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Abstract

Message authentication schemes built from universal hash functions are commonly
used for fast and secure message authentication. By studying universal hash func-
tions based on polynomial evaluation, we identify some properties which arise from
the underlying algebraic structure. As a result, we are able to describe a general
forgery attack against the related message authentication schemes, as well as pro-
viding a common description of all known attacks against such schemes, and greatly
expanding the number of known weak keys.

Iterated Even–Mansour ciphers are also popular and we initiate the theoretical study
of these ciphers’ security against related-key attacks. The simplest one-round Even–
Mansour cipher is shown to achieve a non-trivial level of related-key security. How-
ever, offsetting keys by constants is not included in this result; two rounds suffice to
reach that level of security under chosen-plaintext attacks and three rounds boosts
security to resist chosen-ciphertext attacks.

Tweakable block ciphers are a generalisation of block ciphers that take an additional
input (the tweak) in order to provide an efficient alternative to re-keying the cipher.
We analyse the security reduction given for CLRW2, a method for constructing
a tweakable block cipher from a (conventional) block cipher and a universal hash
function. Having identified an error in the proof, we provide a revised proof with a
new bound.

Finally, we study the security of two schemes that have been proposed for standardis-
ation. The first is a composition of Bernstein’s ChaCha20 and Poly1305, as proposed
for use in IETF protocols as an authenticated encryption scheme; the second is an
ultra-lightweight RFID authentication protocol proposed as part of ISO/IEC 29167.
We conclude that the first is a secure authenticated encryption scheme, while the
second is catastrophically broken by algebraic attacks.
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Chapter 1

Introduction

Contents

1.1 Motivation and context . . . . . . . . . . . . . . . . . . . . 10

1.2 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . 13

This chapter gives an overview of the thesis. We provide the motivation for our

research and give a broad overview of the wider context. In this chapter, we also

present the overall structure and main contributions of this thesis.

1.1 Motivation and context

The long-standing aim of cryptography is to facilitate secure communication be-

tween a number of parties. The definition of secure communication has broadened

over time: historically confidentiality was the prime concern (indeed this is still the

perception that many have of cryptography) whereas now data integrity, authenti-

cation, and non-repudiation are also recognised as important factors. Similarly, the

range of problems for which cryptographic solutions have been considered has in-

creased to include more exotic notions such as providing zero-knowledge proofs and

the public verification of calculations that have been outsourced to an untrusted

party. Symmetric cryptography aims to solve some of these problems, under the

assumption that users share some information (the key) not known to an adversary.

Prior to the 1970s, all cryptography was symmetric and most occurred in a mil-

itary context (typically via mechanical, rotor-based enciphering machines such as
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1.1 Motivation and context

Scherbius’s Enigma [247]). Two developments changed this: the proposal of public-

key cryptography and the standardisation of the Data Encryption Standard (DES).

The first public descriptions of public-key cryptography came from Diffie and Hell-

man [95] and Rivest, Shamir, and Adleman [232]. Ellis and Cocks are now acknowl-

edged as the first to envisage this concept [114]; their research was not declassified

until 1997 as they both worked at the Government Communication Headquarters

(GCHQ). By separating the public and private keys, public-key cryptography of-

fers two main advantages over symmetric cryptography: simpler key exchange and

a greater flexibility within the schemes. Despite this, most data is still encrypted

symmetrically: public-key algorithms are more computationally taxing than sym-

metric algorithms of a comparable strength and the advantages of both systems can

be realised by using a public-key algorithm to exchange a symmetric key.

In the intervening decades, symmetric cryptography has found many practical ap-

plications. For example, it is used widely across the internet, automated teller ma-

chine (ATM) networks, and in mobile phones; it is set to become more ubiquitous as

the Internet of Things [156], SmartMeters [171], and radio frequency identification

(RFID) tags [153] become more widely used. The many different parties involved in

the specification and deployment of these systems and the desire for interoperability

necessitates some level of standardisation. Perhaps the best known example of stan-

dardised cryptography is the Advanced Encryption Standard (AES): a four-year

competition concluded with Rijndael being selected as the replacement for DES.

Since then AES has seen widespread use (e.g. [138, 181, 245, 229, 180, 265]). There

are many standardisation bodies, four particularly relevant examples for this thesis

are the Internet Engineering Task Force (IETF), the International Organization for

Standardization (ISO), the International Electrotechnical Commission (IEC), and

the National Institute of Standards and Technology (NIST).

The first main theme in this thesis is that the cryptography studied is practical: the

majority of the schemes studied are either deployed and used, or have been proposed

as alternatives for existing deployed schemes. The polynomial-based hash functions

studied in Chapter 3 are central to the AES–GCM and ChaCha20–Poly1305 cipher

suites in the Transport Layer Security (TLS) protocol, which are used for approx-

imately 40% of TLS connections [179]. In Chapter 4, we study the iterated Even–

Mansour design for block ciphers, the principles of which are used in well-known

11



1.1 Motivation and context

block ciphers such as AES, Present, and LED. Tweakable block ciphers, which we

study in Chapter 5, have become a popular primitive from which to design modes

of operation and in particular for disk encryption applications; examples can be

found as submissions to the CAESAR competition [79], such as OCB [170] and Mi-

nalpher [246], and as standardised disk encryption modes, such as XTS [101]. The

final chapter of this thesis is dedicated to studying schemes that have been proposed

specifically for standardisation: ChaCha20 and Poly1305 for use within TLS [211],

and Crypto-xor as an RFID authentication protocol submitted to ISO/IEC [140].

The papers of Goldwasser and Micali (e.g. [127]) represent a significant milestone

in the development of modern theoretical cryptography, laying the foundations for

the reductionist security paradigm. In 1917, Vernam [268] described what has come

to be known as the one-time pad, which Shannon [249] showed in 1949 to provide

Perfect Secrecy—that is, even against adversaries with unlimited computing power,

the plaintext remains completely hidden. However, schemes providing perfect se-

crecy have severe limitations, such as infeasibly long keys. Goldwasser and Micali’s

idea [128] was to base the security of a scheme on an (assumed) intractable problem

and provide a proof that an adversary breaking the scheme could also solve the

problem. While schemes providing perfect secrecy give strong security guarantees,

this reductionist paradigm allows for the analysis of practical schemes.

Bellare and Rogaway [18, 234] extend this reductionist approach to ‘practice-oriented

provable security’. Recognising that the schemes typically constructed in the re-

ductionist approach were too inefficient to be widely used, Bellare and Rogaway

popularised the analysis of schemes constructed from finite pseudorandom function

families and block ciphers.

Practice-oriented provable security has also encouraged concrete security analyses.

In contrast to the methodology of Goldwasser and Micali (who considered asymp-

totic results and polynomial reducibility), concrete security gives more precise state-

ments of the security of a scheme: for example, an adversary attacking a particular

encryption scheme (who runs for a certain, bounded length of time) will have an

advantage bounded by some probability, which is expressed in terms of the number

of plaintext/ciphertext pairs that they observe and a measure of the security of the

underlying block cipher.

12



1.2 Thesis structure

The aim of this approach is a community working with precise definitions of security,

careful parametrisation of adversaries’ capabilities, and thorough exposition of the

assumptions made. These ideas have formalised the folklore techniques of building

more complex cryptographic schemes from simpler ones.

For an attack against a scheme with a security reduction, several possible inter-

pretations are observed throughout this thesis (noting security reductions’ contro-

versy [164] and limitations [37]). The attack may succeed with a lower probability

than is described by the security reduction; we will see an example of this in Chap-

ter 3. It may represent a failure of the adversarial model to accurately capture how

the scheme is being used; related-key attacks (which we study in Chapter 4) are an

example of a strengthened adversarial model, aiming to prevent this issue. There

may be an error in the security reduction; this is the case for the scheme studied in

Chapter 5. Finally, the attack might include an observation that invalidates the as-

sumption underlying the security of the scheme; in Chapter 6 we study the security

of the primitive underlying the Crypto-xor scheme [140].

1.2 Thesis structure

Chapter 2. In this chapter we introduce the notation, cryptographic primitives,

and security notions used throughout this thesis.

Chapter 3. Families of hash functions based on polynomial evaluation are often

used in the design of message authentication codes and authenticated encryption

schemes. Universal hash function families are an attractive choice for this applica-

tion, as they come with information-theoretic guarantees about their security.

In this chapter, we identify some properties of a universal hash function family that

arise from the underlying algebraic structure. We go on to describe a general forgery

attack and provide a common description of all known attacks against a related

message authentication scheme. We also greatly expand the number of known weak

keys for schemes built from this family of hash functions and provide some analysis

of schemes based on another family of hash functions.

13



1.2 Thesis structure

The work described in this chapter is joint work with Carlos Cid and is published

as [226] and [227]; it is also available at [225].

Chapter 4. Unless one wishes to gain information-theoretic security, via the use

of a scheme such as the one-time pad (along with its well known key-management

issues), the security of any scheme will be based on some computational assumption;

this assumption critically underpins the security of the scheme. Some uses of block

ciphers require security under related keys and if one wishes to instantiate such a

scheme with a particular block cipher, then some reasoning as to why that block

cipher provides this level of security is required. Almost all modern block cipher

proposals will include an initial security analysis, however a more attractive strategy

is to design a block cipher in such a way as to obtain theoretical guarantees about

its security.

In this chapter we discuss key-alternating ciphers and the theoretical security guar-

antees that they offer with respect to related-key attacks. We show that the simplest

one-round Even–Mansour cipher achieves a non-trivial level of related-key security.

Although this does not include the practically relevant case of offsetting keys by

constants, two rounds suffice to reach this level under chosen-plaintext attacks and

three rounds boosts security to resist chosen-ciphertext attacks.

The work is joint work with Pooya Farshim and is published as [109]; it is also

available at [108]. The publication that this chapter is based on also includes a

result on the relationship between indifferentiability and RKA security. This result

is Farshim’s and so is omitted here; all other contributions are joint.

Chapter 5. Tweakable block ciphers are a generalisation of block ciphers that take

an additional input (the ‘tweak’ ) in order to provide an efficient alternative to re-

keying the cipher. Using tweakable block ciphers to construct higher-level schemes

(such as symmetric encryption schemes or authenticated encryption schemes) has

become a popular design approach and it is possible to build a tweakable block

cipher from a conventional block cipher. Many such constructions come with a

security reduction, however the careful verification of such a proof is an essential

part of establishing their security.

14



1.2 Thesis structure

In this chapter we describe an error in the proof for the CLRW2 construction by

Landecker, Shrimpton, and Terashima [176] which uses a conventional block cipher

and a family of hash functions to realise a tweakable block cipher. We are able to

resolve the issue and give a new bound for the security of CLRW2. This work is

available at [223].

Chapter 6. It is desirable for standardised cryptography to use primitives and

schemes that are well established and have received considerable analysis, however

this is not always possible (for example, heavily constrained devices may not have the

processing power necessary). In this chapter, we study the security of two schemes

that have been proposed for standardisation. The first is a novel composition [211] of

Bernstein’s ChaCha20 [35] and Poly1305 [34], as proposed for use in IETF protocols

as an authenticated encryption scheme; the second is an ultra-lightweight RFID

authentication protocol proposed as part of ISO/IEC 29167 [140].

Our conclusions are that the first is a secure authenticated encryption scheme, while

the second is catastrophically broken by algebraic attacks. Algebraic attacks have

been successfully applied to a number of other ciphers and authentication protocols.

In these attacks the scheme is represented as a set of equations with variables cor-

responding to secret values (such as bits of the key) expressed in terms of known

values (such as observed ciphertext); solving this system of equations corresponds

to recovering the secret values.

The analysis of ChaCha20 and Poly1305 is available at [224]. The work on ISO/IEC

29167 is joint with Carlos Cid, Löıc Ferreira, and Matthew Robshaw; it is published

as [74].
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Preliminaries
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This chapter introduces the notation used throughout this thesis and describes the

necessary theoretical foundations.

2.1 Notation

We write x ← y for the action of assigning the value y to the variable x. For a set

X , we write x ←$ X to represent an element x being uniformly sampled from X . If

A is a probabilistic algorithm we write y ←$ A(x1, . . . , xn) for the action of running

A on inputs x1, . . . , xn with randomly chosen coins and assigning the result to y.

For an arbitrary bitstring x ∈ {0, 1}∗ we use |x| to denote its length. The set of

bitstrings with length at most ` is denoted {0, 1}≤`. The truncation to n bits of a

string x will be represented by truncn(x). For a set S ⊆ {0, 1}n and an element

x ∈ {0, 1}n we define S ⊕ x = {s ⊕ x : s ∈ S}. For a bit string x, we denote

the bitwise complement of x by x. For a bitstring x ∈ {0, 1}mn, we parse this as

x1|| . . . ||xm where |xi| = n for each i. If x ∈ {0, 1}∗ with |x| = mn + s, then we

define a partial final block: xm+1 ∈ {0, 1}s. Throughout this thesis, we will assume

that all schemes operate on bitstrings.
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2.2 Cryptographic background

For an algorithm A, access to an oracle O (or a tuple of oracles O = (O1, . . . ,Ot))

will be denoted AO. The number of queries made by A to O will be denoted by q; if

A has access to more than one oracle, subscripts will be used to distinguish between

calls to each of the oracles. In games, all Boolean flags are initialised to false and

arrays are initially undefined at every point.

A finite field will be denoted by K unless the order of the field has particular rele-

vance, in which case it will be denoted by Fpr with |Fpr | = pr. The multiplicative

group of a field K will be denoted by K?. The set of integers will be denoted by Z
and the set of integers modulo p by Zp. The set of natural numbers will be denoted

by N. We use ξ(p) to represent a Bernoulli random variable that is 1 with probability

p and 0 with probability 1− p. We let [n] = {1, . . . , n}.

2.2 Cryptographic background

In this section, we describe the syntax and security of the cryptographic notions that

will be used throughout this thesis. Additionally, some background information on

the history and development of these concepts is given.

2.2.1 Pseudorandom functions

Background. A pseudorandom function (PRF) family is a set of functions with

the property that, when one is chosen at random, its input-output behaviour cannot

be distinguished from a truly random function (by some computationally restricted

adversary). This notion was first described by Goldwasser and Micali (under the

name ‘poly-random collections’ ) [126]; throughout this thesis we will focus on the

finite variant of this property described by Bellare, Killian, and Rogaway [25, 26],

as it is better aligned with concrete security analyses.

The idea of pseudorandom functions has been widely adopted as a method with

which to build and analyse symmetric-key primitives, particularly block ciphers,

encryption schemes, and message authentication codes (e.g. [125, 188, 24, 28, 157]).
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2.2 Cryptographic background

PRFF ,A :

b ←$ {0, 1}; k ←$ KF
urf ←$ Func({0, 1}na , {0, 1}nb)
b′ ←$ APRF

Return (b′ = b)

PRF(X):

If b = 0 Return urf(X)
Return prf(k,X)

Figure 2.1: Game defining the PRF security of a function family F .

Syntax. A pseudorandom function family between {0, 1}na and {0, 1}nb consists

of a set of keys KF and a set F = {prfk : {0, 1}na → {0, 1}nb | k ∈ KF}. When

referring to the set F , we will tacitly assume that the key space (KF ) is known.

Security. We follow Bellare et al. [25, 26] and formalise the PRF security of F
in Figure 2.1, where Func({0, 1}na , {0, 1}nb) denotes the set of all functions with

domain {0, 1}na and range {0, 1}nb . The PRF advantage of an adversary A against

F is defined as

Advprf
F (A) = 2 · Pr[PRFF ,A ]− 1 .

This definition accounts for the fact that an adversary can always guess and succeed

with probability 1/2 and normalises the advantage that an adversary’s strategy

provides (over the simple guessing strategy) to the interval [0, 1]. The expression

Pr[PRFF ,A ] denotes the probability that the PRF game given in Figure 2.1 returns 1

(which signals that the adversary correctly guessed b), when run with the adversary

A and set of functions F ; this probability is taken over the random choices of b, k,

urf, and any randomness used by the adversary.

2.2.2 Block ciphers

Background. A block cipher (BC) is a symmetric encryption algorithm that

operates on fixed-width blocks of plaintext and ciphertext; commonly, the blocks

consist of 64 or 128 bits. There is no particular need to presume that the block

cipher uses these common block sizes or that our plaintext and ciphertext are in

bits, however we will assume the latter throughout.

18



2.2 Cryptographic background

⊕ prfiki

Li Ri

Li+1 Ri+1

Figure 2.2: The round function of a Feistel cipher. The input to each round is split
into two (possibly unevenly) and in the ith round a function prfi is used
with round key ki to compute the input to the next round.

P1 ⊕

k2

P2 ⊕

k3

. . . ⊕

kt

Pt ⊕

kt+1

y⊕

k1

x

Figure 2.3: A t-round key-alternating cipher, with permutations P1,. . . ,Pt and round
keys k1,. . . ,kt+1.

Two popular design strategies for block ciphers are Feistel networks (or Luby–

Rackoff ciphers) [45, 188] and key-alternating ciphers [91]. There are many other

strategies such as Lai–Massey ciphers [172] and various generalisations of Feistel

networks (e.g. [202, 136, 193]). These methods all result in iterated block ciphers,

where a round function is repeatedly applied to process the plaintext and more

rounds generally offers greater security. In a Feistel cipher, the plaintext is pro-

cessed in two halves; the round function of a Feistel cipher consists of applying a

keyed function to one half, xoring the output into the other half, and swapping

the halves, as illustrated in Figure 2.2. In a key-alternating cipher the plaintext is

processed by alternately xoring with a round key and applying a key-independent

permutation, as shown in Figure 2.3. Commonly, the functions prf1,. . . ,prft or per-

mutations P1,. . . ,Pt are closely related in order to simplify implementations. A more

detailed discussion of key-alternating ciphers is given in Section 4.

In the 1970s, the National Bureau of Standards standardised the Data Encryption

Standard (DES) based on Lucifer, a cipher developed by IBM [199]. Both Lucifer

and DES have a Feistel structure, although the round functions are not PRFs. As

it became clear that DES did not provide the level of security required, particularly
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with respect to its key size, variants of DES were proposed as ways to increase the

size of the keys. DES-X [161, 162] is one of the principal examples, where the extra

key material is used as pre- and post-whitening keys and is xored with the inputs

and outputs of DES; Triple DES [17, 32] is another example, where DES is applied

to the plaintext three times using using independent keys (a two-key variant is also

defined [17, p. 10]).

In 1997, the National Institute of Standards and Technology initiated the process of

standardising a replacement for DES [212]. This involved 15 submissions, and after

extensive analysis Rijndael was announced as the Advanced Encryption Standard

(AES) [208]; AES is an example of a key-alternating cipher that is widely used,

having been standardised for a range of applications as discussed in Chapter 1.

Since the standardisation of Rijndael, a popular theme in symmetric cryptography

research has been the topic of lightweight cryptography. Here the motivation is to

design and study primitives and schemes that are well suited to pervasive devices

and are able to provide security despite scarce resources (e.g. small implementa-

tion footprint or low energy consumption). A number of lightweight block ciphers

have been proposed, including HIGHT [137], Present [59], KATAN [67], LED [131],

KLEIN [129], PRINCE [61], and Zorro [118].

From a block cipher, it is possible to build a wide range of primitives and schemes in-

cluding symmetric encryption schemes (e.g. [23, 239]), message authentication codes

(e.g. [199, Sect. 9.5.1] and [207]), authenticated encryption schemes (e.g. [272, 100])

and (universal) hash functions (e.g. [24]). Indeed, many commonly used symmetric

algorithms are constructed from block ciphers—even if it is not immediately clear

where they feature in the design, as is the case for the Secure Hash Algorithm (SHA)

hash functions which are built from the SHA-CAL block cipher [134].

Syntax. A block cipher consists of a set of keys K and a pair of functions E,D : K×
{0, 1}n → {0, 1}n such that for every k ∈ K the map E(k, ·) is a permutation on

{0, 1}n. Such an E uniquely defines its inverse map D(k, ·) for each key k. We write

BC = (E,D) to denote a block cipher, which also implicitly defines the block cipher’s

key space K and the message space or domain {0, 1}n. We will often denote E(k, ·)
by Ek(·) and the inverse of this permutation by Dk(·).
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SPRPBC,A :

b ←$ {0, 1}; k ←$ K
(iE, iD) ←$ Block(K, {0, 1}n)
b′ ←$ ABC-Enc,BC-Dec

Return (b′ = b)

BC-Enc(X):

If b = 0 Return iE(k,X)
Return E(k,X)

BC-Dec(X):

If b = 0 Return iD(k,X)
Return D(k, x)

Figure 2.4: Game defining the SPRP security of a block cipher BC = (E,D). In the
PRP game the adversary cannot query the BC-Dec oracle.

Security. We follow Luby and Rackoff [188] and formalise the strong pseudo-

random permutation (SPRP) security of BC in Figure 2.4; we let Block(K, {0, 1}n)

denote the set of all block ciphers with key space K and domain {0, 1}n. The SPRP

advantage of an adversary A against BC is defined as

Advsprp
BC (A) = 2 · Pr[SPRPBC,A ]− 1 .

The pseudorandom permutation (PRP) advantage is defined similarly, for adver-

saries that make no queries to BC-Dec. An adversary playing the SPRP game is

said to be carrying out a chosen-ciphertext attack (CCA), while adveraries against

the PRP security of a scheme are carrying out chosen-plaintext attacks (CPA).

There is an extensive literature showing that, with sufficiently many rounds, key-

alternating and Feistel ciphers can meet this security requirement (e.g. [98, 73, 188]).

2.2.3 Cryptographic permutations

Public permutations have become a popular basis from which to build other sym-

metric primitives. In this setting, it is assumed that all parties have access to some

specified permutations. Although several submissions to the SHA-3 competition

have popularised this idea (including the eventual winner, Keccak [40, 210]), it can

be dated back to at least Even and Mansour [106, 107]. A number of other hash

function proposals explicitly use a public permutation, such as Quark [14], Spon-

gent [58], and Photon [130]. Typically these instantiate the sponge framework [39]

with a particular choice of public permutation.

