annealer (PEIDIA) to solve arbitrary Ising problems on demand. The PEIDIA is based on the simulated annealing algorithm and requires only one step of optical linear transformation with simplified Hamiltonian calculation. With PEIDIA, the Ising spins are encoded on the phase term of the optical field and only intensity detection is required during the solving process. As a proof of principle, several 20 and 30-dimensional Ising problems have been solved with high ground state probability

    The physics of optical computing

    Full text link
    There has been a resurgence of interest in optical computing over the past decade, both in academia and in industry, with much of the excitement centered around special-purpose optical computers for neural-network processing. Optical computing has been a topic of periodic study for over 50 years, including for neural networks three decades ago, and a wide variety of optical-computing schemes and architectures have been proposed. In this paper we provide a systematic explanation of why and how optics might be able to give speed or energy-efficiency benefits over electronics for computing, enumerating 11 features of optics that can be harnessed when designing an optical computer. One often-mentioned motivation for optical computing -- that the speed of light cc is fast -- is not a key differentiating physical property of optics for computing; understanding where an advantage could come from is more subtle. We discuss how gaining an advantage over state-of-the-art electronic processors will likely only be achievable by careful design that harnesses more than one of the 11 features, while avoiding a number of pitfalls that we describe.Comment: 31 pages; 11 figure

    Analog Photonics Computing for Information Processing, Inference and Optimisation

    Full text link
    This review presents an overview of the current state-of-the-art in photonics computing, which leverages photons, photons coupled with matter, and optics-related technologies for effective and efficient computational purposes. It covers the history and development of photonics computing and modern analogue computing platforms and architectures, focusing on optimization tasks and neural network implementations. The authors examine special-purpose optimizers, mathematical descriptions of photonics optimizers, and their various interconnections. Disparate applications are discussed, including direct encoding, logistics, finance, phase retrieval, machine learning, neural networks, probabilistic graphical models, and image processing, among many others. The main directions of technological advancement and associated challenges in photonics computing are explored, along with an assessment of its efficiency. Finally, the paper discusses prospects and the field of optical quantum computing, providing insights into the potential applications of this technology.Comment: Invited submission by Journal of Advanced Quantum Technologies; accepted version 5/06/202

    General Spatial Photonic Ising Machine Based on Interaction Matrix Eigendecomposition Method

    Full text link
    The spatial photonic Ising machine has achieved remarkable advancements in solving combinatorial optimization problems. However, it still remains a huge challenge to flexibly mapping an arbitrary problem to Ising model. In this paper, we propose a general spatial photonic Ising machine based on interaction matrix eigendecomposition method. Arbitrary interaction matrix can be configured in the two-dimensional Fourier transformation based spatial photonic Ising model by using values generated by matrix eigendecomposition. The error in the structural representation of the Hamiltonian decreases substantially with the growing number of eigenvalues utilized to form the Ising machine. In combination with the optimization algorithm, as low as 65% of the eigenvalues is required by intensity modulation to guarantee the best probability of optimal solution for a 20-vertex graph Max-cut problem, and this probability decreases to below 20% for zero best chance. Our work provides a viable approach for spatial photonic Ising machines to solve arbitrary combinatorial optimization problems with the help of multi-dimensional optical property

    Adiabatic evolution on a spatial-photonic Ising machine

    Get PDF
    Combinatorial optimization problems are crucial for widespread applications but remain difficult to solve on a large scale with conventional hardware.Novel optical platforms, knownas coherent or photonic Ising machines, are attracting considerable attention as accelerators on optimization tasks formulable as Ising models. Annealing is a well-known technique based on adiabatic evolution for finding optimal solutions in classical and quantum systems made by atoms, electrons, or photons. Although various Ising machines employ annealing in some form, adiabatic computing on optical settings has been only partially investigated.Here, we realize the adiabatic evolution of frustrated Ising models with 100 spins programmed by spatial light modulation. We use holographic and optical control to change the spin couplings adiabatically, and exploit experimental noise to explore the energy landscape. Annealing enhances the convergence to the Ising ground state and allows to find the problem solution with probability close to unity.Our results demonstrate a photonic scheme for combinatorial optimization in analogy with adiabatic quantum algorithms and classical annealing methods but enforced by optical vector-matrix multiplications and scalable photonic technology

    A large scale photonic matrix processor enabled by charge accumulation

    Get PDF
    This is the final version. Available on open access from De Gruyter via the DOI in this recordIntegrated neuromorphic photonic circuits aim to power complex artificial neural networks (ANNs) in an energy and time efficient way by exploiting the large bandwidth and the low loss of photonic structures. However, scaling photonic circuits to match the requirements of modern ANNs still remains challenging. In this perspective, we give an overview over the usual sizes of matrices processed in ANNs and compare them with the capability of existing photonic matrix processors. To address shortcomings of existing architectures, we propose a time multiplexed matrix processing scheme which virtually increases the size of a physical photonic crossbar array without requiring any additional electrical post-processing. We investigate the underlying process of time multiplexed incoherent optical accumulation and achieve accumulation accuracy of 98.9% with 1 ns pulses. Assuming state of the art active components and a reasonable crossbar array size, this processor architecture would enable matrix vector multiplications with 16,000 × 64 matrices all optically on an estimated area of 51.2 mm2, while performing more than 110 trillion multiply and accumulate operations per second.Deutsche ForschungsgemeinschaftEuropean CommissionBundesministerium für Bildung und Forschun

    In-memory computing with emerging memory devices: Status and outlook

    Get PDF
    Supporting data for "In-memory computing with emerging memory devices: status and outlook", submitted to APL Machine Learning

    SciTech News Volume 71, No. 2 (2017)

    Get PDF
    Columns and Reports From the Editor 3 Division News Science-Technology Division 5 Chemistry Division 8 Engineering Division 9 Aerospace Section of the Engineering Division 12 Architecture, Building Engineering, Construction and Design Section of the Engineering Division 14 Reviews Sci-Tech Book News Reviews 16 Advertisements IEEE
    • …
    corecore