17 research outputs found

    Constructing Optimal Authentication Codes with Perfect Multi-fold Secrecy

    Full text link
    We establish a construction of optimal authentication codes achieving perfect multi-fold secrecy by means of combinatorial designs. This continues the author's work (ISIT 2009) and answers an open question posed therein. As an application, we present the first infinite class of optimal codes that provide two-fold security against spoofing attacks and at the same time perfect two- fold secrecy.Comment: 4 pages (double-column); to appear in Proc. 2010 International Zurich Seminar on Communications (IZS 2010, Zurich

    Combinatorial Bounds and Characterizations of Splitting Authentication Codes

    Full text link
    We present several generalizations of results for splitting authentication codes by studying the aspect of multi-fold security. As the two primary results, we prove a combinatorial lower bound on the number of encoding rules and a combinatorial characterization of optimal splitting authentication codes that are multi-fold secure against spoofing attacks. The characterization is based on a new type of combinatorial designs, which we introduce and for which basic necessary conditions are given regarding their existence.Comment: 13 pages; to appear in "Cryptography and Communications

    Isomorphism classes of authentication codes

    Get PDF

    Authentication Codes Based on Resilient Boolean Maps

    Get PDF
    We introduce new constructions of systematic authentication codes over finite fields and Galois rings. One code is built over finite fields using resilient functions and it provides optimal impersonation and substitution probabilities. Other two proposed codes are defined over Galois rings, one is based on resilient maps and it attains optimal probabilities as well, while the other uses maps whose Fourier transforms get higher values. Being the finite fields special cases of Galois rings, the first code introduced for Galois rings apply also at finite fields. For the special case of characteristic p2p^2, the maps used at the second case in Galois rings are bent indeed, and this case is subsumed by our current general construction of characteristic psp^s, with s≥2s\geq 2

    Difference Covering Arrays and Pseudo-Orthogonal Latin Squares

    Get PDF
    Difference arrays are used in applications such as software testing, authentication codes and data compression. Pseudo-orthogonal Latin squares are used in experimental designs. A special class of pseudo-orthogonal Latin squares are the mutually nearly orthogonal Latin squares (MNOLS) first discussed in 2002, with general constructions given in 2007. In this paper we develop row complete MNOLS from difference covering arrays. We will use this connection to settle the spectrum question for sets of 3 mutually pseudo-orthogonal Latin squares of even order, for all but the order 146

    Perfect Secrecy Systems Immune to Spoofing Attacks

    Full text link
    We present novel perfect secrecy systems that provide immunity to spoofing attacks under equiprobable source probability distributions. On the theoretical side, relying on an existence result for tt-designs by Teirlinck, our construction method constructively generates systems that can reach an arbitrary high level of security. On the practical side, we obtain, via cyclic difference families, very efficient constructions of new optimal systems that are onefold secure against spoofing. Moreover, we construct, by means of tt-designs for large values of tt, the first near-optimal systems that are 5- and 6-fold secure as well as further systems with a feasible number of keys that are 7-fold secure against spoofing. We apply our results furthermore to a recently extended authentication model, where the opponent has access to a verification oracle. We obtain this way novel perfect secrecy systems with immunity to spoofing in the verification oracle model.Comment: 10 pages (double-column); to appear in "International Journal of Information Security

    Mutually unbiased maximally entangled bases from difference matrices

    Full text link
    Based on maximally entangled states, we explore the constructions of mutually unbiased bases in bipartite quantum systems. We present a new way to construct mutually unbiased bases by difference matrices in the theory of combinatorial designs. In particular, we establish qq mutually unbiased bases with q−1q-1 maximally entangled bases and one product basis in Cq⊗Cq\mathbb{C}^q\otimes \mathbb{C}^q for arbitrary prime power qq. In addition, we construct maximally entangled bases for dimension of composite numbers of non-prime power, such as five maximally entangled bases in C12⊗C12\mathbb{C}^{12}\otimes \mathbb{C}^{12} and C21⊗C21\mathbb{C}^{21}\otimes\mathbb{C}^{21}, which improve the known lower bounds for d=3md=3m, with (3,m)=1(3,m)=1 in Cd⊗Cd\mathbb{C}^{d}\otimes \mathbb{C}^{d}. Furthermore, we construct p+1p+1 mutually unbiased bases with pp maximally entangled bases and one product basis in Cp⊗Cp2\mathbb{C}^p\otimes \mathbb{C}^{p^2} for arbitrary prime number pp.Comment: 24 page

    The Design and Analysis of Symmetric Cryptosystems

    Get PDF
    corecore