Part of the motivation behind the recent interest in building primitives from pub-
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lic permutations has been the flexibility offered by the sponge construction and

the ability to have several primitives instantiated with schemes that share much of

their implementation, which is particularly attractive for lightweight applications.

However, public permutations occur (less transparently) in other schemes; for exam-

ple, in a key-alternating cipher [91] the key-independent permutations are publicly

known. In this thesis, a block cipher constructed from ideal permutations that are

accessed via an oracle π is denoted BCπ = (Eπ,Dπ).

One disadvantage of this paradigm is that, historically, it has not been clear how

best to analyse the security of the scheme from a theoretical perspective. A common

approach taken has been to analyse the scheme in the random-permutation model.

In this model, the public permutation is replaced by a uniform, random permutation

and it is assumed that an adversary only gains information about the value P(a)

by explicitly evaluating P at the point a (beyond knowing that P(a1) 6= P(a2) for

a1 6= a2). The random-permutation model is closely related to the random-oracle

model [81], in which all parties have access to a public random function, as formalised

by Bellare and Rogaway [31]. The ideal cipher model gives all parties access to a

family of random permutations and dates back to Shannon [249, p. 691]. It has

been used to reason about the security of many schemes (e.g. [56, 162]) and the

random-permutation model simply gives access to an ideal cipher consisting of a

single random permutation.

While analysis within these ideal models perhaps gives some indication of a scheme’s

security, it is possible to give constructions that are provably secure in these models

but insecure regardless of how the ideal component is instantiated (e.g. [65, 194, 19,

51]). This has led to some discussion about the merits of such a model [164, 165].

2.2.4 Symmetric encryption schemes

Background. Symmetric encryption schemes (SES) were perhaps the first crypto-

graphic scheme to be used: the Caesar, Vigenère, and Playfair ciphers are examples

of schemes intended to allow two parties, sharing a private key, to communicate

with confidentially; Kahn [155] gives a detailed discussion of historical encryption

schemes. In 1917, Vernam [268] described what has become known as the one-time

22



2.2 Cryptographic background

pad, which Shannon [249] showed in 1948 to provide perfect secrecy. Even against

adversaries with unlimited computational resources, symmetric encryption schemes

providing perfect secrecy completely hide the plaintext; more formally, the probabil-

ity distribution of plaintexts is identical to the distribution of plaintexts conditioned

on the observed ciphertexts. The period between World War 1 and World War 2

saw a rapid development of mechanical, rotor-based enciphering machines, including

Scherbius’s Enigma [247].

Around the time that DES was standardised, attention turned to constructing sym-

metric encryption schemes from block ciphers. As block ciphers only describe how

to encrypt fixed-width blocks, it is necessary to specify how to use a block cipher

to encrypt longer or shorter messages. Additionally, block ciphers are determinis-

tic whereas Goldwasser and Micali [127] describe the need for a secure encryption

scheme to be probabilistic (so that sending the same plaintext twice is highly likely

to result in different ciphertexts).

Modes of operation provide a solution to these two issues: notable examples include

output feedback (OFB), cipher feedback (CFB), counter (CTR), and cipher block

chaining (CBC) mode. In some cases (e.g. CBC mode) an appropriate padding

scheme is needed in order to deal with partial final blocks. These modes of operation

are analysed by Bellare et al. [23] in the concrete security framework.

Rogaway et al. [241] introduce the concept of nonce-based symmetric encryption,

phrased in terms of authenticated encryption (AE) schemes; Rogaway [237, 239]

formally describes nonce-based symmetric encryption and nonce-based schemes pro-

viding authenticated encryption with associated data (AEAD).

Previous work had recognised the need for probabilistic encryption and these works

examine what level of security is achievable if the only assumption about the initiali-

sation vector (IV) is that it is non-repeating (a nonce). As an example, with Counter

mode it is sufficient to choose the IVs such that no counter value is repeated, whereas

(textbook) CBC mode requires an unpredictable IV. This nonce-based method pro-

poses that by clarifying and reducing the assumptions about the IV, schemes that

are used in practice are less likely to be misused.
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IND$-CPASES,A :

b ←$ {0, 1}; k ←$ K
b′ ←$ ASym-Enc

Return (b′ = b)

Sym-Enc(N,M):

If b = 0 Return $(k,N,M)
Return Enc(k,N,M)

Figure 2.5: Game defining the IND$-CPA security of a symmetric encryption scheme
SES = (Enc,Dec).

Syntax. Following Rogaway et al. [239], a nonce-based symmetric encryption

scheme consists of two functions: Enc,Dec : K ×N × {0, 1}≤LP → {0, 1}≤LC , where

LP is a bound on the length of messages that may be encrypted using the scheme

and LC is a corresponding bound on the length of the ciphertext. Additionally,

for every k, N and P we require that Dec(k,N,Enc(k,N, P)) = P. We denote a

symmetric encryption scheme by SES = (Enc,Dec), which implicitly defines the sets

K and N and the message-length bounds, LP and LC . The function Enc(k, ·, ·)
will often be denoted Enck(·, ·), and similarly for Dec. We additionally assume that

Enc is length-preserving, in that |Ek(N,P)| = |P| (excluding the transmission of the

nonce); this is not the most general description that one could imagine, however all

of the schemes considered in this thesis have this property.

Security. The IND$-CPA game (indistinguishability from random, under a chosen-

plaintext attack) is formalised in Figure 2.5, where we assume that the length of

the ciphertext, |Enck(N,M)|, depends only on |M| and define $ to be an oracle

returning |Ek(N,M)| uniformly random bits. Throughout, we will only consider

nonce-respecting adversaries, so that no adversary queries their oracle with pairs

(N,M) and (N,M ′). The adversary’s IND$-CPA advantage [241, 240] is defined as

Advind$-cpa
SES (A) = 2 · Pr[IND$-CPASES,A ]− 1 .

Initially, semantic security [127] was introduced as the objective of secure encryption

(first for public-key schemes, then modified for symmetric schemes). This can be

shown to be equivalent to ciphertext indistinguishability [128] and Bellare et al. [23]

describe several indistinguishability notions, such as Find-then-Guess, Left-or-Right,

and Real-or-Random; all are stronger (and easier to work with) than semantic se-

curity. IND$ security trivially implies each of these notions, is easier to understand

and motivate, and is often achieved by the schemes that we wish to reason about.
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It is possible to strengthen each of these notions by permitting adversaries access

to a decryption oracle (which returns the decryption of a ciphertext chosen by the

adversary). In this thesis we will not consider chosen-ciphertext attacks against

symmetric encryption schemes not described as authenticated encryption schemes

and so the reader is referred to standard references (such as [157]) for further details.

2.2.5 Tweakable block ciphers

Background. A tweakable block cipher (TBC) is a block cipher that admits an

additional public input (the ‘tweak’ ) to introduce extra variability at the message-

block level, in the same way that a nonce or IV introduces variability at the message

level. Tweakable block ciphers are formalised by Liskov, Rivest, and Wagner [186].

The motivation for redrawing the abstraction boundary in this way is that, in many

situations, independent instances of a block cipher are desirable. For example, in

Electronic Codebook (ECB) mode, if a repeated ciphertext block is observed then

an adversary can conclude that the corresponding plaintext blocks are identical;

however if an independent instance of the block cipher were to be used for each block,

then this would not be the case. One potential solution to this particular issue with

ECB mode would be to re-key the block cipher with fresh, pseudorandom, nonce-

dependent keys for each block processed. Most block ciphers incur a cost associated

with changing the key, so a major motivation of Liskov, Rivest, and Wagner was to

realise independent instances of a block cipher more efficiently than rekeying.

The Hasty Pudding Cipher [248] and Mercy [87] are early examples of ciphers that

natively support a tweak (in the case of the Hasty Pudding Cipher, this was called

Spice); Threefish [112] is a more recent example. It is also possible to build tweak-

able block ciphers from conventional block ciphers, as in Rogaway’s XE and XEX

modes [238], or by modifying existing block cipher designs, as in Goldenberg et al.’s

work on tweaking Luby–Rackoff ciphers [124]. Tweakable block ciphers can be used

to construct other cryptographic functions, such as symmetric and authenticated

encryption schemes (e.g. OCB [238, 170]), hash functions (e.g. Skein [112]), and

message authentication codes (MACs, e.g. PMAC [55]).
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TSPRPTBC,A :

b ←$ {0, 1}; k ←$ K
(iTE, iTD) ←$ Block(K × T , {0, 1}n)
b′ ←$ ATBC-Enc,TBC-Dec

Return (b′ = b)

TBC-Enc(T,X):

If b = 0 Return iTE(k, T,X)
Return TE(k, T,X)

TBC-Dec(T,X):

If b = 0 Return iTD(k, T,X)
Return TD(k, T,X)

Figure 2.6: Game defining the TSPRP security of a tweakable block cipher TBC =
(TE,TD). In the TPRP game the adversary cannot query the TBC-Dec
oracle.

Syntax. A tweakable block cipher is a pair of functions TE,TD : K×T ×{0, 1}n →
{0, 1}n, where K is the key space, T is the tweak space, and {0, 1}n is the message

space. We require that, for every k ∈ K and T ∈ T , TE(k, T, ·) is a permutation

on {0, 1}n and we denote the inverse of this permutation by TD(k, T, ·). We write

TBC = (TE,TD) to denote a tweakable block cipher, which also implicitly defines

the key space K, tweak space T , and the message space {0, 1}n. We will often denote

E(k, T, ·) by Ek(T, ·) and the inverse of this permutation by Dk(T, ·). The set of all

tweakable block ciphers with key space K, tweak space T , and domain {0, 1}n can

be canonically mapped to Block(K × T , {0, 1}n).

Security. We use the definition of (strong) tweakable block cipher security given by

Liskov et al. [186, 187]. Consider an adversary A and define their tweakable-SPRP

(TSPRP) advantage against TBC as

Advtsprp
TBC (A) = 2 · Pr[TSPRPTBC,A ]− 1 ,

where the TSPRP game is as formalised in Figure 2.6.

The tweaked-PRP (TPRP) advantage is defined similarly, for adversaries that make

no queries to TBC-Dec. Note that, in the definition of both tweakable block ciphers

and strong tweakable block ciphers, the adversary is able to choose both the input

and the tweak for each query.
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2.2.6 Message authentication codes

Background. Message authentication is a somewhat orthogonal aim to that of con-

fidentiality: the objectives of message authentication are to derive some guarantees

about the sender’s identity and the integrity of the message. Historically, message

authentication was obtained by the decryption of a ciphertext to a ‘meaningful’

plaintext—this was perhaps in part due to the perceived unlikelihood of attack-

ers injecting fake messages and the error propagation properties of the encryption

schemes in use at the time.

Around the time that DES was standardised, the recognition that encryption does

not provide message authentication and the importance of message authentication

(particularly to the banking industry) led to the development of dedicated mes-

sage authentication codes (MACs). Early examples of MACs include the Message

Authentication Algorithm [92] and CBC-MAC, which is specified by the Ameri-

can National Standards Institute (ANSI) in ANSI X9.9 and X9.19 [199], and by

the National Institute for Standards and Technology (NIST) in Federal Information

Processing Standard (FIPS) 113 [207].

These two algorithms follow the (now) common pattern of gaining assurance about

the origin of a message via a short ‘tag’ appended to the message. Informally this

tag is a secure MAC if it is not feasible, without the key, to find a message and tag

that appear to have been created by a legitimate sender. The first formal treatment

of message authentication codes (and in particular CBC-MAC) dates from 1994 [25];

it is well known that any PRF is a good MAC [25, 126, 125].

There are four common types of message authentication code: those based on block

ciphers, cryptographic hash functions, permutations, or universal hash functions. In

the first category, CBC-MAC and its variants [54, 147] appear in many introductory

courses on cryptography [192] and are widely used and standardised [142, 272]; XOR

MACs are an alternative method to build a MAC from a block cipher [24]. Cryp-

tographic hash functions are perhaps the most common building block for MACs;

the hash-based message authentication code (HMAC) [167, 20] is a mode of op-

eration for a hash function which realises a secure MAC and it is very widely
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used [273, 158, 159, 209]. The documentation for Keccak (SHA-3) and sponge func-

tions describe a wide variety of modes of operation for building primitives from a

public permutation; one such mode results in a MAC [39, Sect. 3.2]. Universal hash

functions have been studied extensively and an early suggested application was that

of information-theoretic message authentication; see Section 2.2.7 for more details.

It is worth remarking that this informal classification does not uniquely map MAC

schemes to a category: for example, XOR MACs are fundamentally a block-cipher-

based universal hash function that is then transformed into a MAC [24] and many

hash-function-based MACs are instantiated with a hash function constructed from

a block cipher.

Syntax. We will follow Black et al. [53] for a description of the syntax of nonce-

based message authentication schemes. Message authentication schemes are not

typically nonce-based, as it is straightforward to construct a nonce-based MAC

from a MAC that does not require nonces by simply including the nonce with the

message (and ensuring that the nonce can be distinguished from the message). How-

ever, nonces are required for some universal-hash-based schemes; in particular, the

schemes that we study in Chapter 3 are all nonce-based.

A nonce-based message authentication scheme is a function MAC : K×N×{0, 1}? →
{0, 1}|τ |, where K is the key space, N the nonce space, {0, 1}? the message space,

and {0, 1}|τ | the set of possible authentication tags. The authenticity of a tuple

(N,M, τ) is verified by computing MAC(k,N,M): if τ = MAC(k,N,M) then the

tag is valid, otherwise it is invalid.

Security. An adversary attacking a message authentication scheme MAC is given

access to a tagging oracle MAC-Tag and a verification oracle MAC-Ver. At

the beginning of the experiment a key k is chosen uniformly at random, then

MAC-Tag takes queries (N,M) and returns MAC(k,N,M). The verification or-

acle takes queries (N,M, τ) and returns 1 if τ = MAC(k,N,M) or 0 otherwise. An

adversary is said to successfully forge an authentication tag if they can produce

a verification query (N,M, τ) so that MAC-Ver returns 1 when (N,M) was not

previously queried to MAC-Tag.
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FORGEMAC,A :

k ←$ K
(N,M, τ) ←$ AMAC-Tag,MAC-Ver

If (N,M) not queried to MAC-Tag:
Return MAC-Ver(N,M, τ)

Else Return 0

MAC-Tag(N,M):

Return MAC(k,N,M)

MAC-Ver(N,M, τ):

Return (MAC(k,N,M) = τ)

Figure 2.7: Game defining the unforgeability of a message authentication scheme
MAC.

We define the adversary’s advantage as

Advforge
MAC,A = Pr[FORGEMAC,A ] ,

where the game FORGE is defined in Figure 2.7.

A common restriction of this security notion is to nonce-respecting adversaries where,

although the adversary can control the nonce, they never query MAC-Tag for

(N,M ′) if they have previously queried MAC-Tag for (N,M).

One can distinguish between strong unforgeability and weak unforgeability [7]; typi-

cally this distinction is not made in the nonce-based setting that we focus on through-

out this thesis. The notion we describe is analogous to the strong unforgeability

game: an adversary wins if they can create a pair (M?, τ?) 6= (M, τ) for any (M, τ)

queried to MAC-Tag; weak unforgeability additionally requires that M? 6= M.

2.2.7 Universal hash functions

Background. In contrast to the common formulation of a cryptographic hash

function as a single, publicly known function, a universal hash function family con-

tains a number of different hash functions. Carter and Wegman [69, 70] introduce

universal hash function families; their motivating problem is hashing for storage

and retrieval on keys with an important performance consideration to minimise the

number of collisions.

Prior to the definition of universal hash function families, Gilbert, MacWilliams, and

Sloan [119] initiated the study of information-theoretic message authentication (from
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a coding theory perspective); they credit Simmons with identifying the problem.

Here, the objective is to convince a receiver that a particular message was indeed

sent by the sender, rather than a (possibly) computationally-unlimited adversary;

this is the analogue of an encryption scheme providing perfect secrecy [249].

In their 1979 paper, Wegman and Carter [270] apply universal hash function families

to information-theoretic message authentication. They introduce strongly universal

hash function families (of which, they observe, polynomials with bounded degree

are an example) and describe how a member of such a family can be used to au-

thenticate a single message. Additionally, multiple messages can be authenticated

if the output of the universal hash function is encrypted with a one-time pad; Bras-

sard [63] observes that using a stream cipher as a pseudo-one-time pad reduces the

security of an unconditional authenticator to the (computational) security of the

stream cipher, whilst dramatically reducing the amount of key material used.

Simmons and Stinson have both made significant contributions to this area: Sim-

mons [253] gives a survey on the general theory of unconditional authentication,

which includes an overview of several of his papers (such as [254, 255, 256]); and

Stinson has comprehensibly studied the combinatorics of codes providing uncondi-

tional authentication [259, 260, 261, 262, 262, 263].

Krawcyzk [168] introduces the notion of a family of hash functions being ε–otp–

secure, which is to say that an adversary succeeds with probability at most ε when

attempting to forge an authentication tag that is constructed using the one-time pad

encryption of hash value of the message. A necessary and sufficient condition for a

hash function family to be ε-otp-secure is identified, which is now commonly known

as ε-almost XOR universalilty (ε-AXU), following Rogaway [235, 236]. A more

general condition, ε-almost ∆ universal was introduced by Stinson; this recognises

the fact that any commutative group operation (∆) could be used in place of xor.

In this thesis we will generally refer to ε-AXU hash function families; however any

remark made that requires an ε-AXU hash function family in characteristic 2 will

also hold for an ε-almost strongly universal [263] or ε-almost ∆ universal [262] hash

function family (in a finite field with group operation ∆).

Krawcyzk [168] also gives two constructions of ε-almost XOR universal hash function
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families; both of these constructions require relatively short keys to specify a mem-

ber of the hash function family. The first is a cryptographic cyclic redundancy code

(CRC) which closely resembles Rabin’s fingerprinting codes [228]; the second con-

structs a Toeplitz matrix (in which each diagonal is constant) from a linear feedback

shift register, building on proposals from Carter and Wegman [70] and Mansour,

Nisan, and Tiwari [191]. Shoup [251] describes several methods for realising univer-

sal hash function families that are related to polynomials. These proposals include

the evaluation hash [42, 94, 264] and the division hash or cryptographic CRC of

Krawczyk [168], plus a generalised form that includes both as a special case; the

main example of interest to this thesis is the evaluation hash and a more thorough

discussion of this construction is given in Chapter 3.

More recently, several universal hash function families have been proposed, including

Rogaway’s Bucket Hash [235, 236], XOR MAC [24] and some constructions that

follow the design principles of MMH [132] (e.g. [53, 57]).

Syntax. A family of hash functions will be denoted

H = {hH : {0, 1}? → {0, 1}n | H ∈ KH} ,

with each hash function hH indexed by a key H ∈ KH.

Security. A family of hash functions H = {hH : {0, 1}? → {0, 1}n|H ∈ KH} is said

to be a universal2 hash function family [69, 70] if for every M,M ′ ∈ {0, 1}? with

M 6= M ′

Pr
H∈KH

[
hH(M) = hH(M ′)

]
≤ 1

2n
.

A family of hash functions H = {hH : {0, 1}? → {0, 1}n|H ∈ KH} is said to be a

strongly universals hash function family [270, 271] if for every sequence M1, . . . ,Ms

of distinct elements of {0, 1}? and for every sequence y1, . . . ,ys of elements of {0, 1}n,

Pr
H∈KH

[∀i, hH(Mi) = yi] ≤
1

2ns
.

These two definitions can be slightly relaxed: if the relevant probability is bounded

by ε instead of by 1
2n or 1

2ns , then the hash function family are said to be ε-almost

universal or ε-almost strongly universal respectively.

31



2.2 Cryptographic background

A family of hash functions is said to be ε-almost XOR universal [168, 235] if for

every M,M ′ ∈ {0, 1}? with M 6= M ′ and for every c ∈ {0, 1}n,

Pr
H∈KH

[
hH(M)⊕ hH(M ′) = c

]
≤ ε .

We abbreviate ε-almost XOR universal to ε-AXU and generically refer to hash func-

tion families satisfying conditions similar to the above as universal hash functions.

2.2.8 Authenticated encryption

Background. As noted earlier, the aims of confidentiality and authenticity are

distinct. The one-time pad provides perfect secrecy, but offers absolutely no authen-

ticity: an adversary can flip specific bits in the plaintext by flipping the same bits

in the ciphertext. Similarly, universal-hash-based MACs can provide information-

theoretically secure authentication, as can a universal-hash-based MAC concate-

nated with the plaintext, which trivially offers no confidentiality.

It has become increasingly clear that the security properties users expect from sym-

metric cryptography are better described in terms of authenticated encryption (AE)

schemes [29], where the plaintext is both encrypted and authenticated. Authenti-

cated encryption with associated data (AEAD) schemes [237] additionally protect

data that should be authenticated but not encrypted, such as addresses or rout-

ing information. For the vast majority of applications this provides the required

functionality and reduces the risk that the intended security is compromised when

schemes providing confidentiality and authenticity are combined. This choice of ab-

straction boundary has become a common interface in cryptographic libraries, with

TLS 1.3 currently planned to only support AEAD ciphers [230, Sect. 6.2.2] and the

NaCl ‘crypto box’ construction realising this model [38].

Bellare and Namprempre [29] formally analyse the idea of generic composition, where

the security of the combination depends only on the security properties of the un-

derlying schemes; a similar approach is adopted by Krawczyk [169] and Krawczyk

and Cannetti [66]. Part of the motivation for these works was that three major

internet security protocols all constructed AEAD schemes in a different way: Se-

cure Shell (SSH) encrypted and authenticated the plaintext independently [273],
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Internet Protocol Security (IPsec) first encrypted the plaintext then authenticated

the resulting ciphertext [160], and Secure Socket Layer/Transport Layer Security

(SSL/TLS) authenticated the plaintext then encrypted both the plaintext and the

MAC [116]. Bellare and Namprempre’s analysis supports the approach of IPsec;

several attacks have arisen from the poor choices made when constructing AEAD

schemes in SSL/TLS and SSH (e.g. [267, 6]). This question has recently received

renewed attention from Namprempre, Rogaway, and Shrimpton [205], where they

consider the same question in the nonce-based setting and describe a more diverse

set of secure constructions.

