25,154 research outputs found

    Systems approaches and algorithms for discovery of combinatorial therapies

    Full text link
    Effective therapy of complex diseases requires control of highly non-linear complex networks that remain incompletely characterized. In particular, drug intervention can be seen as control of signaling in cellular networks. Identification of control parameters presents an extreme challenge due to the combinatorial explosion of control possibilities in combination therapy and to the incomplete knowledge of the systems biology of cells. In this review paper we describe the main current and proposed approaches to the design of combinatorial therapies, including the empirical methods used now by clinicians and alternative approaches suggested recently by several authors. New approaches for designing combinations arising from systems biology are described. We discuss in special detail the design of algorithms that identify optimal control parameters in cellular networks based on a quantitative characterization of control landscapes, maximizing utilization of incomplete knowledge of the state and structure of intracellular networks. The use of new technology for high-throughput measurements is key to these new approaches to combination therapy and essential for the characterization of control landscapes and implementation of the algorithms. Combinatorial optimization in medical therapy is also compared with the combinatorial optimization of engineering and materials science and similarities and differences are delineated.Comment: 25 page

    Neuron as a reward-modulated combinatorial switch and a model of learning behavior

    Full text link
    This paper proposes a neuronal circuitry layout and synaptic plasticity principles that allow the (pyramidal) neuron to act as a "combinatorial switch". Namely, the neuron learns to be more prone to generate spikes given those combinations of firing input neurons for which a previous spiking of the neuron had been followed by a positive global reward signal. The reward signal may be mediated by certain modulatory hormones or neurotransmitters, e.g., the dopamine. More generally, a trial-and-error learning paradigm is suggested in which a global reward signal triggers long-term enhancement or weakening of a neuron's spiking response to the preceding neuronal input firing pattern. Thus, rewards provide a feedback pathway that informs neurons whether their spiking was beneficial or detrimental for a particular input combination. The neuron's ability to discern specific combinations of firing input neurons is achieved through a random or predetermined spatial distribution of input synapses on dendrites that creates synaptic clusters that represent various permutations of input neurons. The corresponding dendritic segments, or the enclosed individual spines, are capable of being particularly excited, due to local sigmoidal thresholding involving voltage-gated channel conductances, if the segment's excitatory and absence of inhibitory inputs are temporally coincident. Such nonlinear excitation corresponds to a particular firing combination of input neurons, and it is posited that the excitation strength encodes the combinatorial memory and is regulated by long-term plasticity mechanisms. It is also suggested that the spine calcium influx that may result from the spatiotemporal synaptic input coincidence may cause the spine head actin filaments to undergo mechanical (muscle-like) contraction, with the ensuing cytoskeletal deformation transmitted to the axon initial segment where it may...Comment: Version 5: added computer code in the ancillary files sectio

    Representability of algebraic topology for biomolecules in machine learning based scoring and virtual screening

    Full text link
    This work introduces a number of algebraic topology approaches, such as multicomponent persistent homology, multi-level persistent homology and electrostatic persistence for the representation, characterization, and description of small molecules and biomolecular complexes. Multicomponent persistent homology retains critical chemical and biological information during the topological simplification of biomolecular geometric complexity. Multi-level persistent homology enables a tailored topological description of inter- and/or intra-molecular interactions of interest. Electrostatic persistence incorporates partial charge information into topological invariants. These topological methods are paired with Wasserstein distance to characterize similarities between molecules and are further integrated with a variety of machine learning algorithms, including k-nearest neighbors, ensemble of trees, and deep convolutional neural networks, to manifest their descriptive and predictive powers for chemical and biological problems. Extensive numerical experiments involving more than 4,000 protein-ligand complexes from the PDBBind database and near 100,000 ligands and decoys in the DUD database are performed to test respectively the scoring power and the virtual screening power of the proposed topological approaches. It is demonstrated that the present approaches outperform the modern machine learning based methods in protein-ligand binding affinity predictions and ligand-decoy discrimination