These results on generic composition enable the construction of a secure AEAD

mode from any IND-CPA secure encryption scheme and any message authentica-

tion scheme that guarantees the integrity of ciphertexts (INT-CTXT) [29]. However

dedicated constructions may offer advantages such as greater efficiency (with re-

spect to speed, implementation area, or energy consumption) or alternative security

properties (such as nonce-misuse or side-channel-attack resilience).

Perhaps the most widely used dedicated AEAD scheme is Galois/Counter Mode

(GCM), which was specified by McGrew and Viega [197]; more details on the speci-

fication of GCM are given in Chapter 3. In addition to GCM, several other dedicated

AE and AEAD schemes have been proposed such as OCB [238, 170] and several sub-

missions to the eSTREAM competition [233]. In 2013, the CAESAR competition

was launched [79], supported by NIST, aiming to ‘identify a portfolio of authen-

ticated ciphers that (1) offer advantages over AES–GCM and (2) are suitable for

widespread adoption’ ; it has received over 50 submissions.

Syntax. Following Rogaway [237], an authenticated encryption with associated

data (AEAD) scheme is an authenticated encryption (AE) scheme [29] that also

authenticates some unencrypted data (the associated data). More formally, an

AEAD scheme consists of two functions: Enc : K × N × {0, 1}≤LA × {0, 1}≤LP →
{0, 1}≤LC and Dec : K × N × {0, 1}≤LA × {0, 1}≤LC → {0, 1}≤LP ∪ {⊥}. As be-

fore LA , LP , and LC are bounds on the length of associated data, plaintext, and

ciphertext (respectively) that can be processed by the scheme. We require that

for every k ∈ K, N ∈ N , A ∈ {0, 1}≤LA , and P ∈ {0, 1}≤LP we have that

Dec(k,N,A,Enc(k,N,A, P)) = P.
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AEADAEAD,A :

b ←$ {0, 1}; k ←$ K
b′ ←$ AAE-Enc,AE-Dec

Return (b′ = b)

AE-Enc(N,A, P):

If b = 0 Return $(k,N,A, P)
Return Enc(k,N,A, P)

AE-Dec(N,A,C):

If b = 0 Return ⊥
Return Dec(k,N,A,C)

Figure 2.8: Game defining the AEAD security of an AEAD scheme AEAD =
(Enc,Dec).

Additionally, we assume that Enc is length-preserving, in that |Ek(N,A, P)| =

|P| + |τ| where |τ| is fixed by the scheme; this is not the most general description

imaginable, however all of the schemes considered in this thesis have this property.

Security. There are two aspects to the security objective for an AEAD scheme: it

should provide privacy of the plaintexts and integrity of the whole message (nonce,

associated data and ciphertext).

The advantage of an adversary against an AEAD scheme will be measured by

Advaead
AEAD(A) = 2 · Pr[AEADAEAD,A ]− 1 ,

where the AEAD game is as formalised in Figure 2.8, where as before, $ is an oracle

that outputs |E(k,N,A, P)|-many random bits. This all-in-one notion of AEAD

security is similar to that described by Rogaway and Shrimpton [242].

This definition is a slight strengthening of earlier definitions, as we insist that the

scheme meets the definition of IND$-CPA security (described in Section 2.2.2); Bel-

lare and Namprempre consider generic composition with IND-CPA secure encryption

schemes [29]. A common restriction of this security definition is to only consider

nonce-respecting adversaries, so no adversary queries the AE-Enc oracle with pairs

(N,M) and (N,M ′).
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2.3 Security models

The indistinguishability and unforgeability notions described above have been widely

adopted within the community as representations of the expected security properties

for various primitives and schemes. However, there are applications and use cases for

which it is desirable (or necessary) for the security model to be expanded in order to

encompass other patterns of adversarial behaviour. In this section, we will describe

some of the alternative security models that are used throughout this thesis.

2.3.1 Weak keys

Background. For any cryptographic algorithm, a relevant question for its security

assessment is whether it contains weak keys. Informally, a weak-key class is a set of

keys that cause some undesirable behaviour in the algorithm when they are used.

The overall security implications of weak keys on an algorithm depends on the

number of weak keys, the ease with which their use can be detected, and how

undesirable the algorithm’s behaviour is when a weak key is used.

A common design goal for block and stream ciphers is that the algorithm has no

weak keys (a ‘flat’ key space); there are several examples of ciphers that do not meet

this requirement, such as IDEA [89], Blowfish [266], RC4 [113] and DES [206, 201].

The most well known weak-key class is arguably that of DES; this class consists of

keys k such that Ek(Ek(M)) = M. In this case the membership test is very simple

however the weak-key class consists of only four keys.

In general, small weak-key classes do not significantly detract from an algorithm’s

security, however in some modes (such as if the algorithm is used to construct a

hash function in the Davies-Meyer construction [221]) the adversary has control

over which key is used and could cause a weak key to be used repeatedly.

Definitions. The Encyclopedia of Cryptography and Security [46] gives the fol-

lowing definition:
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The strength of an encryption function Ek(P) may differ significantly for

different keys k. If for some set WK of keys, the encryption function is

much weaker than for others, this set is called a class of weak keys. The

attack technique that succeeds against the keys in the class WK is called

a membership test for the class.

Throughout this thesis, we use Handschuh and Preneel’s definition [135, Sect. 3.1]:

In symmetric cryptology, a class of keys D is called a weak key class if for

the members of that class the algorithm behaves in an unexpected way

and if it is easy to detect whether a particular unknown key belongs to

this class. For a MAC algorithm, the unexpected behavior can be that

the forgery probability for this key is substantially larger than average.

Moreover, if a weak key class D is of size C, one requires that identifying

that a key belongs to this class requires testing fewer than C keys by

exhaustive search and fewer than C verification queries.

2.3.2 Related-key attacks

Background. Formal analyses of cryptographic protocols often assume that cryp-

tosystems are run on keys that are independently generated and bear no relation

to each other. Implicit in this assumption is the premise that user keys are stored

in protected areas that are hard to tamper with. Security under related-key at-

tacks (RKAs), first identified by Biham and Knudsen [44, 43, 163], considers a

setting where an adversary might be able to disturb user keys (perhaps by injecting

faults [8]), and consequently run a cryptosystem on related keys. Resilience against

RKAs has become a desirable security goal, particularly for block ciphers.

The need for RKA security is further highlighted by the fact that through (im-

proper) design, a higher-level protocol might run a lower-level one on related keys.

Prominent examples are the key derivation procedures in standardised protocols

such as EMV [102] and the 3GPP integrity and confidentiality algorithms [146],

where efficiency considerations have led the designers to use a block cipher under
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related keys. Similar considerations can arise in the construction of tweakable block

ciphers, if a block cipher is called on keys that are offset by xoring tweak values [186].

An RKA-secure primitive can offer security safeguards against such protocol misuse.

Bellare and Kohno [27] initiate the theoretical treatment of security under related-

key attacks and propose definitions for RKA-secure pseudorandom functions and

pseudorandom permutations. This model was subsequently extended by Albrecht

et al. [5] to idealised models of computation, accounting for the possibility that

keys may be derived in ways that depend on the ideal primitive. Both works prove

that the ideal cipher is RKA secure against wide sets of related-key deriving (RKD)

functions. Bellare and Cash [21] present an RKA-secure pseudorandom function

from standard intractability assumptions and Bellare, Cash, and Miller [22] give

a comprehensive treatment of RKA security for various cryptographic primitives,

leveraging the RKA resilience of PRGs to construct RKA-secure instances of several

other primitives. In Chapter 4 we consider the RKA security of block ciphers.

RKD functions. A related-key deriving (RKD) function maps keys to keys in

some key space K; we view RKD functions as circuits that may contain special

oracles gates π. An RKD set Φ is a set of RKD functions φπ : K −→ K, where π is

an oracle; we assume that membership in RKD sets can be efficiently decided.

RKA security. Following Bellare and Kohno [27] and Albrecht et al. [5], we

formalise the RKA security of a block cipher BCπ = (Eπ,Dπ) in the (multiple) ideal-

permutation model via the game shown in Figure 2.9. Note that this game includes

a procedure for oracle π defined above.

Access to multiple ideal permutations is equivalent to providing access to a block

cipher P with key space [t], where Pi(x) = P(i, x). In order to ease notation, we

define a single oracle π, which provides access to all t ideal permutations in both

directions. This oracle takes as input (i, x, σ), where i ∈ [t], x ∈ {0, 1}n, and

σ ∈ {+,−} and returns Pi(x) if σ = + and P−1
i (x) if σ = −. Slightly abusing

notation, we define Pσi (x) = Pσ(i, x) = π(i, x, σ), and assume σ = + whenever it is

omitted from the superscript.

Bellare and Kohno [27] show that it is not possible for any scheme to provide security
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RKCCABCπ ,A,Φ,t:

b ←$ {0, 1}; k ←$ K
(P,P−1) ←$ Block([t], {0, 1}n)
(iE, iD) ←$ Block(K, {0, 1}n)
b′ ←$ ARK-Enc,RK-Dec,π

Return (b′ = b)

π(i, x, σ):

Return Pσ(i, x)

RK-Enc(φπ, x):

k′ ← φπ(k)
If b = 0 Return iE(k′, x)
Return Eπ(k′, x)

RK-Dec(φπ, x):

k′ ← φπ(k)
If b = 0 Return iD(k′, x)
Return Dπ(k′, x)

Figure 2.9: Game defining the Φ-RKCCA security of a block cipher BCπ = (Eπ,Dπ)
with access to t ideal permutations. An adversary can query the
RK-Enc and RK-Dec oracles with a φπ ∈ Φ only. In the RKCPA
game the adversary cannot query the RK-Dec oracle.

against an adversary that can request encryptions under arbitrary functions of the

key. As a result of this, the RKA game is parametrised by an RKD set Φ which

specifies the RKD functions that an adversary is permitted to query during its

attack. We define the advantage of an adversary A carrying out a related-key

chosen-ciphertext attack (RKCCA) against a block cipher BC via

Advrkcca
BCπ ,Φ,t(A) = 2 · Pr

[
RKCCABCπ ,A,Φ,t

]
− 1 .

The game and advantage for related-key chosen-plaintext attacks (RKCPA) are de-

fined similarly by considering adversaries that do not make any RK-Dec queries

(backwards queries to the permutations are still permitted). Denoting these games

by RKCPA and RKCCA is a slight abuse of notation: we only consider these at-

tacks against the PRP or SPRP security of a block cipher, whereas one could also

consider (for example) related-key attacks against the TPRP or TSPRP security of

a tweakable block cipher.

2.3.3 Indifferentiability

Background. Maurer, Renner, and Holenstein [194] introduce a framework which

formalises what it means for a non-monolithic object to be able to replace a (pos-

sibly idealised) component in arbitrary cryptosystems. This framework, known as

indifferentiability, has been used to validate the design principle behind many cryp-
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tographic constructions (e.g. [41, 10, 9]).

The motivation for this notion is to better model the situation in which components

of a system depend on each other and an adversary may learn partial information

about the randomness or state of these components. As an example, AES can be

considered to call the AES round functions as subroutines and, as these functions

are publicly known, it is possible for an adversary to evaluate these functions at

points of their choosing and hence learn some information about them.

Similar examples can be taken from iterated hash functions: the Merkle-Damg̊ard

construction [80] calls a compression function; sponges [41] call the sponge permu-

tation; and block-cipher-based compression functions may call a block cipher with

a known key (see [222] for a thorough exposition of possible constructions).

Similarly to the random-permutation model, as discussed in Section 2.2.3, the cor-

rect interpretation of an indifferentiability proof is not clear. Ristenpart, Shacham,

and Shrimpton [231] demonstrate that although indifferentiability implies indistin-

guishability, it does not necessarily guarantee composition in multi-stage settings.

They emphasise that indifferentiability is still a worthwhile design objective (there

are many practically important security notions covered by single-stage games), but

it does not necessarily exclude ‘structure-abusing attacks’, as had been suggested.

Informally, a multi-stage setting is one in which the adversary can be decomposed

into a number of ‘smaller’ algorithms passing limited state between each other; this

should be compared with the single, stateful adversary present in the indistinguisha-

bility and unforgeability notions described above. Ristenpart et al. go on to explain

that multi-staged security notions includes deterministic or searchable public-key

encryption, as well as security in the presence of key-dependent messages. Related-

key security is also a two-stage game if the RKD functions can depend on public

oracles; in this case the RKD functions take the role of the other adversarial stage.

Security Model. The approach taken by Maurer et al. [194] considers the general

situation of a system with many interacting components. In this thesis it is sufficient

to consider just two components: a ‘construction’ built from a ‘primitive’.
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C

A

SP iC

Figure 2.10: The indifferentiability framework. An adversary A interacts with ei-
ther: an ideal primitive P and the real construction C, which can call
the ideal primitive; or an ideal construction iC and a simulator S, which
can query the ideal construction.

INDIFFC,A :

b ←$ {0, 1}; k ←$ K
iC ←$ I
b′ ←$ AConst,Prim

Return (b′ = b)

Const(X):

If b = 0 Return iC(k,X)
Return CP(k,X)

Prim(X):

If b = 0 Return SiC(X)
Return P(X)

Figure 2.11: Game defining the indifferentiablity of a construction C. The idealised
primitive is denoted by P, the idealised construction by iC and the
simulator by S. The set I denotes all possible idealised constructions
with the required syntax.

The indifferentiability framework permits an adversary to interact with either the

real construction and an idealised primitive, or an idealised scheme and a simulated

primitive. That is, in the case that an adversary is interacting with the idealised

scheme (in place of the construction), a simulator responds to the adversary’s queries

with ‘how the primitive should respond, given how the ideal construction is behav-

ing’. The fundamental difference between these two settings is that in one case the

construction calls the primitive as a subroutine, while in the other the simulator

(playing the role of the primitive) calls the idealised construction.

We define the indifferentiability advantage of an adversary A via

Advindiff
C (A) = 2 · Pr [INDIFFC,A ]− 1 .
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2.3.4 Algebraic cryptanalysis

The ideas underpinning algebraic cryptanalysis date back at least as far as Shan-

non [249], who describes how an adversary could perhaps solve a system of equations

in order to recover the key. Algebraic attacks are powerful cryptanalytic techniques

that have been used to attack a wide range of schemes: several stream ciphers have

been broken (e.g. [84, 82]), while the technique has also been applied (generally

unsuccessfully) to block ciphers [76, 77]. Perhaps the best known algebraic attacks

are those against AES [85], although the practicality of using the XSL algorithm to

attack AES has since been questioned [75].

Algebraic cryptanalysis consists of two relatively distinct phases. The first is to

write the entire cryptographic operation as a large set of multivariate polynomial

equations, relating unknown values (such as parts of the key, intermediate values, or

a target plaintext) to known, observed values (such as parts of plaintext/ciphertext

pairs). The second phase is to solve this system of equations; common techniques

include Gröbner Basis algorithms [110], linearisation [83], mixed-integer linear pro-

gramming [62], and Boolean satisfiability (SAT) solvers [16]. A major strength of

this cryptanalytic technique is that it is not statistical (as linear and differential

cryptanalysis are) and often very few plaintext/ciphertext pairs are required. Un-

fortunately, the running time of algebraic attacks is often not well understood; the

performance of these algorithms heavily depends on how the cryptosystem is repre-

sented and the particular structure of the derived equations [204, 76].

In Chapter 6 we will use Gröbner Basis algorithms as part of an algebraic attack;

we refer the reader to standard texts (such as [86]) for further details on the imple-

mentation of these algorithms.
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Polynomial-based hash functions
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In this chapter, we study universal hash functions that are constructed via the eval-

uation of a polynomial in a finite field. These are commonly used in schemes for

message authentication and are popular due to their information-theoretic security

guarantees, as well as their speed and simplicity. We describe a forgery attack that

generalises all existing attacks on these schemes and identify a large number of weak

keys. The particular relevance of these observations to GCM/ 2+ is discussed and

finally we describe many, large weak-key classes for MACs based on Square Hash,

another universal hash function.

The work described in this chapter is joint work with Carlos Cid, appearing as [226]

and [227]; it is available at [225].
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3.1 Introduction

Universal hash functions can be used to build message authentication codes and

related constructions feature as components in AE and AEAD schemes. Commonly,

the universal hash functions are based on polynomial evaluation: such schemes

are widely standardised (e.g. [99, 166, 138, 181, 245]). McGrew and Viega’s Ga-

lois/Counter Mode (GCM) [197] is the most widely deployed example, Bernstein’s

Poly1305 [34] is also widely used.

This approach is well studied and generally believed to be secure, as described in

Section 2.2.7: Wegman and Carter [270] first proposed the use of universal hash

functions (combined with the one-time pad) for message authentication in 1979;

Brassard [63] describes using a stream cipher in place of the one-time pad, making

the construction more efficient for multiple messages; and Krawczyk [168] describes

a necessary and sufficient condition for a universal hash function family to provide

security when used in this setting, giving several examples of constructions that

meet this condition.

Previous works have focused on GCM due to its popularity, although their results

often apply equally to many hash functions based on polynomial evaluation. There

are a small number of papers attacking GCM via the universal hash component:

Ferguson’s attack against truncated tags [111] demonstrates that the security of short

tags is significantly lower than would be expected; Joux’s ‘forbidden attack’ [152]

illustrates GCM’s brittleness under nonce reuse; Handschuh and Preneel describe

methods to extend Joux’s attack [135]; and Saarinen’s cycling attacks [244] highlight

a weakness due to the underlying algebraic structure of the hash function. Both

Handschuh and Preneel [135] and Saarinen [244] describe classes of weak keys for

polynomial-evaluation-based universal hash functions.

The main motivation for this work was the observation that these attacks against

GCM are algebraic in nature, and seem to exploit a fundamental underlying algebraic

structure of the polynomial-based hash function which we discuss in this chapter.
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Contributions

The contributions of this chapter are to identify and study some of the properties

of hash functions based on polynomial evaluation that arise from this underlying

algebraic structure. As a result, we are able to describe a general forgery attack

against related message authentication schemes which removes several limitations

of previous works: our attack can be used with short messages, does not require

nonce-reuse or truncated tags, applies regardless of the field in which the hash is

evaluated, and additionally facilitates length extension attacks. Furthermore, we

provide a common description of all published attacks against these schemes by

showing that the existing attacks are the result of these algebraic properties of the

polynomial-based hash function. We also greatly expand the number of known weak

keys and show that almost every subset of the key space is a weak-key class. The

attacks presented and described in this chapter do not in any way contradict known

security bounds (e.g. for GCM, as given by McGrew and Viega [196]). However,

the algebraic properties (and related attacks) discussed in this chapter appear to be

an inherent feature of polynomial-based authentication schemes and therefore need

to be considered in a scheme’s security assessment. This is demonstrated by the

impact that these properties and attacks have on GCM/2+ [11], a variant of GCM

that we also discuss. Finally, we consider the consequences of a related property on

Square Hash [105], another family of polynomial-based universal hash functions.

3.2 Prior work

This section gives an overview of existing proposals for polynomial-based hash func-

tions and message authentication schemes, as well as prior security analyses for these

schemes.

3.2.1 Polynomial-evaluation-based hash functions

The most well known and widely used universal hash function family is the polyno-

mial evaluation hash, in which an ε-almost strongly universal hash function family
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is constructed using polynomial evaluation in a finite field. This construction is

described independently by Bierbrauer et al. [42], Taylor [264], and den Boer [94];

Shoup [251] identifies several variants and generalisations.

The polynomial evaluation hash uses the message M to determine a polynomial

gM(x) ∈ K[x] with constant term equal to zero; the hash key is a random element

H ∈ K and the output of the hash function is hH(M) = gM(H). The canonical (and

most common) method to realise this scheme is to associate a message in {0, 1}?

with a polynomial in K[x] by gM(x) =
∑m

i=1Mix
i ∈ K[x], where M is parsed as

M1|| . . . ||Mm with each Mi ∈ K and Mm possibly padded. We remark that some

care may be needed to ensure that the family of hash functions chosen is indeed

universal when the message space contains messages of variable length; for example,

the polynomial-evaluation hash used within GCM depends on the length-encoding

(discussed below) to ensure its universality.

Below, we briefly describe some authentication schemes based on polynomial evalu-

ation hash functions that are relevant to our work. Throughout this chapter we will

focus on GCM for concreteness however the majority of the comments apply equally

to any other hash function based on polynomial evaluation. Most of the results in

this chapter apply equally to both common constructions of MACs from universal

hash functions, either τ = Ek(N) + hH(M) or τ = Ek(hH(M)), as our results are

based on collisions in the hash function. Where necessary it will be made clear that

a remark is dependent on one of these general constructions or the specific structure

of GCM. We will also discuss Square Hash [105] in this chapter: Square Hash is

another family of universal hash functions based on a different set of polynomials

and we defer further details to Section 3.7.

3.2.1.1 Galois/Counter Mode

Galois/Counter Mode (GCM) is an AEAD scheme submitted to NIST by McGrew

and Viega in 2004, with the specification slightly revised in 2005 [197] (although

the revision contained ‘no normative changes [from the 2004 specification]’ ). GCM

combines counter mode encryption with a polynomial-evaluation-based MAC follow-

ing the Encrypt–then–MAC paradigm, although the hash key is derived from the
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block cipher key. GCM is intended to be used with 128-bit block ciphers, although

an option exists to use a 64-bit block cipher. The most common instantiation is

AES–GCM; we now briefly described GCM as used with a 128-bit block cipher.

Galois/Counter Mode encryption takes as input: a block cipher key k, an initialisa-

tion vector N, plaintext P = P1|| . . . ||Pp and additional data A = A1|| . . . ||Aa. The

IV should preferably be 96-bits long although any length is supported (see [148]); it

is critical to the security of GCM that the IV is non-repeating (i.e. is a nonce) [152].

For each i, |Pi| = |Ai| = 128, except for perhaps partial final blocks. With this input,

GCM returns a ciphertext C = C1|| . . . ||Cp (the same length as the plaintext) and

an authentication tag τ which is up to 128-bits long (specific choices of tag length

may be standardised, e.g. [99, p. 9]).

The plaintext is encrypted using the block cipher in counter mode, under key k with

counter value starting at ctr1. If the IV is 96 bits long the initial counter value

(ctr0) is N||0311, otherwise it is a polynomial-evaluation-based hash of N after zero

padding (using the hash key described below). For each i, ctr i = inc(ctr i−1), where

inc(·) increments the last 32 bits of its argument (modulo 232).

The authentication tag is computed from a polynomial evaluation hash (in F2128).

The message M is parsed as 128-bit blocks (with partial final blocks zero padded)

and each block is interpreted as an element of F2128 . The first block M1 encodes the

length of the (unpadded) plaintext and additional data; this block will be referred

to as the ‘length field’ throughout this chapter. This is followed by blocks of cipher-

text M2, . . . ,Mp+1 = Cp, . . . ,C1 and then the associated data Mp+2, . . . ,Ma+p+1 =

Aa, . . . ,A1. Note that in this description the labelling of the blocks Mi are reversed

from those given in the original GCM specification as this gives a neater description

of the polynomial used in evaluating the hash function. The hash key H is derived

from the block cipher key: H = Ek(0128). The hash function is then computed as

hH(M) =
∑a+p+1

i=1 MiH
i (where all operations are in F2128). The authentication tag

is given by:

τ = Ek(ctr0)⊕ hH(M) .
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3.2.1.2 Sophie Germain Counter Mode

In 2012, Saarinen [244] observed cycling attacks against GCM and other polynomial

MACs and hashes. Following this Saarinen proposed Sophie Germain Counter Mode

(SGCM) [243] as a variant of GCM. SGCM differs from GCM only by the choice of

field in which the hash is computed: SGCM uses Fq, where q = 2128 + 12451, rather

than F2128 , as F?q has significantly fewer subgroups than F?2128 . It was claimed that

SGCM offers increased resistance to cycling attacks as a result of this change.

3.2.1.3 GCM with short multiplications

Aoki and Yasuda [11] propose GCM/2+, a variant of GCM designed to increase the

efficiency in software. GCM/2+ makes several changes to the GCM specification,

which we discuss in greater detail in Section 3.6.1. The most significant of these

changes is to evaluate the hash function using ‘short multiplications’ in F264 rather

than multiplications in F2128 . However, this severely impacts the security of the

scheme, as we discuss in Section 3.6.2.

3.2.1.4 Poly1305

Poly1305–AES was specified by Bernstein in 2005 [34], although a preliminary ver-

sion appears on his website1 from from 2004. The inputs to Poly1305–AES are two

128-bit keys, one for AES (k) and one for the hash (r) which has some specific bits

set to zero; a 128-bit nonce (N); and a message (a byte string). The output of

Poly1305–AES is a 128-bit authentication tag. The hash of a message is computed

by evaluating a polynomial at the secret key (in F2130−5) and encrypting this by

adding (modulo 2128) the output of AESk(N).

The original paper describes ‘cipher replaceability’ as an advantage of Poly1305 [34,

p. 33]: ‘If anything does go wrong with AES, users can switch from Poly1305–

AES to Poly1305–AnotherFunction, with an identical security guarantee.’ Indeed,

a recent proposal to the IETF for a new AEAD mode aims, in part, to provide

1http://cr.yp.to/mac.html
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resilience against advances in AES cryptanalysis and uses Poly1305–ChaCha20 [211];

ChaCha20 is a stream cipher also designed by Bernstein [35]. We study this proposal

in greater detail in Section 6.2.

3.2.2 Security analyses

For a polynomial-based MAC, it is well established that the probability of creating

a valid (non-truncated) tag having seen a single valid (message, tag) pair is approxi-

mately m/|K| where the polynomial is evaluated in K and m is the length of message

that the construction operates on (see, for example, [251, 196, 111, 135]). However,

it is worth emphasising that in this context m is the maximum permissible message

length. This is included in the original analysis of GCM [196] but is not made ex-

plicitly clear in the later papers [111, 135]. In Section 3.3.3 we will demonstrate the

importance of this distinction by describing one method for forging GCM tags using

a longer message than the one that was given in the valid (message, tag) pair from

the tag generation oracle.

In this section, we briefly describe the main existing results on the security of

polynomial-based MACs. Because GCM is the most prominent example of a mes-

sage authentication scheme based on polynomial evaluation, many of these results

were originally described in terms of GCM, however they can also be applied to more

general polynomial-based schemes. We will show in Section 3.4 that the attacks de-

scribed in this section can be realised as special cases of the properties discussed in

Section 3.3. Additionally, we discuss and extend the weak-key classes identified by

Handschuh and Preneel [135] and Saarinen [244] in Section 3.5.

3.2.2.1 Ferguson’s short tag attack

Ferguson’s attack against GCM when short tags are used [111] begins by observing

that, for truncated tags, a full collision in the hash function is not required for a

collision in the authentication tag. This is because the output of the hash function

is encrypted additively and only the leading bits of the hash function affect the

authentication tag.
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The second observation is that, because the polynomial hash is evaluated in a field of

characteristic 2, squaring is a linear operation. So, if message blocks M2i (for some

i) are altered by an adversary, this only affects the coefficient of H2i and hence the

effect on the authentication tag is a linear function of H. In particular, it is possible

for the adversary to alter these message blocks in a way that guarantees particular

bits of the authentication tag will not change. This means that the effective length

of the authentication tag is reduced and forgeries become more likely.

Ferguson also notes that once a forgery has been observed, the adversary gains

information about H. With each successive forgery, more information about H is

derived and the adversary is able to use this information when manipulating the

M2i and increase the number of bits of the authentication tag that are guaranteed

not to change. Eventually the adversary will recover the entire hash key.

3.2.2.2 Joux’s forbidden attack

Joux’s ‘forbidden attack’ against GCM [152] requires two messages, M and M ′, that

are authenticated with the same (key, IV) pair. Reusing the (key, IV) pair in GCM

has the effect of reusing H, k and N. This allows the adversary to conclude that

the xor of the authentication tags is the hash of the xor of the messages:

τM ⊕ τM ′ = (hH(M)⊕ Ek(N))⊕ (hH(M ′)⊕ Ek(N))

= hH(M)⊕ hH(M ′)

= hH(M ⊕M ′) .

As the hash is a known polynomial evaluated at H and the adversary knows τM , τM ′ ,

and both messages, they are able to derive a polynomial that is known to have a root

at H (using the notation introduced in Section 3.3, this is gM⊕M ′ ⊕ τM ⊕ τM ′). Joux

suggests that by collecting pairs of messages authenticated with the same IV, an

adversary could compute the greatest common divisor (GCD) of these polynomials

and eventually recover the key. This attack is prevented if we only consider nonce-

respecting adversaries.
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3.2.2.3 Handschuh and Preneel’s attacks

Handschuh and Preneel [135] describe two attacks: one allows an adversary to verify

a guess for the hash key, and the second recovers the hash key.

To verify a guess for the hash key, they require an authentication tag on a message of

at least two blocks, so suppose that a valid authentication tag is known for M1||M2.

Picking any M ′2 and computing M ′1 = M1 + (M2−M ′2)H?, where H? is the guessed

hash key, gives a forged message M ′1||M ′2. If the guess for the key is correct then the

authentication tag for M1||M2 is also valid for M ′1||M ′2.

Their key recovery attack extends the one described by Joux, as it does not re-

quire nonce reuse. Given a valid authentication tag on a message M, the adversary

performs a verification query using the same tag but a different message M ′; this

message is chosen so that the polynomial defined by M−M ′ has many distinct roots.

A successful forgery implies that the hash key is one of the roots of this polynomial

and so a binary search can be conducted on those roots in order to recover the hash

key. The key recovery method was initially identified by Black and Cochran [52]

but extended and generalised by Handschuh and Preneel. This attack is described

as infeasible by Handschuh and Preneel in the case of GCM, due to the blocksize of

128 bits, however we will show that it is precisely as feasible as Saarinen’s cycling

attacks, which are described in the following section.

3.2.2.4 Saarinen’s cycling attacks

In 2012, Saarinen [244] proposed cycling attacks against GCM and other polynomial-

based MACs and hashes. The key observation is that if a hash key H lies in a

subgroup of order t, then Ht = 1 ∈ K and (for any i, j) message blocks Mi and

Mi+jt can be swapped without changing the value of the hash.

For example (ignoring GCM’s length encoding), if H4 = H then blocks M1 and M4
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can be swapped without changing the value of the hash:

hH(M1||M2||M3||M4) = M1 ·H ⊕M2 ·H2 ⊕M3 ·H3 ⊕M4 ·H4

= (M1 ⊕M4) ·H ⊕M2 ·H2 ⊕M3 ·H3

= M4 ·H ⊕M2 ·H2 ⊕M3 ·H3 ⊕M1 ·H4

= hH(M4||M2||M3||M1) .

The attack is carried out by obtaining a valid tag for a message and performing a

verification query using the same tag with the message formed by simply swapping

the position of two message blocks. Saarinen observes that any t dividing 2128 − 1

can be used and that swapping Mi and Mi+t will give a successful forgery with

probability at least t+1
2128

, as the forgery is succeeds if H is any one of the t elements

in the chosen subgroup or if H is zero.

Saarinen [244] also describes ‘targeted multiple bit forgeries’ in which, instead of

whole blocks, only some bits are swapped (subject to the condition that Mi ⊕
Mi+t remains constant). This method permits the adversary more control over

the forged message and the corresponding plaintext; we discuss this idea further in

Section 3.3.2.

Saarinen’s main motivation for proposing SGCM [243] (described in Section 3.2.1.2)

was to prevent attacks utilising this algebraic structure.

3.2.2.5 Weak keys

Handschuh and Preneel [135] identify a large number of weak-key classes for a variety

of constructions. In particular, they observe that H = 0 is a weak hash key for GCM

and other similar constructions because h0(M) = 0 for every message M.

Saarinen [244] demonstrates that there are many more weak keys than are described

by Handschuh and Preneel, showing that small-order subgroups of K? are weak-

key classes. The forgery technique described in the previous section is successful

if the hash key is an element of a small-order subgroup with order dividing the

distance between the swapped message blocks. This gives a method for identifying
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whether the hash key is in that class using one valid (message, tag) pair and a

single verification query; these classes of weak keys meet Handschuh and Preneel’s

definition of weak keys (given in Section 2.3.1).

3.3 Algebraic structure and its implications

This section describes the main observation that allows us to give a general forgery

attack against polynomial-based MAC schemes. In particular, we observe that by

working with polynomials in particular ideals it is straightforward to produce forg-

eries for these schemes. We go on to describe a malleability property of polynomial-

based MAC schemes, use this to identify a length-extension attack against GCM,

and give a general method for recovering the hash key from such a scheme. Finally,

we discuss possible methods to generate polynomials with the required properties.

3.3.1 A generalised forgery attack

For a family of hash functions H = {hH : {0, 1}? → {0, 1}n | H ∈ KH} based on

polynomial evaluation with M an input string, write hH(M) = gM(H), where

gM(x) =
∑m

i=1Mix
i ∈ K[x] and Mi, H ∈ K. Now let q(x) =

∑r
i=1 qix

i ∈ K[x]

be a polynomial with constant term zero, such that q(H) = 0. Then it follows that

hH(M) = gM(H) = gM(H) + q(H) = gM+Q(H) = hH(M +Q) ,

where Q = q1||q2|| . . . ||qr and the addition M + Q is done block-wise (the shorter

message is zero-padded if required). Thus, given a polynomial q(x) with these

properties, it is straightforward to construct collisions for the hash function. In

particular, the elements of the ideal 〈x2−Hx〉 are precisely the polynomials satisfying

this requirement: an element of K[x] is in this ideal if and only if it has roots at

both zero and H. (Recall that the ideal generated by f(x) is defined as 〈f(x)〉 =

{r(x) · f(x)|r(x) ∈ K[x]} ⊆ K[x].)

Collisions in the hash function correspond to MAC forgeries by substituting the

original message for the one that yields a collision in the hash function. These

forgeries arise from collisions in the hash function and hence the messages can be
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substituted without any dependence on the method or key used to encrypt the

output of the hash function. This method allows an adversary to create forgeries by

only modifying the message, after observing a single tuple (nonce, message, tag).

The technique described above constructs forgeries via a hash collision. For this

reason, the polynomial q(x) that is used to forge will always have x as a factor. This

is necessary because gM(x) is defined to have a zero constant term: if the constant

term in gM(x) was non-zero and the hash of a message was encrypted additively (i.e.

τ = Ek(N) + hH(M)), then flipping the same bits in the first message block and the

authentication tag would create a valid forgery.

A related observation permits us to extend the set of polynomials that are suitable

for use as a forgery polynomial in the case where the authentication tag is created

by additively encrypting the output of the hash function. A similar result has been

described independently and concurrently by Zhu, Tan, and Gong [274], who refer

to an earlier version of the paper introducing these results [226].

If it is possible to predict an additive relation between the output of the hash function

on two different messages then this difference is preserved by the additive encryption

and an adversary can manipulate the value of the authentication tag accordingly. If

the output of the hash function is encrypted using a block cipher then these relations

are not preserved and so a full collision is required, as described above.

In this more general setting, we set I = 〈x −H〉 and consider the canonical homo-

morphism into the quotient ring:

φ :K[x]→ K[x]/I

f(x) 7→ f̄(x) = f(x) + I .

We observe that it is possible to pick a canonical representative of each coset; by

the remainder theorem f̄(x) = f(H) + I. This homomorphism partitions K[x] into

|K| equivalence classes, with f(x) ∼ f ′(x) precisely when f(H) = f ′(H).

Now, let q(x) = q0 + q1x+ . . . qrx
r ∈ K[x] and Q̃ = q1|| . . . ||qr, so Q̃ is the concate-

nation of non-constant coefficients of q(x).
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Note that

φ
(
q0 + g

M+Q̃
(x)
)

= φ

(
q0 +

r∑
i=1

(Mi + qi)x
i

)

= φ

(
r∑
i=1

Mix
i

)
+ φ

(
q0 +

r∑
i=1

qix
i

)
= φ (gM(x)) + φ (q(x)) ,

and also that

φ
(
q0 + g

M+Q̃
(x)
)

= φ (q0 + (M1 + q1)x+ · · ·+ (Mr + qr)x
r)

= φ (q0) + φ

(
r∑
i=1

(Mi + qi)x
i

)
.

Therefore

φ(gM(x)) + φ(q(x)) = φ(q0) + φ

(
r∑
i=1

(Mi + qi)x
i

)
,

which is equivalent to the following statements:

gM(x) + q(x) + I = q0 +
r∑
i=1

(Mi + qi)x
i + I ,

∃p(x) ∈ I s.t. gM(x) + q(x) = q0 +
r∑
i=1

(Mi + qi)x
i + p(x) ,

gM(H) + q(H) = q0 +
r∑
i=1

(Mi + qi)H
i + p(H)︸ ︷︷ ︸

=0

,

hH(M) + q(H)− q0 = hH(M + Q̃) .

This means that if H is a root of q(x) then forging with Q̃ creates a predictable dif-

ference between the hash outputs. Because τM = Ek(N) +hH(M), these predictable

differences between the hash outputs will also be present as differences between the

authentication tags.

The description given at the beginning of this section is a specific case of this ob-

servation in which we require that q(H) = q0 = 0.
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3.3.2 Malleability

Saarinen [244] also describes ‘targeted multiple bit forgeries’ against GCM where,

rather than swapping the full blocks Mi and Mi+jt, corresponding bits in each

ciphertext block are flipped. This is a special case of the general attack, this time

using a multiple of q(x).

If q(H) = 0, then α · q(H) = 0 for any α ∈ K and

τM = Ek(N) + hH(M)

= Ek(N) +M1 ·H + · · ·+Mm ·Hm

= Ek(N) + (M1 + αq1) ·H + · · ·+ (Mm + αqm) ·Hm

= τM+αQ ,

where τM+αQ is the authentication tag for the message M1⊕α · q1|| . . . ||Mm⊕α · qm
(recall that M contains associated data, ciphertext, and the length of both).

If the plaintext is encrypted using a stream cipher (or a block cipher in counter

mode) flipping bits in the ciphertext flips the same bits in the plaintext. This allows

us to predict relations between the original plaintext and the forged plaintext (as

Ci ⊕ αqi decrypts to Pi ⊕ αqi). Because α can be chosen so as to set Ci ⊕ αqi equal

to any value chosen by the adversary (for a single i), an adversary can choose a

differential between the original message and the forged message (in a single block).

If further control over the underlying plaintext is required, several forgery poly-

nomials could be used. For example, using two forgery polynomials q1 and q2 an

adversary can choose constants α1 and α2 and create the forgery M ⊕ α1q1 ⊕ α2q2.

In the best case, using t polynomials permits the adversary control over t message

blocks. The cost of this extra malleability is that the forgery is only successful if the

hash key is a root of the greatest common divisor of the two polynomials. This can

be extended to give as much control over the plaintext as required, but for every

extra malleable block the success probability is reduced by at least 1
|KH| .

If the plaintext was encrypted using a block cipher not in counter mode then an

adversary would not have this fine control over the plaintext, but would still be able

to manipulate the ciphertext in this way.
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This property also permits an adversary to create as many forgeries as there are non-

zero elements in the field. Black and Cochran [52] and McGrew and Fluhrer [195]

discuss multiple forgeries further.

3.3.3 Length extension

In the GCM specification, the last block input to the hash function (corresponding

to the term M1 · H in the MAC calculation) describes the length of the plaintext

and additional data. The malleability property described in Section 3.3.2 allows an

adversary to manipulate the length field (even though it does not explicitly appear

in the sent message). If an adversary is given a valid tag for a message then the

content of the length field is known, as it correctly encodes the length of the plaintext

and additional data. It is therefore possible to choose a difference in the length field

so that it corresponds to the length of the new message. In particular, forgeries can

be created using high degree polynomial q(x) regardless of the size of the message

in the initial (message,tag) pair.

This is an important remark as it removes one significant limitation on the effec-

tiveness of cycling attacks against GCM [244], which is the length of the message

necessary to launch an attack. For a cycling attack to be attempted, an adversary

requires as many blocks of correctly authenticated data as there are elements in the

subgroup with which he wishes to forge, in order to swap the first and last blocks.

By manipulating the length field any forgery probability can be realised starting

with a valid authentication tag on a single message block.

A common criticism of GCM is that the maximum message length may be restrictive

in the future as data rates increase [111]. However, it follows from our work (and

the original security proofs [196]) that increasing the maximum permissible length

would significantly decrease the security of the scheme.
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3.3.4 Key recovery

Saarinen suggests that once a successful cycling attack has been carried out, the ad-

versary would create many forgeries by further cycling attacks [244, Sect. 9]. Trans-

lating this to the more general polynomial root description: once a successful forgery

occurs, the hash key is known to be one of the roots of the ‘forgery polynomial’ q(x).

Therefore rather than making repeated ‘cycling forgeries’ with guaranteed success

but limited control of the plaintext, the adversary can aim to recover the hash key

and forge authentication tags for arbitrary messages. By attempting to forge using

a subset of the roots of the forgery polynomial (and reducing the number of roots

in the subset after each successful attempt), an adversary can gradually recover the

hash key using a method that is independent of encryption method or key used,

provided that they are willing to accept a forgery probability less that 1 at each

stage. Handschuh and Preneel [135] describe choosing the subsets to realise a bi-

nary search of the key space (with a 50% forgery probability at each stage), however

the adversary can choose any trade-off between the forgery probability and the speed

of recovering the hash key. Additionally, as described by Joux [152], if the adversary

can create many forgeries then computing the GCD of the forgery polynomials may

significantly reduce the number of possible hash keys.

By testing for membership of subsets of the key space, it is plausible that an

adversary could recover one bit of the hash key with each forgery attempt. If

q(x) =
∏
H∈Y (x−H), where Y is the set of hash keys for which the first bit is

zero, then a successful forgery confirms that the first bit of the hash key is zero and

a failure confirms that the first bit is one. Repeating this for each bit of the hash

key, the whole key could be recovered using 128 verification queries.

This would require infeasibly large messages to be used in the forgery attempts if

the hash keys correspond to elements of a field with |K| ≈ 2128, but it is a strong

argument against using a hash function based on polynomial evaluation in a field

with |K| � 2128. This may be a direction taken by variants of GCM designed to

improve performance (see [11] for one such example and Section 3.6 for an analysis

of this scheme). In the case of GCM the size of the subsets that can be tested is

limited to around 256 as the maximum message length is limited.
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One advantage of being able to test for membership of arbitrary subsets is that it

allows the adversary to use any partial knowledge of the hash key that they may

have. Note that in the case of GCM, recovery of the hash key H does not lead to

the recovery of the encryption key k as H = Ek(0).

3.3.5 Choosing polynomials

For any attack utilising this algebraic structure, a critical component is the method

used to select ‘good’ forgery polynomials. To maximise the probability of a successful

forgery it is important that the polynomial used to attempt a forgery has many

distinct roots, as a root with multiplicities increases the degree of the polynomial

(and hence the length of the attempted forgery) without increasing the probability

of success. The näıve way to achieve this is to compute q(x) =
∏
i (x−Hi) for as

many Hi as is required to give the desired forgery probability.

Alternatively, if the polynomial defined by the hash function is evaluated in Fpr and

the irreducible factorisation of xp
r − x is computed in a subfield Fpd , a subset of

these factors can be multiplied together (in Fpd). By choosing distinct irreducible

factors, the roots of the product polynomial will be distinct. Cycling attacks [244]

employ a variation on this method. The factorisation

22n − 1 =

n∏
i=1

22i−1
+ 1 ,

allows Saarinen to find factors of x2128 − x in F2[x] which can be used in a cycling

attack (although they are not necessarily irreducible):

x2128 − x = x(x− 1)
(x3 − 1)

x− 1

(x5 − 1)

x− 1

(x17 − 1)

x− 1
· · ·

= x(x− 1)(1 + x+ x2)(1 + x+ · · ·+ x4)(1 + x+ · · ·+ x16) . . . .