    On multi-view learning with additive models

    Get PDF
    In many scientific settings data can be naturally partitioned into variable groupings called views. Common examples include environmental (1st view) and genetic information (2nd view) in ecological applications, chemical (1st view) and biological (2nd view) data in drug discovery. Multi-view data also occur in text analysis and proteomics applications where one view consists of a graph with observations as the vertices and a weighted measure of pairwise similarity between observations as the edges. Further, in several of these applications the observations can be partitioned into two sets, one where the response is observed (labeled) and the other where the response is not (unlabeled). The problem for simultaneously addressing viewed data and incorporating unlabeled observations in training is referred to as multi-view transductive learning. In this work we introduce and study a comprehensive generalized fixed point additive modeling framework for multi-view transductive learning, where any view is represented by a linear smoother. The problem of view selection is discussed using a generalized Akaike Information Criterion, which provides an approach for testing the contribution of each view. An efficient implementation is provided for fitting these models with both backfitting and local-scoring type algorithms adjusted to semi-supervised graph-based learning. The proposed technique is assessed on both synthetic and real data sets and is shown to be competitive to state-of-the-art co-training and graph-based techniques.Comment: Published in at http://dx.doi.org/10.1214/08-AOAS202 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Competition Between Auctions

    Get PDF
    Even though auctions are capturing an increasing share of commerce, they are typically treated in the theoretical economics literature as isolated. That is, an auction is typically treated as a single seller facing multiple buyers or as a single buyer facing multiple sellers. In this paper, we review the state of the art of competition between auctions. We consider three different types of competition: competition between auctions, competition between formats, and competition between auctioneers vying for auction traffic. We highlight the newest experimental, statistical and analytical methods in the analysis of competition between auctions.auctions, bidding, competition, auction formats, auction houses

    Comparative analysis of classical multi-objective evolutionary algorithms and seeding strategies for pairwise testing of Software Product Lines

    Get PDF
    Lopez-Herrejon, R. Erick, Ferrer J., Chicano F., Egyed A., & Alba E. (2014). Comparative analysis of classical multi-objective evolutionary algorithms and seeding strategies for pairwise testing of Software Product Lines. Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2014, Beijing, China, July 6-11, 2014. 387–396.Software Product Lines (SPLs) are families of related software products, each with its own set of feature combinations. Their commonly large number of products poses a unique set of challenges for software testing as it might not be technologically or economically feasible to test of all them individually. SPL pairwise testing aims at selecting a set of products to test such that all possible combinations of two features are covered by at least one selected product. Most approaches for SPL pairwise testing have focused on achieving full coverage of all pairwise feature combinations with the minimum number of products to test. Though useful in many contexts, this single-objective perspective does not reflect the prevailing scenario where software engineers do face trade-offs between the objectives of maximizing the coverage or minimizing the number of products to test. In contrast and to address this need, our work is the first to propose a classical multi-objective formalisation where both objectives are equally important. In this paper, we study the application to SPL pairwise testing of four classical multi-objective evolutionary algorithms. We developed three seeding strategies — techniques that leverage problem domain knowledge — and measured their performance impact on a large and diverse corpus of case studies using two well-known multi-objective quality measures. Our study identifies the performance differences among the algorithms and corroborates that the more domain knowledge leveraged the better the search results. Our findings enable software engineers to select not just one solution (as in the case of single-objective techniques) but instead to select from an array of test suite possibilities the one that best matches the economical and technological constraints of their testing context.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. Austrian Science Fund (FWF) project P25289- N15 and Lise Meitner Fellowship M1421-N15. Spanish Ministry of Economy and Competitiveness and FEDER under contract TIN2011-28194 and fellowship BES-2012-055967. Project 8.06/5.47.4142 in collaboration with the VSB-Tech. Univ. of Ostrava and Universidad de Málaga, Andalucía Tech
    corecore