To carry out the attack using a subgroup of order t, the factors x, (x − 1) and

(1 + x+ · · ·+ xt−1) are multiplied together to obtain the polynomial xt+1 − x. In

general there is no requirement to select (x − 1) or to use only three factors, for

example the polynomial x(1+x+x2)(1+x+ . . . x16) could be used to give a forgery

probability of 19
2128

. This is not a cycling attack, as the polynomial used contains

more than two terms so the forgery does not involve simply swapping two message

blocks, however it does rely on the same underlying algebraic structure.
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A third option is to use a randomly selected polynomial in Fpr [x]. One potential

issue with this method is the presence of repeated factors; if a factor appears more

than once in the factorisation of the forgery polynomial then the degree of the

forgery polynomial (and hence the length of the forged message) is increased, without

improving the success probability. Square-free factorisation has been extensively

studied as it is a common first step in many polynomial factorisation algorithms

(e.g. [269, Ch. 14]). It may be feasible to sample polynomials from Fpr [x] randomly

and process this polynomial to make it more desirable by removing repeated factors.

However, the presence of repeated factors is only a fairly small problem as the

fraction of polynomials in Fpr with a repeated factor is approximately 1
pr [68, 216].

A larger issue is that a random polynomial in Fpr [x] does not necessarily split in

Fpr [x]. Irreducible factors in Fpr [x] do not have roots at possible hash keys and

so will never evaluate to zero and hence do not increase the success probability.

It is well known that the fraction of degree d polynomials that is irreducible is

approximately 1
d [68, 185, 216], so this is not a significant problem as the forgery

polynomial will probably be chosen to have a high degree in order to realise a larger

success probability. However, a forgery polynomial consisting of only a few linear

factors and a several high degree irreducible factors will give a low success probability

and there are many polynomials in Fpr [x] with this form. Irreducible polynomials

in Fp that are known to have a root in Fpr would be good candidates for attempting

forgeries as the normality of Fpr/Fp guarantees that these polynomials will split into

linear factors. Unfortunately this does not appear to be a well-studied area.

The main disadvantage of choosing random polynomials is that, although the roots

of a polynomial in K[x] can be identified efficiently (see [33] for example), it would be

unlikely that a non-intersecting subset of the key space would be used for a second

forgery attempt if the first was unsuccessful. This rules out utilising the key space

search described in Section 3.3.4.

Bogdanov et al. [2] discuss an alternative approach for generating forgery poly-

nomials. Their proposal resolves several limitations of the approaches discussed

above: both the näıve approach and the factorisation approach require extensive

pre-processing, while random polynomials are likely to have repeated roots (either

within one forgery polynomial, or between several choices of forgery polynomial).
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Using twisted polynomials in Ore rings, Bogdanov et al. are able to describe sparse

forgery polynomials which partition the key space of the hash function and exist

regardless of the field in which the polynomial is evaluated.

3.4 Algebraic structure of previous attacks

In this section, we explain the relationship between the properties described in Sec-

tion 3.3 and the known results against GCM and polynomial-evaluation-hash-based

MACs, which were described in Section 3.2.

3.4.1 Ferguson’s short tag attack

Ferguson’s attack against GCM when short tags are used [111] begins by the adver-

sary manipulating the message in blocks M2i (for some i). This is equivalent to at-

tempting to forge using a linearised polynomial, that is, a polynomial q(x) =
∑

i qix
i

for which qi = 0 unless i = 2j for some j. Linearised polynomials have the prop-

erty that their roots form a linear subspace of the splitting field of the polynomial

(see [185, Ch 3.4] for an overview). Ferguson uses polynomials in F2[x] that split

over F2128 , so the roots correspond to possible hash keys and this guarantees that

the each root of the polynomial is distinct.

If the forgery is not successful then the adversary can choose a different (and distinct)

subspace of the key space; if the forgery is successful, the adversary can choose

a subspace that is contained within the original subspace. This corresponds to

choosing a second forgery polynomial with either a distinct set of roots or a subset of

the roots of the original forgery polynomial. Because of the structure of the roots of

linearised polynomials, it is possible to describe the roots of a linearised polynomial

using a matrix over F2. Multiple successful forgeries reduce the dimension of the

subspace of the key space containing the hash key, which is equivalent to reducing the

number of roots of the forgery polynomial; eventually an adversary will recover the

key by reducing the dimension of the subspace to zero, or equivalently by reducing

the degree of the forgery polynomial to one.
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3.4.2 Joux’s forbidden attack

Joux’s ‘forbidden attack’ against GCM [152] is also a specific case of the properties

discussed in this chapter. Joux observes that if an adversary obtains two messages

that are authenticated using the same IV then they are able to derive a polynomial

that is known to be satisfied by H, by finding the xor of the authentication tags and

recalling the definition of the polynomial hash. The suggestion in Joux’s paper is

that once one polynomial has been computed, the adversary may ‘hesitate between

a large number of possible H’. The proposed solution to this issue is to compute

more forgery polynomials using more pairs of messages that have been authenticated

with the same IVs and then to compute the GCD of all of these. We note that

the techniques described in Sections 3.3.2 and 3.3.4 can also be applied once one

successful forgery polynomial has been identified.

3.4.3 Handschuh and Preneel’s attacks

Handschuh and Preneel [135] describe a method to verify a guess for a key and a

key-recovery attack.

The method for verifying a key guess H? corresponds precisely with attempting

to forge using the polynomial x2 − H?x. A successful forgery confirms that either

H = H? or H = 0.

The key-recovery attack consists of attempting to create a forgery and then conduct-

ing a binary search through the roots of the polynomial defined by the difference

between the original message and the forged message. As with Joux’s forbidden

attack, there is no reason why the techniques described in Sections 3.3.2 and 3.3.4

cannot be applied once one successful forgery polynomial has been identified. It is

also possible to use the length-extension attack described in Section 3.3.3 to increase

the forgery probability.
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3.4.4 Saarinen’s cycling attacks

Saarinen observed that, if a hash key H lies in a subgroup of order t, then Ht = 1 ∈ K
and (for any i, j) message blocks Mi and Mi+jt can be swapped without changing

the value of the hash.

We suggest that it is more natural and general to consider the hash keys that fall in

low order subgroups as roots of a low degree polynomial. Noting that Ht+1 = H is

equivalent to Ht+1 −H = 0, we can describe cycling attacks in terms of the more

general attack introduced in this chapter using the polynomial

q(x) = (Mi −Mi+jt)(x
t+1 − x) ,

noting that in fields of characteristic 2 subtraction is the same as ⊕.

This observation rephrases the example given in Section 3.2.2.4 as:

hH(M1||M2||M3||M4) =M1 ·H ⊕M2 ·H2 ⊕M3 ·H3 ⊕M4 ·H4

=M1 ·H ⊕M2 ·H2 ⊕M3 ·H3 ⊕M4 ·H4

⊕ (M1 ⊕M4) ·H ⊕ (M1 ⊕M4) ·H4

=M4 ·H ⊕M2 ·H2 ⊕M3 ·H3 ⊕M1 ·H4

=hH(M4||M2||M3||M1) .

Using the more general ‘polynomial roots’ description it is possible to forge using

any subset of the key space, however if the hash keys that we wish to attempt to

forge with are the elements of a low order subgroup then the polynomial that is

created corresponds precisely to Saarinen’s cycling attack.

For example, the order three subgroup of F?2128 plus the all zero key corresponds to

the polynomial (x−H0)(x−H1)(x−H2)(x−H3) = x4−x, with the Hi as identified

by Saarinen [244, Sect. 4.1]:

H0 = 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

H1 = 80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

H2 = 10 D0 4D 25 F9 35 56 E6 9F 58 CE 2F 8D 03 5A 94

H3 = 90 D0 4D 25 F9 35 56 E6 9F 58 CE 2F 8D 03 5A 94 .
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3.5 Weak keys

In this section we discuss the existing results on weak keys for polynomial-based

authentication schemes and expand the known weak-key classes.

3.5.1 Handschuh and Preneel’s weak key

Handschuh and Preneel [135] identify H = 0 as a weak authentication key for GCM

and other similar constructions because h0(M) = 0 for every message M.

Following the definition given in Section 2.3.1 and because |D| = 1, an adversary is

not allowed to test any key by exhaustive search, nor are they allowed any verification

queries. Therefore for a single element subset of the key space D = {H?} to be a

weak-key class, a nonce-respecting adversary must be able to identify whether or

not H = H? when they are given only (message, tag) pairs of their choosing, each

created using a different IV.

We note that it is possible for a nonce-respecting adversary to detect whether D =

{0} if |N| 6= 96: in this case all values of N hash to give the same initial counter value

and h0(M) = 0 for every message M so all messages have the same authentication

tag (as identified in [196, Sect. 5]). However, if |N| = 96 a different initial counter

value is used to encrypt the output of the hash function for each tag and so, although

the output of the hash function does not change, this cannot be detected given only

the output of the MAC algorithm. Therefore, 0 is a weak key for GCM only if

|N| 6= 96 and is not, in general, a weak key for polynomial-evaluation-based message

authentication schemes.

However, the behaviour of the zero key is highly undesirable; the value of the au-

thentication tag depends only on the IV and not on the message. This means that,

given a valid (message, tag) pair, an adversary would be able to substitute any mes-

sage and still have a valid pair. This is not captured by Handshuh and Preneel’s

notion of weak keys, due to fact that the adversary is not permitted any verification

queries. The zero key is a ‘weaker key’ than other keys: for any key guess it is

possible to construct a forgery so that it is successful if the key guess is correct (see
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Section 3.3 and the discussion regarding cosets), but if the guess is the zero key then

any forgery will be succesful if the key guess is correct.

3.5.2 Saarinen’s weak keys

Saarinen [244] demonstrates that the situation is much worse than described by

Handschuh and Preneel, describing classes of weak keys where the authentication

key either falls in a low order subgroup of K? or is zero. It is then possible to create a

valid forgery by swapping two message blocks of a valid (message, tag) pair without

changing the authentication tag if the authentication key lies in a subgroup with

order dividing the distance between the swapped message blocks.

This forgery will be successful if and only if either the key is an element of such

a subgroup or is zero. Hence, this provides a simple method for identifying weak

keys which requires one valid (message, tag) pair and one verification query. These

classes of weak keys therefore meet Handschuh and Preneel’s definition of weak keys

(given in Section 2.3.1).

For example, the set of authentication keys corresponding to zero and the elements

of the subgroup of order 3 in F2128 is a weak-key class. Membership of this class can

be confirmed by a successful forgery if Mi and Mj are swapped and i ≡ j mod 3.

This is equivalent to a successful forgery using (a multiple of) the polynomial x4−x.

3.5.3 New weak-key classes

For each subset of the key space it is possible to construct several polynomials that

will evaluate to zero on any element of that set and to a non-zero field element

otherwise. A successful forgery using one of these polynomials confirms that H was

in the subset of the key space used to define the polynomial and a failed forgery

attempt confirms that the H was not in that subset. This polynomial may not

have ‘nice’ binary coefficients like the polynomials for Saarinen’s cycling attacks but

instead will, in general, be an element of F2128 [x]; this is not problematic.
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It follows that almost every subset of the key space for a polynomial-evaluation-based

MAC is weak, regardless of the method of encryption used to form the authenti-

cation tag from the output of the hash function. Using the properties discussed in

Section 3.3 with the observation above it is possible to test for membership of any

subset of the key space using at most two verification queries. Membership of a

subset D that includes the zero key can be tested by setting q(x) =
∏
H∈D (x−H).

This therefore requires one verification query, independent of the size of D. To

test for membership of a subset D that does not include zero, first test whether

H ∈ D ∪ {0} and then rule out H = 0 using the method described below. This

therefore requires two verification queries, but again is independent of the size of

D. As before, the size of the subset that can be tested is limited by the maximum

message length permitted by the scheme.

The distinction between subsets including zero or not including zero is a consequence

of the constant term of gM(x) being zero to avoid predictable changes in the output

of the hash from flipping low order bits. Therefore, using Handschuh and Preneel’s

definition, a set D of hash keys for a universal-hash-based authentication scheme is

a weak-key class if either: |D| ≥ 3, or |D| ≥ 2 and 0 ∈ D, regardless of how hH(M)

is encrypted to form τ.

If the encryption is performed additively (as it is in GCM), then it is possible to

extend this result to include every subset D with |D| ≥ 2, using the observation

in Section 3.3 regarding the quotient ring K[x]/〈x −H〉. This has also been noted

independently by Zhu et al. [274].

Given one valid (message, tag) pair for a single block message and one verification

query it is easy to determine whether or not H = 0. If the adversary attempts to

forge using any other single block message and the same tag, then the forgery is

successful if and only if H = 0 as seen below.
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If no length encoding is used:

τ = E(ctr0) + (M ·H)

= E(ctr0) + (M ′ ·H)

⇔ (M −M ′) ·H = 0

⇔M = M ′ or H = 0 .

If a GCM style length encoding is used:

τ = E(ctr0) + (length ·H) + (M ·H2)

= E(ctr0) + (length ·H) + (M ′ ·H2)

⇔ (M −M ′) ·H2 = 0

⇔M = M ′ or H = 0 .

3.6 GCM with short multiplications

3.6.1 Introduction

In 2012, Yasuda and Aoki [11] proposed GCM/2+, a variant of GCM that evaluates

the hash function using ‘short multiplications’ in F264 rather than multiplications

in F2128 . The motivation for this change is to increase the efficiency in software,

where F2128 multiplications are significantly more expensive than F264 multiplica-

tions. However this change to the specification makes the attacks in Section 3.3

much more efficient and greatly increases the number of weak keys.

The most significant difference from the GCM specification relates to the polynomial

g that is used to define the hash function h in GCM/2+. The hash key H is split into

two ‘half keys’ H = L||R, where |L| = |R| = n
2 and each message block is considered

as two ‘half blocks’ Mi = M
(L)
i ||M

(R)
i . We will use M (L) to denote M

(L)
1 || . . . ||M

(L)
m

and similarly for M (R). The length of the additional authenticated data is encoded

in M
(L)
1 and the length of the ciphertext is encoded in M

(R)
1 . This is identical to the

GCM specification but is noteworthy because GCM/2+ carries out all operations on

half blocks.
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3.6 GCM with short multiplications

The hash function is evaluated in two halves, hH = hL||hR, and

hH(M) = gM(H)

= hL(M (L))||hR(M (R))

= gM(L)(L)||gM(R)(R) ,

where gM(·)(·) is evaluated in F2n/2 . The key remark at this point is that hH is simply

the concatenation of the evaluation of two polynomials, gM(L) and gM(R) .

GCM/2+ also makes the following changes to the GCM specification:

Block size: GCM/2+ supports the use of a block cipher with any even block size

(denoted by n).

Tag Encryption: An extra block cipher call is added to the end of the GCM

authentication tag generation algorithm. The authentication tag is computed

as τ = Ek(hH(M)⊕ Ek(ctr0)).

Final Multiplication: There is no final multiplication by the hash key in the

evaluation of the hash function. The hash function polynomial is gM(H) =

MmH
m−1+. . .+M2H+M1, rather than gM(H) = MmH

m+. . .+M2H
2+M1H.

The requirement for the constant term of gM(x) to be zero (in order to prevent

the predictable bit flipping, as described in Section 3.3) can be relaxed due to

the introduction of the tag encryption.

We will consider the half-sized multiplications and the removal of the final multipli-

cation below. The support for other block sizes need not be considered as all of the

results in this chapter are independent of the block size of the block cipher. The

introduction of an extra block cipher call slightly affects our results. We also note

that the specification of GCM/2+ makes no recommendations regarding maximum

message length.

3.6.2 Attacks

As the hash function consists of the concatenation of two polynomial hash functions

(each evaluated in F2n/2), there is no interaction between the two sides of the compu-
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tation until the output is encrypted with the block cipher. Therefore we can consider

forgery polynomials q(L)(x) and q(R)(x) for the two polynomial hash functions, as

described in Section 3.3. Because of the tag encryption introduced in GCM/2+, we

require a full collision and hence forgery polynomials with q0 = 0; we are unable

to use the general technique described in Section 3.3 that allows us to utilise any

polynomial. The forgery will be successful if q(L)(L) = q(R)(R) = 0. However, as

there is no interaction between the two sides of the gM(H), we can choose (without

loss of generality) q(R) ≡ 0. In this case, we have reduced finding a collision for hH

to finding hash collisions for hL.

If we set q(R) ≡ 0 then we are unable to alter the right half of any message block

(in particular M
(R)
1 ) so we cannot change the length of the ciphertext. Provided

that q(L) 6≡ 0, the adversary would still have total control over the length of the

additional authenticated data. Similarly, we could choose q(L) ≡ 0 and lose the

ability to increase the length of the additional authenticated data, while retaining

control of the ciphertext length. In the GCM specification the maximum length of

the additional authenticated data is significantly larger than the maximum length

of the ciphertext and so, if this is mimicked in the specification of GCM/2+, setting

q(R) ≡ 0 does not significantly reduce the potential for a length extension attack.

We note that it is possible to attack both L and R simultaneously, by choosing

both q(R) 6≡ 0 and q(L) 6≡ 0. However, this forgery will only be successful if

q(L)(L) = q(R)(R) = 0. As the left and right components of the hash function

behave independently, the overall success probability is simply the product of the

success probability for the components. Choosing q(R) ≡ 0 results in a success prob-

ability of 1 for the right component, which allows the adversary to identify a subset

containing L, without any chance of the forgery failing due to the right half key.

This leads to a faster key recovery than attacking both halves simultaneously; if an

adversary can try every half key by using t queries, then they can cover the entire

key space with 2t queries by attacking the two halves separately whereas t2 queries

are required to cover the key space if both halves are attacked together.

If the maximum length of the message is close to 264 blocks then we can achieve a

significant success probability. Every half key is a root of x264 − x and therefore if

messages of at least 264 blocks are permitted a forgery can be made with probability
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1− 1
264

given a single valid (message, tag) pair. This probability is not quite one, as

we may need to manipulate the length field (the constant term in each polynomial).

It is not possible to do this using q(x) = x264 − x, so we will use x264−1 − 1. This

forgery will fail only if the half key is zero. Alternatively, an adversary could recover

a half key with one valid (message, tag) pair and 65 verification queries by utilising

a binary search (as described in Section 3.3.4 and [135]), with an additional query

at the end to decide whether or not H = 0.

Not permitting 264-block messages prevents this highly efficient attack, but similar

attacks are still possible. If m-block messages are permitted, it is possible to recover

the key with at most 264−logm + logm+ 1 verification queries. In this case, m keys

can be tested with each verification query, so we will partition the key space into

264−logm subsets of size m. The attack begins by using up to 264−logm verification

queries to establish which subset contains the hash key. We then conduct a binary

search of the appropriate partition, requiring logm queries and finally use one more

query to establish whether or not the half key is zero. This demonstrates that the

attack remains feasible if logm is not much smaller than 64.

For example, if 256-block messages are permitted (as is the case for GCM) then 256

keys can be tested with a single verification query. By partitioning the key space

into 28 sets and using a binary search of the relevant set, at most 28 + 56 + 1 ≈ 315

verification queries are required to recover a half key.

We also remark that the original GCM proposal [197] includes an appendix de-

scribing GCM with a 64-bit block cipher. In this case the polynomial evaluation is

computed in F264 . This leads to exactly the same problem as described above and

the (full) hash key can be recovered using approximately 315 verification queries.

The attacks in this section highlight the relationship between the field size, maximum

message length, and the forgery probability or speed of key recovery. We recommend

against the use of GCM/2+ as, even if the maximum message length is a single block,

it offers a worse security guarantee than GCM.
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3.7 Square Hash

3.7.1 Introduction

Square Hash was proposed by Etzel, Patel, and Ramzan in 1999 [105]. It is a

universal hash function family based on MMH [132] and follows a slightly different

structure than those considered so far in this chapter. We will assume that Square

Hash is being used in a MAC algorithm (as described in Sections 2.2.7 and 3.2.1)

and identify classes of weak keys for the hash component of the MAC algorithm.

Square Hash consists of functions hk : Zmp → Zp where p is prime. For each k,M ∈
Zmp , hk is defined by

hk(M) =

m∑
i=1

(Mi + ki)
2 mod p .

Handschuh and Preneel [135] have identified a number of weak keys for Square Hash,

in particular those keys with ki = kj for some i and j, which can be identified by a

successful forgery when Mi and Mj are swapped.

We demonstrate that every Square Hash key is an element of several weak-key

classes of the form Di,λj,µ = {k ∈ Zmp |λki = µkj}, where λ, µ ∈ Zp. We assume that an

adversary can ask for a message of their choice to be authenticated and then aims to

forge using a different message but the same authentication tag. All of the queries

that our adversary will ask consist of just two message blocks. We will use M1||M2 to

represent the message sent to the MAC generation oracle, and M ′1||M ′2 to represent

the message sent to the verification oracle (with the authentication tag that is valid

for M1||M2). The results can be trivially extended to messages consisting of several

blocks provided that Mr = M ′r for all r 6= i, j and analogous methods can be applied

to identify Di,λj,µ for any i 6= j with i, j ≤ m.
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3.7.2 Weak-key classes

The key observation is that

hk(M) =
m∑
i=1

(Mi + ki)
2 mod p

=
m∑
i=1

M2
i + 2

m∑
i=1

(Mi · ki) +
m∑
i=1

k2
i mod p .

So, for a fixed key it is possible to find a hash collision (and hence a MAC forgery) if

it is possible to find two messages M and M ′ that meet the following two conditions:

Condition 1:
∑m

i=1M
′
i
2 =

∑m
i=1M

′
i
2 mod p

Condition 2:
∑m

i=1 (Mi · ki) =
∑m

i=1 (M ′i · ki) mod p

It is possible to identify whether or not a particular relationship holds between two

key blocks (e.g. λki = µkj for some λ, µ ∈ Zp) using one MAC generation and one

MAC verification query. As |Di,λj,µ| > 1 for every i, j ∈ {1, . . . ,m}, λ, µ ∈ Zp, these

are weak-key classes for Square Hash. We now describe two methods for identifying

the two messages required to determine whether k ∈ D1,λ
2,µ in the case where the

message consists of only two blocks.

3.7.2.1 Method 1

Condition 1 described above can be satisfied by choosing pairs of messages (M1,M2),

(0,M ′2) such that M2
1 + M2

2 = M ′2
2. We will test for the class of weak keys D1,λ

2,µ

where λ, µ 6= 0 using a well-known formula of Euclid.

Setting

M1 = 2λµ M ′1 = 0

M2 = λ2 − µ2 M ′2 = λ2 + µ2 ,
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we observe that

M2
1 +M2

2 = (4λ2µ2) + (λ4 − 2λ2µ2 + µ4)

= λ4 + 2λ2µ4 + µ4

= (λ2 + µ2)2

= M ′2
2
,

and also that

k1M1 + k2M2 = k1(2λµ) + k2(λ2 − µ2)

= 2k1λµ+
λk1

µ
(λ2 − µ2)

= k1(
λ3

µ
+ λµ)

=
k1λ

µ
(λ2 + µ2)

= k2M
′
2 .

Therefore the hash of (M1,M2) is equal to the hash of (M ′1,M
′
2) and the MAC

forgery is successful if k ∈ D1,λ
2,µ. It can easily be seen that a successful MAC forgery

is in fact both necessary and sufficient for k ∈ D1,λ
2,µ. Using this technique it is

possible to recover the relationship between any ki and kj using no more than 1

valid (message, tag) pair and p verification queries.

3.7.2.2 Method 2

Alternatively, we can test for membership of D1,λ
2,µ (where λ 6= 0 6= µ) following

MacKay and Mahajan’s preprint [190]. The two messages will be found by consid-

ering alternative factorisations of an element of Z and mapping these into Zp.

As we wish to test whether λk1 = µk2, take ω, ω̃ so that ωk1 = ω̃k2 and ω ≡ ω̃

(mod 2). One possible method to do this is ω = λ if λ ≡ µ (mod 2) and ω = 2λ if

λ 6≡ µ (mod 2), with similar definitions for ω̃.

Now choose x, x̃ so that xω = x̃ω̃ with x ≡ x̃ (mod 2) and ω ≡ x (mod 2).
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Setting

M1 =
x+ ω

2
M ′1 =

x− ω
2

M2 =
x̃− ω̃

2
M ′2 =

x̃+ ω̃

2
,

it can be seen that Condition 1 is satisfied, as k2ω̃ = k1ω and

M2
1 +M2

2 =

(
x+ ω

2

)2

+

(
x̃− ω̃

2

)2

=
1

4

[
x2 + 2xω + ω2 + x̃2 − 2x̃ω̃ + ω̃2

]
=

1

4

[
x2 + ω2 + x̃2 + ω̃2

]
=

1

4

[
x2 − 2xω + ω2 + x̃2 + 2x̃ω̃ + ω̃2

]
=

(
x− ω

2

)2

+

(
x̃+ ω̃

2

)2

= M ′1
2

+M ′2
2
.

Also, Condition 2 is satisfied: xω = x̃ω̃ and

k1M1 + k2M2 = k1

(
x+ ω

2

)
+ k2

(
x̃− ω̃

2

)
=

1

2
[k1x+ k1ω + k2x̃− k2ω̃]

=
1

2
[k1x+ k1ω + k2x̃− k2ω̃ + 2(k2ω̃ − k1ω)]

=
1

2
[k1x− k1ω + k2x̃+ k2ω̃]

= k1

(
x− ω

2

)
+ k2

(
x̃+ ω̃

2

)
= k1M

′
1 + k2M

′
2 .

Therefore the hash of (M1,M2) is equal to the hash of (M ′1,M
′
2) and the MAC

forgery is successful if k ∈ D1,λ
2,µ.

3.8 Discussion

In this section, we discuss our results and some related factors that affect the security

of polynomial-based MACs.
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3.8.1 Choice of fields

It is true that the security against cycling attacks, as presented by Saarinen, can be

increased by evaluating a hash function in a field with a multiplicative group, the

order of which does not have many factors. However the attack described in this

chapter (of which cycling attacks are a special case) applies equally well in any finite

field, so the claim that ‘The security of polynomial-evaluation MACs against attacks

of this type of attack can be determined from the factorization of the group size in a

straightforward manner’ [244, Sect. 8] is somewhat misleading.

Saarinen’s claim is valid in the sense that the factorisation of |K|− 1 determines the

extent to which the process of computing irreducible factors will succeed; however

an attack using
∏
H∈D (x−H) will work equally well in every field. In particular,

it follows from our work that the SGCM variant of GCM has the same inherent

weaknesses regarding polynomial-based forgery attacks.

The size of the field has another important implication to the security of a scheme,

as demonstrated in Section 3.6. It is therefore important to choose an appropriately

large field in which to evaluate the polynomial, or to employ some other mechanism

to ensure that multiple copies of a small field do not behave independently (as in

GCM/2+ [11]).

3.8.2 Length extension

It is unfortunate that including the length of the additional authenticated data and

plaintext in the input to the hash function is not sufficient to prevent the length

extension attack presented in this chapter.

In schemes that use a GCM-like length encoding, if the value of the length field were

encrypted using a block cipher before being input to the hash function, it would

not be possible to alter the message length as described in Section 3.3.3. However,

one of the design goals of GCM was to take advantage of AES pipelining, which

precludes the use of the block cipher in finalising the authentication tag.
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3.8.3 Malleability

Part of the reason that the algebraic structure of polynomial hashing is particularly

problematic for GCM is that it gives an adversary control over the changes made

to the plaintext in a forged message because addition in a field of characteristic 2 is

used for both counter mode encryption and the hash function evaluation.

One way to avoid this issue is to use different operations during encryption and MAC

generation. This is one possible advantage of using AES–CTR and Poly1305–AES:

in this scheme the MAC is computed using addition in a prime order field while the

message is encrypted using addition in a field of characteristic 2.

An alternative method to increase the difficulty for an adversary attempting to

make meaningful manipulations of message is to use a mode of operation other than

CTR as this may prevent the ‘targeted multiple bit forgeries’ [244, Sect. 6] and the

analogous forgeries in this chapter affecting the plaintext quite so directly.

GCM roughly follows the Encrypt–then–MAC paradigm, as is generally perceived

to be best practice (although MAC–then–Encrypt has also been proved secure in the

nonce-based AEAD setting [237]). Despite going against the perceived best practice,

using a MAC–then–Encrypt approach (in addition to the changes described above)

may make it harder for an adversary to create ciphertexts that correctly decrypt to a

plaintext known to be related to a (plaintext,ciphertext) pair obtained from a query.

We note that we have not analysed this construction and that the introduction of

other weaknesses caused by making these changes has not been ruled out.

3.8.4 Weak keys

The weak-key classes identified in Section 3.5 cause the forgery probability to be

higher than expected because an adversary can detect whether the authentication

key is a member of that class and, if it is, forge with probability one.

The broader issue with polynomial-evaluation-based hash functions is that it is pos-

sible to test for membership of large subsets of the key space with only one or two
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verification queries and once an adversary has successfully confirmed membership of

a subset they can either continue to forge messages or conduct a search of a much

reduced key space. This is an unusual and undesirable property of a cryptosystem.

It is interesting that the two-element subsets of the key space containing zero are

always weak-key classes, whereas two-element subsets not containing zero may be

weak depending on how the output of the hash function is encrypted. This perhaps

suggests a problem with the definition of a weak-key class.

In our opinion the observations made in this chapter are unavoidable properties

of hash functions based on polynomial evaluation that result from the algebraic

structure of the construction. The distinction between the two methods to encrypt

the output of the hash function arises from the use of the same algebraic structure

to encrypt additively and the fact that the application of a block cipher removes this

structure so requires a full collision. These results are therefore not best described

in terms of the number of weak keys.

The most important discussion around this issue is whether an algorithm in which

almost every subset of the key space is a weak-key class is a weak algorithm or

whether this is a property of the construction that, although highly undesirable, is

not considered to reduce the security of the scheme to an unacceptable level. We

suggest that, in the case of GCM, it is the latter; in other polynomial-based MAC

schemes with different parameters it may be the former and this property must be

considered carefully when designing and evaluating schemes.

Recently, Abdelraheem, Bogdanov, and Tischhauser [3] have shown that the weak-

key classes identified in this chapter have severe security implications for POET [4],

a submission to the CAESAR competition [79]). When POET is instantiated using

the polynomial-based universal hash functions studied in this chapter, the specifica-

tion requires that tests for weak-key classes are carried out (referencing Saarinen’s

cycling attacks). However, Abdelraheem et al. reiterate our statement that all sets

of keys are weak-key classes (so testing for weak keys is meaningless) and addition-

ally identify classes that are not covered by the proposed testing strategy, exploiting

these weak keys to realise forgery attacks against POET.
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Chapter 4

The related-key security
of iterated Even–Mansour ciphers
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In this chapter, we initiate the study of iterated Even–Mansour ciphers under related-

key attacks (RKAs). These ciphers have been studied extensively and they are widely

used due to their simplicity and security, however their RKA security has so far

received little attention. We show that the simplest one-round EM cipher is strong

enough to achieve non-trivial levels of RKA security even under chosen-ciphertext

attacks; unfortunately this class does not include the practically relevant case of

offsetting keys by constants. Two rounds reach this level under chosen-plaintext

attacks and three rounds boost security to resist chosen-ciphertext attacks.

The work described in this chapter is joint work with Pooya Farshim and appears

as [109]; it is available at [108]. The publication that this chapter is based on also

includes a result on the relationship between indifferentiablity and RKA security.

This result is Farshim’s and so is omitted here; all other contributions are joint.
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4.1 Introduction

Security analyses that consider related-key attacks aim to provide guarantees about

the behaviour of some cryptosystem when it is used with multiple keys that are

not chosen independently of each other. As discussed in Section 2.3.2, these attacks

might arise through tampering with the memory in which keys are held, or via

higher-level protocol design. These attacks give the adversary much more power

than the conventional single-key model; indeed, some of the earliest attacks against

full AES were related-key attacks [47, 48].

Bellare and Kohno [27] initiate the theoretical study of related-key attack secu-

rity. Bellare and Cash [21] describe an RKA-secure PRF and Bellare, Cash, and

Miller [22] use an RKA-secure PRF to generate RKA-secure variants of several cryp-

tographic primitives. Lucks [189] continues this approach and also discusses the idea

of increasing resistance against related-key attacks by processing the key with a hash

function (modelled as a random oracle).

Barbosa and Farshim [15] adopt a different approach. They study the RKA security

of Feistel constructions and show that by simply reusing keys across the rounds, the

3- and 4-round Feistel constructions achieve RKA security under chosen-plaintext

and chosen-ciphertext attacks respectively. Barbosa and Farshim also formalise the

random-oracle transformation discussed by Lucks [189].

Since key-alternating ciphers were introduced by Daemen and Rijmen [91], they

have become a popular paradigm for block cipher design. Notable examples of pro-

posed schemes following this design include AES [90, 208], Present [59], LED [131],

PRINCE [61], KLEIN [129], and Zorro [118]. Although the term ‘key-alternating ci-

pher’ was first used with the aim of facilitating a theoretical discussion of the design

of AES, the idea originates in the work of Even and Mansour [106, 107] and builds

on principles dating back to Shannon [249, p. 713]. Even and Mansour sought to

design the simplest block cipher possible: their proposal was a single round of the

scheme shown in Figure 4.1, simply xoring a key either side of some public permu-

tation. Rivest’s DES-X construction (proposed as a means to protect DES against

brute-force attacks [161]) is also closely related to this design. In this chapter, we

use the terms ‘key-alternating’ and ‘iterated Even–Mansour’ interchangeably.
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P1 ⊕

k2

P2 ⊕

k3

. . . ⊕

kt

Pt ⊕

kt+1

y⊕

k1

x

Figure 4.1: The iterated Even–Mansour scheme, where encryption is defined via
E((k1, . . . , kt+1), x) = Pt(· · ·P2(P1(x⊕ k1)⊕ k2) · · · )⊕ kt+1.

Contributions

Despite extensive literature on the provable security of the iterated Even–Mansour

(EM) ciphers and cryptanalysis of constructions following this design strategy (in-

cluding under related-key attacks), little attention has been given to the formal

analysis of their related-key security. In this work we initiate the provable RKA

security analysis of such ciphers. We show that the one-round EM cipher achieves

a non-trivial level of RKA security under chosen-ciphertext attacks (Theorem 4.1).

However, this result does not include the practically relevant case of offsetting keys

by constants: we go on to show that two rounds suffice to reach this level under

chosen-plaintext attacks (Theorem 4.2) and that three rounds increases security to

resist chosen-ciphertext attacks (Theorem 4.6).

Our results are similar to those of Barbosa and Farshim: we show that key reuse

is also a viable strategy to protect against related-key attacks in iterated Even–

Mansour ciphers and use techniques similar to those used in their formalisation of

the random-oracle model transform described by Lucks [189]

Starting with the simplest of the key-alternating ciphers, namely the (one-round) EM

cipher, it is well known that this construction does not provide xor-RKA security (i.e.

security against an adversary that can xor keys with a constant of their choosing) [61,

60, 174, 9]. We note that a similar attack prevents this construction with key-reuse

from achieving xor-RKA security and describe this in greater detail in Section 4.3.1.

Despite this negative result, we are able to derive conditions under which the minimal

EM cipher (with key-reuse) enjoys a non-trivial level of RKA security, even in the

chosen-ciphertext setting.

The search for xor-RKA security leads us to consider the two-round EM construc-
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tions. An offset-switching attack still applies and so again we consider key reuse.

(The two permutations are still independent.) We start with chosen-plaintext at-

tacks, formulate three new conditions (analogous to those used for the basic scheme),

and prove security under them. We then show that this new set of restrictions are

weak enough to follow from the standard output-unpredictability and claw-freeness

properties. Since xoring with constants is output unpredictable and claw-free [27],

the xor-RKA security of the single-key, two-round EM construction follows.

However, under chosen-ciphertext attacks this construction falls prey to an attack of

Andreeva et al. [9] on the indifferentiability of the two-round EM cipher (adapted to

the RKA setting). For CCA security, we turn to three-round constructions, where

we show of the 14 possible ways to reuse keys, all but one fall prey to Andreeva et

al.’s attack [9]. On the other hand, the three-round construction which uses a single

key meets the desired xor-RKA security in the CCA setting.

Independently and concurrently, Cogliati and Seurin [78] also study the related-key

security of iterated EM ciphers. Their Theorem 2 is very similar to our Corol-

lary 4.7; they analyse more general key schedules and obtain tighter bounds, while

our approach deals with a wider range of RKD functions.

4.2 Preliminaries

In this section, we briefly introduce some new notation, describe Even–Mansour

ciphers, and summarise prior work analysing their security.

4.2.1 Notation

We briefly recall the Φ-RKA games from Section 2.3.2. The definition of RKA

security is parameterised by a set Φ, containing functions φ : K → K. Of particular

relevance to this work is the set Φ⊕ = {k 7→ k⊕∆ : ∆ ∈ {0, 1}n}. In the Φ-RKCPA

game, an adversary A has access to an RK-Enc oracle. This oracle takes a pair

(φ, x), where φ ∈ Φ and x is a point in the domain of the block cipher, returning

the encryption of x under the key φ(k), where k is chosen uniformly at random at
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the beginning of the experiment and fixed throughout. The Φ-RKCCA game adds

an RK-Dec oracle which, on the same input, returns the decryption of x using the

key φ(k). The adversary’s aim is to determine whether the values that it receives

from the oracles are being returned by an ideal cipher (an independent random

permutation for each key) or the construction that is being reasoned about.

The adversary, construction, and RKD functions can all place queries to π; we

denote the number of queries made by each of these as follows: the number of

distinct queries to π with index i made by an adversary is denoted by qi; the total

number of queries placed to π by an adversary is denoted qπ =
∑

i qi; the number of

distinct queries to the RK-Enc and (if present) RK-Dec oracles is denoted by qem;

and the number of distinct queries to π with index i made by the RKD function

φπ is denoted by qφi . Note that throughout this chapter, b may refer to a single bit

(the challenge bit in the Φ-RKA games from Section 2.3.2) or to a bitstring that is

queried to, or returned from, an oracle; this should cause no confusion.

We call an RKA adversary repeat-free if it does not query its RK-Enc or RK-Dec

oracle on a pair (φ, x) twice. We call an RKA adversary redundancy-free if it does

not query RK-Enc on (φ, x) to get y and then RK-Dec on (φ, y) to get x, or vice

versa. Without loss of generality, all adversaries in this chapter are assumed to be

both repeat-free and redundancy-free.

4.2.2 The Even–Mansour ciphers

The t-round Even–Mansour cipher EMπ = (Eπ,Dπ) is defined with respect to t

permutations P1,. . . ,Pt. We require that each permutation has domain {0, 1}n; the

resulting cipher has key space K = {0, 1}n(t+1) and domain {0, 1}n, as illustrated in

Figure 4.1. It is defined via

Eπ((k1, . . . , kt+1), x) = Pt(· · ·P2(P1(x⊕ k1)⊕ k2) · · · )⊕ kt+1 ,

Dπ((k1, . . . , kt+1), x) = P−1
1 (· · ·P−1

t−1(P−1
t (x⊕ kt+1)⊕ kt) · · · )⊕ k1 .

In this work we are interested in EM ciphers where keys are reused in various rounds.

Following notation adopted by Barbosa and Farshim [15], we denote the EM con-

struction where key kij is used before round j by EMπ[i1, i2, . . . , it+1]. We call such
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key schedules simple. Note that K = {0, 1}n·|{i1,i2,...,it+1}| in these constructions. Of

particular interest to us are EMπ[1, 1], EMπ[1, 1, 1], and EMπ[1, 1, 1, 1] where a single

key is used in all rounds. We emphasise that the round permutations in all these

constructions are independently chosen, unless stated otherwise.

4.2.3 Security Analyses

Even and Mansour’s original analysis [106, 107] considers ‘cracking’ and ‘forging’

attacks in the random-permutation model and shows that no adversary can suc-

ceed in predicting x given E(k, x), or in predicting E(k, x) given x, without making

q1 queries to the permutation and qem to the encryption/decryption oracle, where

q1qem ≈ 2n.

The indistinguishability of the Even–Mansour scheme from a random permutation

is shown by Kilian and Rogaway [161, 162, Theorem 3.1 with κ = 0] and Lampe,

Patarin and Seurin [173, App. B of the full version]. Both works show that an ad-

versary making qem and q1 queries to the encryption/decryption oracles and the per-

mutation oracle respectively, has a success probability of approximately q1qem/2
n−1.

Gentry and Ramzan [117] show that the permutation oracle can be instantiated by

a Feistel network using a random oracle without loss of security.

At Eurocrypt 2012, Dunkelman et al. [98] showed that the Even–Mansour scheme

retains the same level of security using only a single key, that is E(k, x) = P(x⊕k)⊕k.

Bogdanov et al. [60] show that the t-round Even–Mansour cipher with at least two

rounds (t ≥ 2) provides security up to approximately 22n/3 queries and can be broken

in t · 2tn/(t+1) queries. Following this work, several papers have moved towards

proving a bound that meets this attack [258, 173], with Chen and Steinberger [73]

able to prove optimal bounds using Patarin’s H-coefficient technique [217].

Chen et al. [72] consider two variants of the two-round Even–Mansour scheme: one

with independent permutations and identical round keys, the other with identical

permutations but a more complex key schedule. In both cases (with certain require-

ments on the key schedule), security is maintained up to roughly 22n/3 queries.
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Additionally, Lampe and Seurin [174] show that the 12-round Even–Mansour cipher

using a single key is indifferentiable from the ideal cipher. Andreeva et al. [9] show

that a modification of the single-key, 5-round Even–Mansour cipher, where the key

is first processed through a random oracle, is indifferentiable from the ideal cipher.

4.2.4 Cryptanalysis

Daemen [88] describes a chosen-plaintext attack that recovers the key of Even–

Mansour in approximately q1 ≈ qem ≈ 2n/2 queries. Biryukov and Wagner [50]

are able to give a known-plaintext attack against the Even–Mansour scheme with

the same complexity as Daemen’s chosen-plaintext attack. Dunkelman et al. [98]

introduce the slidex attack that uses only known plaintexts and can be carried out

with any number of queries provided that q1qem ≈ 2n.

Mendel et al. [198] describe how to extend Daemen’s attack [88] to a related-key

version, and are able to recover the keys when all round keys are independent. Bog-

danov et al. [60] remark that related-key distinguishing attacks against the iterated

Even–Mansour scheme with independent round keys ‘exist trivially’ and describe

a key-recovery attack, requiring roughly 2n/2 queries against the two-round Even–

Mansour scheme with identical round keys, assuming that an adversary can xor

constants into the round key.

Many key-alternating ciphers have been analysed in the related-key model, such as

AES [47, 48], Present [215], LED [198], and Prince [150]. One of the security claims

of the LED block cipher [131] is a high resistance to related-key attacks, which is

justified by giving a lower bound on the number of active S-boxes.

4.3 The RKA security of EMπ[1, 1]

In this section we study RKD sets Φ for which the single-key Even–Mansour con-

struction provides Φ-RKCCA security. Our results are similar to those of Bellare

and Kohno [27], Albrecht et al. [5], and Barbosa and Farshim [15] in that we identify

a set of restrictions on the RKD set Φ that allow us to establish a security proof.
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For the one-round Even–Mansour construction there are two simple key schedules

(up to relabelling): EMπ[1, 1] and EMπ[1, 2]. Neither of these constructions can

provide Φ⊕-RKCPA security due to ‘offset-switching’ attacks which we describe in

greater detail below. Despite this, we show that the simplest EM construction,

EMπ[1, 1], provides a non-trivial level of RKA security. The results of this section

will also serve as a warm up to the end goal of achieving the stronger forms of RKA

security discussed in later sections.

4.3.1 Restricting RKD sets

We now identify and motivate conditions on a set of allowed related-key queries Φ

that allow us to argue that E(φ(k), ·) and E(φ′(k), ·) for φ, φ′ ∈ Φ look random and

independent from an adversary’s point of view. A formal theorem statement and

proof are deferred to Section 4.3.2.

As usual, our conditions impose that the RKD functions have unpredictable out-

puts; otherwise, RKA security is trivially unachievable as observed by Bellare and

Kohno [27]. Bellare and Kohno also observe that the presence of claws in the RKD

may prevent natural approaches to security proofs; our second condition excludes

such RKD functions from Φ. Our third condition is a strengthening of the claw-

freeness property, motivated by preventing offset-switching attacks, which requires

that it is hard to find ‘offset claws’ in Φ for a random choice of k. (An offset claw

is a pair of functions (φ1, φ2) and a value ∆ such that φ1(k) ⊕ φ2(k) = ∆ with

randomly chosen k.) Finally, we also consider RKD functions that depend on the

underlying permutations by placing queries to them; this is particularly relevant for

the Even–Mansour ciphers as they inherently operate in the random-permutation

model. Our final condition places adequate restrictions on oracle queries from RKD

functions to facilitate a security proof.

4.3.1.1 Output unpredictability (OUP)

Bellare and Kohno [27] observe that if an adversary is able to choose φ ∈ Φ that

has predictable outputs on a randomly chosen key then Φ-RKCCA security is not
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achievable. To see this, let φ be the constant zero (or any predictable) function. An

adversary can simply test whether it is interacting with the real or the ideal cipher

by enciphering x under the zero key and comparing it to the value it receives from its

RK-Enc oracle on (φ, x). This motivates the following definition of unpredictability,

adapted to the ideal-permutation model.

The advantage of an adversary A against the output unpredictability (OUP) of an

RKD set Φ with access to t ideal permutations is defined via

Advoup
Φ,t (A) = Pr [∃ (φπ, c) ∈ List : φπ(k) = c : List ←$ Aπ] .

Here List contains pairs of the form (φπ, c) for φπ ∈ Φ and c ∈ K, and π is the oracle

containing t ideal permutations. The probability is taken over random choices of

k ←$ K, the t random permutations implicit in π, and the coins of the adversary.

Note that via a simple guessing argument, this definition can be shown to be equiv-

alent to one where the adversary is required to output a single pair, with a loss of

1/|List| in the reduction.

4.3.1.2 Claw-freeness (CF)

Bellare and Kohno [27] also introduce claw-freeness (CF). Roughly speaking, a set

Φ has claws if there are two distinct φ1, φ2 ∈ Φ such that φ1(k) = φ2(k). Although

this condition is not in general necessary—given an arbitrary claw there may not be

an attack—the existence of claws prevents natural approaches to proofs of security.

We lift claw-freeness to the ideal-permutation model.

The advantage of an adversary A against the claw-freeness of an RKD set Φ with

access to t ideal permutations is defined via

Advcf
Φ,t(A) = Pr [∃ (φπ1 , φ

π
2 ) ∈ List : φπ1 (k) = φπ2 (k) ∧ φπ1 6= φπ2 : List ←$ Aπ] .

Here List contains pairs of RKD functions, π is as before, and the probability space

is defined similarly to that for output unpredictability. Once again this definition is

equivalent to one where List is restricted to be of size one.
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4.3.1.3 Xor claw-freeness (XCF)

Claw-freeness is not a strong enough condition for the one-round EM construction

to be RKA secure. Recall that for xor related-key attacks this construction does not

provide RKA security due to the presence of offset-switching attacks. It is easy to

check that E((k1, k2), x) = E((k1⊕∆, k2), x⊕∆) holds with probability 1 for EM[1, 2]

but only with negligible probability for the ideal cipher. One idea to thwart the above

attack here would be to enforce key reuse in the construction. Although the above

equality no longer holds, a close variant still applies: E(k, x) = E(k⊕∆, x⊕∆)⊕∆.

This observation motivates a strengthening of the claw-freeness property requiring

that it is hard to find a pair of functions (φ1, φ2) and a value ∆ such that, over a

random choice of k, we have φ1(k)⊕ φ2(k) = ∆.

The advantage of an adversary A against the xor claw-freeness (XCF) of an RKD

set Φ with access to t ideal permutations is defined via

Advxcf
Φ,t(A) = Pr [∃ (φπ1 , φ

π
2 , c) ∈ List : φπ1 (k)⊕ φπ2 (k) = c ∧ φπ1 6= φπ2 : List ←$ Aπ] .

Here List contains tuples consisting of two RKD functions and an offset c ∈ {0, 1}n.

The probability space and π are defined as for claw-freeness.

Xor claw-freeness implies claw-freeness as the latter is a special case with c = 0. The

fact that claw-freeness is weaker than xor claw-freeness can be seen by considering

the set Φ⊕ corresponding to xoring with constants. This set can be easily shown to

be output unpredictable and claw-free [27], but is not xor claw-free as

φ∆1(k)⊕ φ∆2(k) = ∆1 ⊕∆2 where φ∆(k) = k ⊕∆ .

We remark that the xor claw-freeness of Φ implies at most one φ ∈ Φ is predictable:

any two predictable RKD functions can be used to break xor claw-freeness.
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4.3.1.4 Xor query independence (XQI)

Let us now examine oracle access by the RKD functions. Following the attacks

identified in [5, 15], we take the oracle-dependent RKD set

Φ =
{
id : k 7→ k, φP : k 7→ P(k)

}
,

and consider the following Φ-RKCPA adversary against EMπ[1, 1]: query (id, 0) and

get y = P(k) ⊕ k; query (φP, y) and get z; return (z = 0). When interacting with

EMπ[1, 1] we have that

z = EP(P(k),P(k)⊕ k) = P(P(k)⊕ k ⊕ P(k))⊕ P(k) = P(k)⊕ P(k) = 0 .

On the other hand, this identity is true with probability at most 1/(2n − 1) with

respect to the ideal cipher. This attack stems from the fact that when answering

an RK-Enc query, π is evaluated at a point already queried by an RKD function;

this motivates our final restriction. Informally, this condition requires that the set

of values queried by RKD functions has empty intersection with the set of outputs

from the RKD functions, even with offsets specified by the adversary.

The advantage of an adversary A against the xor query independence (XQI) of an

RKD set Φ with access to t ideal permutations is defined via

Advxqi
Φ,t(A) = Pr[∃ (i, σ, φπ1 , φ

π
2 , c) ∈ List :

(i, φπ1 (k)⊕ c, σ) ∈ Qry[φπ2 (k)] : List ←$ Aπ] ,

where

Qry[φπ(k)] = {(i, x, σ) : (i, x, σ) queried to π by φπ(k)} ,
Qry[φπ(k)] = Qry[φπ(k)] ∪ {(i, π(i, x, σ),−σ) : (i, x, σ) ∈ Qry[φπ(k)]} .

Note that for the EM[1, 1], restricting the above definition to i = 1 suffices. We also

define query independence (QI) [5] as above but demand that c = 0n.

4.3.1.5 Examples

The OUP, XCF, and XQI conditions introduced above do not lead to vacuous RKD

sets. As an example of an RKD set which is independent of the permutations
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consider

Φxu = {k 7→ H(k, x) : x ∈ K′} ,

where H is an xor universal hash function from K to K with key space K′. As a

simple instantiation, let K′ = {0, 1}k \0k and for k ∈ K′ define H(k, x) = k ·x, where

{0, 1}k is interpreted as GF(2k) with respect to a fixed irreducible polynomial and

multiplication is defined over GF(2k).

As an example of an oracle-dependent RKD set, one can take

Φ = {k 7→ P(k ⊕∆) : ∆ ∈ K} .

4.3.2 Sufficiency of the conditions

We now show that if an RKD set Φ meets the output unpredictability, xor claw-

freeness and xor query independence properties defined above, then EMπ[1, 1] pro-

vides Φ-RKCCA security.

Theorem 4.1 (Φ-RKCCA security of EMπ[1, 1]). Let Φ be an RKD set. Then for

any adversary A against the Φ-RKCCA security of EMπ[1, 1] with parameters as

defined above, there are adversaries B1, B2, B3 and B4 such that

Advrkcca
EMπ [1,1],Φ,1(A) ≤Advoup

Φ,1 (B1) + Advxqi
Φ,1(B2)

+ Advxcf
Φ,1(B3) + Advcf

Φ,1(B4)

+
qem(q1 +

∑
φ q

φ
1 )

2n − (q1 +
∑

φ q
φ
1 )

+
2q2
em

2n
,

where B1, B2, B3 and B4 output lists of sizes 2q1qem, 2q2
em, q2

em, and q2
em respectively

and all make q1 queries to π.

4.3.2.1 Sketch proof for Theorem 4.1

We give the intuition behind the proof here, deferring the full details to the following

section. The adversary A in the Φ-RKCCA game is run with respect to the oracles

P(x), P−1(x), P(x⊕ φπ(k))⊕ φπ(k), P−1(x⊕ φπ(k))⊕ φπ(k) .
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Our goal is to make a transition to an environment with the oracles

P(x), P−1(x), iE(φπ(k), x), iD(φπ(k), x) ,

where (iE, iD) denotes the ideal cipher. To this end, we consider two intermediate

environments where the last two oracles (corresponding to RK-Enc and RK-Dec)

are handled via a forgetful oracle $ that returns uniform strings on each invocation,

irrespectively of its inputs. Making this change to the first environment above gives

P(x), P−1(x), $(x⊕ φπ(k))⊕ φπ(k), $(x⊕ φπ(k))⊕ φπ(k) ,

while the second gives

P(x), P−1(x), $(φπ(k), x), $(φπ(k), x) ,

both of which are identical to the environment (P(x),P−1(x), $(), $()). We will now

argue that the above changes alter A’s winning probabilities negligibly, down to the

conditions on Φ that we introduced in the previous section.

Let us first look at the change where we replace iE(φπ(k), x) and iD(φπ(k), x) with

$(φπ(k), x). We introduce another game and replace the random keyed permutations

iE and iD by random keyed functions iF and iC:

P(x), P−1(x), iF(φπ(k), x), iC(φπ(k), x) .

Via (a keyed extension of) the random function/random permutation (RF/RP)

switching lemma [32], the environments containing (iF, iC) and (iE, iD) can be shown

to be indistinguishable up to the birthday bound q2
em/2

n. The environments con-

taining iF(φπ(k), x) and iC(φπ(k), x) and two copies of $(φπ(k), x) and can be shown

to be identical down to the CF property. Indeed, an inconsistency could arise when-

ever (φπ1 , x1) 6= (φπ2 , x2) but (φπ1 (k), x1) = (φπ2 (k), x2). This means x1 = x2 and

hence we must have that φπ1 6= φπ2 . But φπ1 (k) = φπ2 (k) and this leads to a break of

the claw-freeness of Φ.

Let us now look at the changes made when we replace P±(x⊕ φπ(k))⊕ φπ(k) with

$(x ⊕ φπ(k)) ⊕ φπ(k). We need to consider the points where a forgetful simulation

of P or P−1 via $ in the last two oracles leads to inconsistencies. Let us define the
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following six lists:

List+P = [(a,P(a)) : A queries a to P],

List−P = [(P−1(b), b) : A queries b to P−1] ,

List+φ = [(a,P(a)) : φπ(k) queries a to P],

List−φ = [(P−1(b), b) : φπ(k) queries b to P−1] ,

List+$ = [(x⊕ φπ(k), $(x⊕ φπ(k))) : A queries (φπ, x) to RK-Enc] ,

List−$ = [($(φπ(k)⊕ y), φπ(k)⊕ y) : A queries (φπ, y) to RK-Dec] .

Let List? be the union of the above lists over all φ queried to RK-Enc or RK-Dec.

This list encodes the trace of the attack, as in the forgetful environment no queries

to P or P−1 are made while handling RK-Enc and RK-Dec queries.

This trace is consistent with one coming from a permutation unless List? does not

respect the permutivity properties, i.e., there are two entries (a, b), (a′, b′) ∈ List?

such that it is not the case that (a = a′ ⇐⇒ b = b′). Note that one of these pairs

must be in List$ = List+$ ∪ List−$ as the other oracles are faithfully implemented.

There is an inconsistency on List? if and only if there is an inconsistency among two

lists (one of which is either List+$ or List−$ ). There are 20 possibilities to consider,

including the order that queries are made. We consider first query of a pair being

on List+$ ; the other cases are dealt with symmetrically. In each case, inconsistencies

can arise in two ways.

List+$ and List+P : (1) The first component of a pair on List+$ —we call this a first

entry on List+$ —matches a first entry a on List+P . This means that for some

query (φπ, x) to RK-Enc we have that a = φπ(k) ⊕ x. This leads to a break

of output unpredictability. (2) The second entry on these lists match. More

explicitly, we are looking at the probability that P(a) = R, for R the output of

$ on a forward query. Here we can assume that R is known and this addresses

the adaptivity of the choice of a. But even in this case the probability of this

event is small as P is a random permutation.

List+$ and List−P : (1) A second entry on List+$ matches a second entry b′ on List−P .

This means that for some query (φπ, x) to RK-Enc with output y we have

that b′ = φπ(k)⊕ y. This leads to a break of output unpredictability. (2) The
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first entries match on these lists. The argument is similar to case (2) above,

but now for P−1.

List+$ and List+φ : (1) A first entry on List+$ matches a first entry on List+φ . This

means that for some query (φπ1 , x) to RK-Enc we have that a = φπ1 (k)⊕x for

a query a of some other φπ2 . This leads to a break of xor query independence.

(2) The second entries match on these lists. The argument is as in case (2) of

the first pair of lists.

List+$ and List−φ : (1) A second entry on List+$ matches a second entry b′ on List−φ .

This means that for some query (φπ1 , x) to RK-Enc with output y we have

that b′ = φπ1 (k)⊕y for a query b′ of some other φπ2 . This leads to a break of xor

query independence. (2) The first entries match on these lists. The argument

is as in case (2) of the second pair of lists.

List+$ and List+$ : Two first entries on List+$ match. This means that for two queries

(φπ1 , x1) and (φπ2 , x2) to RK-Enc we have that φπ1 (k) ⊕ x1 = φπ2 (k) ⊕ x2.

Repeat-freeness ensures that φ1 6= φ2 as otherwise x1 = x2 as well. This leads

to a break of xor claw-freeness. (2) The second entries match on these lists.

Since the oracle returns independent random values, this probability can be

bounded by the birthday bound.

List+$ and List−$ : A second entry on List+$ matches a second entry on List−$ . This

means that for a queries (φπ1 , x1) to RK-Enc with outputs y1 and (φπ2 , x2) to

RK-Dec, we have that φπ1 (k)⊕y1 = φπ2 (k)⊕x2. Redundancy-freeness ensures

that φ1 6= φ2 as otherwise x2 would be an encryption of x1. This leads to

a break of xor claw-freeness. (2) The first entries match on these lists. The

probability of this event can be also bounded by the birthday bound.

Hence inconsistencies among any two pairs of lists happen with small probability,

and this shows that List? is also inconsistent with small probability.

4.3.2.2 Full details for the proof of Theorem 4.1

In this section, we give the details omitted in the proof overview of the previous

section. The proof proceeds through four stages. In the first, A interacts with a
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public permutation and its inverse, plus the forward and backward directions of the

Even–Mansour scheme instantiated with the same permutation:

P(x), P−1(x), P(φπ(k)⊕ x)⊕ φπ(k), P−1(φπ(k)⊕ x)⊕ φπ(k) .

We then consider two environments in which P is replaced by $, a forgetful random

oracle, for queries made to the Even–Mansour scheme:

P(x), P−1(x), $(φπ(k)⊕ x)⊕ φπ(k), $(φπ(k)⊕ x)⊕ φπ(k)

and from here we consider a keyed random function:

P(x), P−1(x), iF(φπ(k), x), iC(φπ(k), x) .

Finally, we transition to a game in which $ is replaced by an ideal cipher (iE, iD):

P(x), P−1(x), iE(φπ(k), x), iD(φπ(k), x) .

We will now argue that the above changes alter A’s winning probabilities negligibly

and bound A’s winning probability in terms of the conditions on Φ introduced in

Section 4.3.

The first transition is analysed via a series of games which are given in Figures 4.2,

4.3, and 4.4 and described below.

These games include two intermediate transitions: in the first, P is replaced with

Q (a random permutation, chosen independently of P) for queries arising through

Game i:
k ←$ K
b′ ←$ ARK-Enc,RK-Dec,π

Return b′

π(1, a,+):

Return DS1(a)

RK-Enc(φπ, x):

k′ ← φπ(k)
Return k′ ⊕ IS1(k

′ ⊕ x)

RK-Dec(φπ, y):

k′ ← φπ(k)
Return k′ ⊕ IS1

−1(k′ ⊕ y)

Figure 4.2: Procedures common to all games in the proof of Theorem 4.1. Ora-
cles π(1, ·,−), DS1

−1, and IS1
−1 are defined in a similar way to their

corresponding forward oracles.
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Game 1:

DS1(a)

If D1[a] 6=⊥
Return D1[a]

If I1[a] 6=⊥

Return I1[a]

b ←$ {0, 1}n \ Rng(DS1, IS1)

D1[a]← b; D1
−1[b]← a

Rng(DS1)← Rng(DS1) ∪ {b}
Dom(DS1)← Dom(DS1) ∪ {a}
Return D1[a]

IS1(a):

If I1[a] 6=⊥

Return I1[a]

If D1[a] 6=⊥

Return D1[a]

b ←$ {0, 1}n \ Rng(DS1, IS1)

I1[a]← b; I1
−1[b]← a

Rng(IS1)← Rng(IS1) ∪ {b}
Dom(IS1)← Dom(IS1) ∪ {a}
Return I1[a]

Game 1a:

DS1(a):

If D1[a] 6=⊥
Return D1[a]

If I1[a] 6=⊥

Return I1[a]

b ←$ {0, 1}n \ Rng(DS1)
If b ∈ Rng(IS1)

b ←$ {0, 1}n \ Rng(DS1, IS1)

D1[a]← b; D1
−1[b]← a

Rng(DS1)← Rng(DS1) ∪ {b}
Dom(DS1)← Dom(DS1) ∪ {a}
Return D1[a]

IS1(a):

If I1[a] 6=⊥

Return I1[a]

If D1[a] 6=⊥

Return D1[a]

b ←$ {0, 1}n
If b ∈ Rng(IS1)

b ←$ {0, 1}n \ Rng(IS1)

If b ∈ Rng(DS1)

b ←$ {0, 1}n \ Rng(DS1, IS1)

I1[a]← b; I1
−1[b]← a

Rng(IS1)← Rng(IS1) ∪ {b}
Dom(IS1)← Dom(IS1) ∪ {a}
Return I1[a]

Figure 4.3: Games 1 and 1a in the proof of Theorem 4.1. Oracles π(1, ·,−), DS1
−1,

and IS1
−1 are defined in a similar way to their corresponding forward

oracles.
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Game 2 Game 3:

DS1(a):

If D1[a] 6=⊥
Return D1[a]

If I1[a] 6=⊥
bad1 ← true

Return I1[a]

b ←$ {0, 1}n \ Rng(DS1)
If b ∈ Rng(IS1)

bad2 ← true

b ←$ {0, 1}n \ Rng(DS1, IS1)

D1[a]← b; D1
−1[b]← a

Rng(DS1)← Rng(DS1) ∪ {b}
Dom(DS1)← Dom(DS1) ∪ {a}
Return D1[a]

IS1(a):

If I1[a] 6=⊥

Return I1[a]

If D1[a] 6=⊥
bad1 ← true

Return D1[a]

b ←$ {0, 1}n
If b ∈ Rng(IS1)

b ←$ {0, 1}n \ Rng(IS1)

If b ∈ Rng(DS1)
bad2 ← true

b ←$ {0, 1}n \ Rng(DS1, IS1)

I1[a]← b; I1
−1[b]← a

Rng(IS1)← Rng(IS1) ∪ {b}
Dom(IS1)← Dom(IS1) ∪ {a}
Return I1[a]

Game 4 Game 5:

DS1(a):

If D1[a] 6=⊥
Return D1[a]

If I1[a] 6=⊥
bad1 ← true

b ←$ {0, 1}n \ Rng(DS1)
If b ∈ Rng(IS1)

bad2 ← true

D1[a]← b; D1
−1[b]← a

Rng(DS1)← Rng(DS1) ∪ {b}
Dom(DS1)← Dom(DS1) ∪ {a}
Return D1[a]

IS1(a):

If I1[a] 6=⊥
bad3 ← true

Return I1[a]

If D1[a] 6=⊥
bad1 ← true

b ←$ {0, 1}n
If b ∈ Rng(IS1)

bad4 ← true

b ←$ {0, 1}n \ Rng(IS1)

If b ∈ Rng(DS1)
bad2 ← true

I1[a]← b; I1
−1[b]← a

Rng(IS1)← Rng(IS1) ∪ {b}
Dom(IS1)← Dom(IS1) ∪ {a}
Return I1[a]

Figure 4.4: Games 2 to 5 in the proof of Theorem 4.1. Oracles π(1, ·,−), DS1
−1, and

IS1
−1 are defined in a similar way to their corresponding forward oracles.

Boxed statements are included in Games 2 and 4, and are omitted from
Games 3 and 5.
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RK-Enc or RK-Dec; in the second, Q is replaced with $ (a forgetful random

oracle). We identify the points at which these two intermediate transitions lead to

inconsistencies, by setting bad flags. In contrast to how the intuition behind this

proof is described in Section 4.3, we push forward the bounding of the probability

bad events occurring during the first intermediate transition until after the second

intermediate transition.

The specifications of DS1
−1, IS1

−1, and π(·, ·,−) are omitted for conciseness; they

are defined analogously to their respective forward oracles. Let Si denote the event

where the adversary outputs 1 in game i.

Game 0 is the RKA game augmented with a public permutation oracle (as described

in Section 2.3.2), conditioned on b = 1. In this game, the adversary interacts

with an oracle realising the public permutation P and the Even–Mansour con-

struction instantiated with P.

Game 1 is only syntactically different from Game 0. The queries to π are split into

two groups: those made directly to π, either by the adversary or by an RKD

function, which are answered by the sampling algorithm DS1; and those made

indirectly, through queries made to RK-Enc, which are answered by IS1. The

oracles DS1 and IS1 maintain consistent lists D1 and I1. The lists used by

inverse oracles are identical to the lists used by the corresponding forward

oracles. As this is a purely syntactic change, Pr[S0] = Pr[S1].

Game 1a introduces syntactic changes to DS1 and IS1 in order for the code in the

games that follow to be identical until specified bad events occur. Introducing

this step allows us to remove the statement b ←$ {0, 1}n \ Rng(DS1, IS1); this

is necessary as we wish to completely decouple responses from DS1 and IS1.

Game 2 sets bad1 either if DS1 is queried on a point already defined in I1 or if IS1 is

queried on a point already defined in D1 (and similarly for the inverse oracles).

This occurs either because A queries π directly at a point that is also queried

to π through an indirect RK-Enc query, or because an RKD function queries

π at a point that is also queried to π through an RK-Enc query. We will later

bound the probability of this event in terms of the output unpredictability and

xor query independence of Φ. Game 2 sets bad2 if the value chosen at random
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for DS1(a) is already defined in range of IS1, or vice versa (and similarly for

the inverse queries and the domain of IS1 or DS1). This is necessary because

in Game 1, for both DS1 and IS1, b is sampled from {0, 1}n \ Rng(DS1, IS1)

whereas our objective in Game 3 is to ensure that DS1 is independent of IS1.

The outputs of DS1 and IS1 remain consistent and Pr[S1] = Pr[S2].

Game 3 omits the boxed statements in Game 2 and so is identical to Game 2 unless

one of bad1 or bad2 is set. In this game, the oracles DS1 and IS1 check consis-

tency with their own lists, but may become inconsistent with each other. It

is possible for bad1 to be set in two different ways: event E1 is the event an

adversary directly queries DS1 at a point coinciding with a point queried to

IS1 from a query to RK-Enc (or comparable conditions resulting from queries

to DS1
−1 or RK-Dec); event E2 is the event an RKD function queries DS1

at a point coinciding with a point queried to IS1 from a query to RK-Enc (or

comparable conditions resulting from queries to DS1
−1 or RK-Dec). We will

analyse each of the ways that bad1 can be set below. Similarly, bad2 can be

set either because of a query to DS1 from A, a query to DS1 from φπ, or from

a query to IS1 due to a query to RK-Enc (or similarly for the corresponding

inverse oracles); we consider all cases simultaneously below. In Game 3, the

responses to RK-Enc queries are completely decoupled from the responses to

π queries, so we can consider that RK-Enc uses Q to respond to queries and

π uses P. We have that Pr[S2] ≤ Pr[S3] + Pr[E1 ∨ E2 ∨ bad2].

Game 4 sets bad3 if A queries IS1 or its inverse twice on the same point. Game 4

chooses the response to IS1 uniformly from {0, 1}n and sets bad4 if this value

is already in Rng(IS1). The flag bad4 can be set in four ways (as a result of

two queries to either of IS1 and IS1
−1, plus two ‘mixed cases’ with one query

to each of IS1 and IS1
−1); we consider each of these cases when we analyse the

probability of setting bad events below. Game 4 is equivalent to Game 3 and,

in particular, Pr[S3] = Pr[S4].

Game 5 omits the boxed statements from Game 4 and so is identical to Game 4 unless

bad3 or bad4 is set. Let E′1, E
′
2, bad′2 represent events in Game 5 corresponding

to events E1, E2, bad2 in Game 4, then Pr[E1 ∨ E2 ∨ bad2] ≤ Pr[E′1 ∨ E′2 ∨
bad′2] + 2 Pr[bad3 ∨ bad4]. In this game, calls to π(1, ·,+) through RK-Enc

(which are answered by IS1) are answered by a forgetful random oracle and so

the ciphertexts are uniform and independent of the key and the plaintext; the
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same is true for calls to inverse oracles. Redundancy freeness guarantees that

no inconsistencies arise from decrypting the result of an encryption query, or

vice versa.

In Game 5, the adversary interacts with

P(x), P−1(x), $(φπ(k)⊕ x)⊕ φπ(k), $(φπ(k)⊕ x)⊕ φπ(k) .

During the next transition to

P(x), P−1(x), iF(φπ(k), x), iC(φπ(k), x) ,

inconsistencies only arise if the adversary makes queries (φπ1 , x1) 6= (φπ2 , x2), but

where (φπ1 (k), x1) = (φπ2 (k), x2). If an adversary A makes such a query, we can

construct an adversary B4 which wins the CF game with a list of length at most q2em
2

as follows: B4 runs A and outputs List = {(φπi , φπj ) : 1 ≤ i < j ≤ qem}.

Considering the final transition, we switch from a random function to a random

permutation (for each φπ); the probability of an inconsistency arising in this step is

bounded by q2em
2n [32].

Therefore we have that

Advrkcca
EMπ [1,1],Φ,t(A) ≤Pr[E′1 ∨ E′2 ∨ bad′2] + 2 Pr[bad3 ∨ bad4] + Advcf

Φ,t(B4) +
q2
em

2n
,

and it remains to bound the probability that bad events occur in Game 5.

Event E′1 occurs when the adversary directly queries π at a point that is also

queried as a result of a query to RK-Enc. This situation is described in

Section 4.3 as an inconsistency between ListP and List$. We will use A to

create an adversary B1 against the OUP game with a list of length 2q1qem.

The adversary B1 runs A and then outputs List = {(φπi , xi ⊕ aj) : 1 ≤ i ≤
qem, 1 ≤ j ≤ q1} ∪ {(φπi , yi ⊕ bj) : 1 ≤ i ≤ qem, 1 ≤ j ≤ q1}, where xi is the

input to RK-Enc resulting in output yi on the ith query (reversed for a query

to RK-Dec) and aj is the input to π(1, ·,+) resulting in output bj on the

jth query (similarly reversed for a query to π(1, ·,−)). If A sets bad1 with an

RK-Enc or DS1 query, then B1 wins the OUP game with a tuple of the form
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(φπi , xi ⊕ aj) and if A sets bad1 with a query to DS1
−1 or IS1

−1then B wins

the OUP game with a tuple of the form (φπi , yi ⊕ bj). We therefore conclude

that Pr[E′1] ≤ Advoup
Φ,t (B1), where B1 outputs a list of length 2q1qem.

Event E′2 occurs when an RKD function queries π at a point that is also queried

as a result of a query to RK-Enc. This situation is described in Section 4.3 as

an inconsistency between Listφ and List$. We will use A to create an adversary

B2 against the XQI game with a list of length 2q2
em. The adversary B2 runs

A and outputs List = {(1,+, φπi , φπj , xi) : 1 ≤ i, j ≤ qem} ∪ {(1,−, φπi , φπj , yi) :

1 ≤ i, j ≤ qem}. If A sets bad1 with a query to IS1 or an RKD function

that queries π(1, ·,+), then B1 wins the XQI game with a tuple of the form

(1,+, φπi , φ
π
j , xi) and if A sets bad1 with a query to IS1

−1 or π(1, ·,−) then

B wins the XQI game with a tuple of the form (1,−, φπi , φπj , yi). Therefore,

Pr[E′2] ≤ Advxqi
Φ,t(B2), where B2 outputs a list of length 2q2

em.

Flag bad′2 is set with probability at most
(q1+qφ1 )qem

2n−(q1+
∑
φ q

φ
1 )

(when it is set via a call to

DS1 or its inverse); it can be set via a call to IS1 or its inverse with probabil-

ity
(q1+qφ1 )qem

2n . This situation is described in Section 4.3 as an inconsistency

between ListP and List$ or Listφ and List$. It can be set in one of 16 different

ways. Collisions between DS1 and IS1, DS1
−1 and IS1

−1, DS1 and IS1
−1, or

DS1
−1 and IS1 can all set bad2 and each is counted twice, depending on the

order of the queries. This gives 8 ways to set bad2, however the query to DS1

can arise through a query by A or through φπ, which gives 16 ways. In each

case, we use a birthday-bound style argument, noting that each pair (x, a)

has at most a 1

2n−(q1+
∑
φ q

φ
1 )

chance of setting bad′2; applying the union bound

and recalling that qem is the total number of queries made to RK-Enc and

RK-Dec (and thus to IS and IS1
−1) by A (and similarly for q1 and qφ1 ) gives

the claimed probability.

Flag bad3 is set if two queries to either IS1 or its inverse result in the same value

being either input to or output from IS1 or its inverse. This situation is de-

scribed in Section 4.3 as an inconsistency between List$ and List$. We will

use A that sets bad3 to create an adversary B3 against the XCF game. The

adversary B3 runs A and then outputs List = {(φπi , φπj , xi ⊕ xj) : 1 ≤ i < j ≤
qem}∪{(φπi , φπj , yi⊕yj) : 1 ≤ i < j ≤ qem}. If A sets bad3 as a result of a query

to IS1, then B3 wins the XCF game with a tuple of the form (φπi , φ
π
j , xi ⊕ xj)

and if A sets bad3 as a result a query to IS1
−1, then B3 wins the XCF game
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with a tuple of the form (φπi , φ
π
j , yi⊕ yj). Thus Pr[bad3] ≤ Advxcf

Φ,t(B3), where

B3 outputs a list of length at most q2
em.

Flag bad4 is set with probability at most q2em
2

1
2n using similar reasoning as in the

setting of bad2. This situation is described in Section 4.3 as an inconsistency

between List$ and List$.

As we have that

Advrkcca
EMπ [1,1],Φ,t(A) ≤Pr[E′1 ∨ E′2 ∨ bad′2] + 2 Pr[bad3 ∨ bad4]

+ Advcf
Φ,t(B4) +

q2
em

2n
,

we may conclude that

Advrkcca
EMπ [1,1],Φ,t(A) ≤Advoup

Φ,t (B1) + Advxqi
Φ,t(B2) +

qem(q1 +
∑

φ q
φ
1 )

2n − (q1 +
∑

φ q
φ
1 )

+ 2

(
Advxcf

Φ,t(B3) +
q2
em

2n+1

)
+ Advcf

Φ,t(B4) +
q2
em

2n
,

where B1 outputs a list of length 2q1qem, B2 a list of length 2q2
em, B3 a list of length

q2
em, and B4 a list of length at most q2

em. �

4.4 The RKCPA security of EMπ[1, 1, 1]

The theorem established in the previous section does not encompass the Φ⊕ set as

this set is not xor claw-free. In this section, we investigate whether an extra round

can boost RKA security to the Φ⊕ set.

For two-round EM constructions, up to relabelling there are 5 simple key schedules:

[1, 1, 1], [1, 1, 2], [1, 2, 1], [1, 2, 2], and [1, 2, 3]. It is easy to see that offset-switching

attacks can be used to attack the Φ⊕-RKCPA security of all but the first of these.

In the following sections we study the Φ⊕-RKA security of the only remaining con-

struction, EMπ[1, 1, 1].
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4.4.1 Weakening the conditions

We start by following a similar proof strategy to that given for EMπ[1, 1] and identify

a set of restrictions which are strong enough to enable a security proof, yet weak

enough to encompass the Φ⊕ set. These conditions decouple the queries made to the

permutation oracle and allow us to simulate the P2 oracle forgetfully in a reduction.

Starting from the environment

π(i, x, σ), P2(P1(x⊕ φπ(k))⊕ φπ(k))⊕ φπ(k) ,

we simulate the P2 oracle forgetfully and move to a setting with oracles

π(i, x, σ), $(P1(x⊕ φπ(k))⊕ φπ(k))⊕ φπ(k) ≡ π(i, x, σ), $() .

From here it is straightforward to reach the ideal game π(i, x, σ), iE(φπ(k), x) via an

application of the RF/RP switching lemma [32] and the claw-freeness property as

in the analysis of EMπ[1, 1].

We now analyse the probability that the second environment simulates the first one

in an inconsistent way. We look at inconsistencies which arise due to oracles being

queried on the same inputs and derive conditions that preclude these from occurring.

4.4.1.1 First-order output unpredictability (OUP1)

The first place such an inconsistency might arise is when A makes an explicit π

query (2, a,+) that matches a query made to $, i.e. P1(x⊕ φπ(k))⊕ φπ(k) = a for

some (φπ, x) queried to $. We now address this event, giving a slight strengthening

of the condition as we will be using it later.

Let t ≥ 1. The advantage of an adversary A against the first-order output unpre-

dictability (OUP1) of an RKD set Φ with access to t ideal permutations is defined

via

Advoup1
Φ,t (A) = Pr[∃ (i, σ, φπ, x, c) ∈ List :

Pσi (φπ(k)⊕ x)⊕ φπ(k) = c : List ←$ Aπ] .
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Oracle π, the probability space, and List are defined analogously to the previous

definitions. Note that in the RKCPA setting we do not need to consider inconsis-

tencies resulting from inputs to P−1
1 through RK-Enc queries, and thus only need

to consider (i, σ) = (1,+) above.

4.4.1.2 First-order claw-freeness (CF1)

Inconsistencies may also arise as a result of two RK-Enc queries. As $ is forgetful,

a consistent simulation requires that no two RK-Enc queries query $ at the same

point. This leads to the following modification of claw-freeness.

Let t ≥ 1. The advantage of an adversary A against the first-order claw-freeness

(CF1) of an RKD set Φ with access to t ideal permutations is defined via

Advcf1
Φ,t(A) = Pr[∃ (i, σ, φπ1 , x1, φ

π
2 , x2) ∈ List :

Pσi (φπ1 (k)⊕ x1)⊕ φπ1 (k) = Pσi (φπ2 (k)⊕ x2)⊕ φπ2 (k) ∧ φπ1 6= φπ2 :

List ←$ Aπ] .

4.4.1.3 First-order query independence (QI1)

We now look at inconsistencies in the simulation due to a mismatch in an RKD query

to π and a query to $ made via the RK-Enc oracle. Since only the second function

is forgetfully simulated, we require independence of queries for P2 only. Once again,

in the RKCPA setting, restricting the definition to (i, σ) = (1,+) suffices.

Let t ≥ 2. The advantage of an adversary A against the first-order query inde-

pendence (QI1) of an RKD set Φ with access to t ideal permutations is defined

via

Advqi1
Φ,t(A) = Pr[∃(i, σ, φπ1 , x1, φ

π
2 ) ∈ List :

(2,Pσi (φπ1 (k)⊕ x1)⊕ φπ1 (k),±) ∈ Qry[φπ2 (k)] : List ←$ Aπ] ,
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4.4 The RKCPA security of EMπ[1, 1, 1]

where, as before,

Qry[φπ(k)] = {(i, x, σ) : (i, x, σ) queried to π by φπ(k)} ,
Qry[φπ(k)] = Qry[φπ(k)] ∪ {(i, π(i, x, σ),−σ) : (i, x, σ) ∈ Qry[φπ(k)]} .

4.4.2 Sufficiency of the conditions

The new set of conditions identified above allow us to use a similar proof strategy

to that of Theorem 4.1 and establish the following result.

Theorem 4.2 (Φ-RKCPA security of EMπ[1, 1, 1]). Let Φ be an RKD set. Then for

any adversary A against the Φ-RKCPA security of EMπ[1, 1, 1] with parameters as

defined before there are B1a, B1b, B2a, B2b, B3, and B4 such that

Advrkcpa
EMπ [1,1,1],Φ,2(A) ≤Advoup1

Φ,2 (B1a) + Advoup
Φ,2 (B1b)

+ Advqi1
Φ,2(B2a) + Advxqi

Φ,2(B2b)

+ 2Advcf1
Φ,2(B3) + Advcf

Φ,2(B4)

+
qem(q2 +

∑
φ q

φ
2 )

2n − (q2 +
∑

φ q
φ
2 )

+
2q2
em

2n
,

where B1a and B1b output lists of length q2qem, B2a and B2b lists of length q2
em, B3 a

list of length q2
em, and B4 a list of length at most q2

em.

The proof follows a similar pattern to the proof of Theorem 4.1 and again pro-

ceeds through four stages. In the first, A interacts with the public permutations

and their inverses, plus the forward direction of the 2-round Even–Mansour scheme

instantiated with the same permutations:

π(i, x, σ), P2(P1(φπ(k)⊕ x)⊕ φπ(k))⊕ φπ(k) .

We then consider an environment in which P2 is replaced by $, a forgetful random

oracle, for queries made to the Even–Mansour scheme:

π(i, x, σ), $(P1(φπ(k)⊕ x)⊕ φπ(k))⊕ φπ(k),

and from here we consider a keyed random function:

π(i, x, σ), iF(φπ(k), x) .
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Finally, we transition to a game in which iF is replaced by an ideal cipher iE:

π(i, x, σ), iE(φπ(k), x) .

We will now argue that the above changes alter A’s winning probabilities negligibly

and bound A’s winning probability in terms of the conditions on Φ described in

Sections 4.3.1 and 4.4.1.

The first transition is analysed via a series of games, given in Figures 4.5, 4.6, and 4.7.

These games include two intermediate transitions: in the first, P2 is replaced with

Q (a random permutation, chosen independently of π) for queries arising through

RK-Enc or RK-Dec; in the second, Q is replaced with $ (a forgetful random

oracle). We identify the points at which these two intermediate transitions lead to

inconsistencies, by setting bad flags. As before, let Si denote the event where the

adversary outputs 1 in game i.

Game i:
k ←$ K
b′ ←$ ARK-Enc,π

Return b′

RK-Enc(φπ, x):

k′ ← φπ(k)
z1 ← S1(k

′ ⊕ x)
Return k′ ⊕ IS2(k

′ ⊕ z1)

π(2, a,+):

Return DS2(a)

π(1, a,+):

Return S1(a)

S1(a):

If S1[a] 6=⊥
Return S1[a]

b ←$ {0, 1}n \ Rng(S1)

S1[a]← b; S−1
1 [b]← a

Rng(S1)← Rng(S1) ∪ {b}
Dom(S1)← Dom(S1) ∪ {a}
Return S1[a]

Figure 4.5: Procedures common to all games in the proof of Theorem 4.2. Oracles
π(i, ·,−), Si

−1, and DS2
−1 are defined in a similar way to their corre-

sponding forward oracles.
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Game 1:

DS2(a):

If D2[a] 6=⊥ Return D2[a]
If I2[a] 6=⊥

Return I2[a]

b ←$ {0, 1}n \ Rng(DS2)
If b ∈ Rng(IS2)

b ←$ {0, 1}n \ Rng(DS2, IS2)

D2[a]← b; D−1
2 [b]← a

Rng(DS2)← Rng(DS2) ∪ {b}
Dom(DS2)← Dom(DS2) ∪ {a}
Return D2[a]

IS2(a):

If I2[a] 6=⊥
Return I2[a]

If D2[a] 6=⊥
Return D2[a]

b ←$ {0, 1}n
If b ∈ Rng(IS2)

b ←$ {0, 1}n \ Rng(IS2)

If b ∈ Rng(DS2)

b ←$ {0, 1}n \ Rng(DS2, IS2)

I2[a]← b; I2
−1[b]← a

Rng(IS2)← Rng(IS2) ∪ {b}
Dom(IS2)← Dom(IS2) ∪ {a}
Return I2[a]

Game 2 Game 3:

DS2(a):

If D2[a] 6=⊥ Return D2[a]
If I2[a] 6=⊥

bad1 ← true; Return I2[a]

b ←$ {0, 1}n \ Rng(DS2)
If b ∈ Rng(IS2)

bad2 ← true

b ←$ {0, 1}n \ Rng(DS2, IS2)

D2[a]← b; D−1
2 [b]← a

Rng(DS2)← Rng(DS2) ∪ {b}
Dom(DS2)← Dom(DS2) ∪ {a}
Return D2[a]

IS2(a):

If I2[a] 6=⊥
Return I2[a]

If D2[a] 6=⊥
bad1 ← true; Return D2[a]

b ←$ {0, 1}n
If b ∈ Rng(IS2)

b ←$ {0, 1}n \ Rng(IS2)

If b ∈ Rng(DS2)
bad2 ← true

b ←$ {0, 1}n \ Rng(DS2, IS2)

I2[a]← b; I2
−1[b]← a

Rng(IS2)← Rng(IS2) ∪ {b}
Dom(IS2)← Dom(IS2) ∪ {a}
Return I2[a]

Figure 4.6: Games 1 to 3 in the proof of Theorem 4.2. Oracles π(i, ·,−), Si
−1,

and DS2
−1 are defined in a similar way to their corresponding forward

oracles. Boxed statements are included in Game 2 and are omitted from
Game 3.
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Game 4 Game 5:

DS2(a):

If D2[a] 6=⊥ Return D2[a]
If I2[a] 6=⊥

bad1 ← true

b ←$ {0, 1}n \ Rng(DS2)
If b ∈ Rng(IS2)

bad2 ← true

D2[a]← b; D−1
2 [b]← a

Rng(DS2)← Rng(DS2) ∪ {b}
Dom(DS2)← Dom(DS2) ∪ {a}
Return D2[a]

IS2(a):

If I2[a] 6=⊥
bad3 ← true; Return I2[a]

If D2[a] 6=⊥
bad1 ← true

b ←$ {0, 1}n
If b ∈ Rng(IS2)

bad4 ← true

b ←$ {0, 1}n \ Rng(IS2)

If b ∈ Rng(DS2)
bad2 ← true

I2[a]← b; I2
−1[b]← a

Rng(IS2)← Rng(IS2) ∪ {b}
Dom(IS2)← Dom(IS2) ∪ {a}
Return I2[a]

Figure 4.7: Games 4 and 5 in the proof of Theorem 4.2. Oracles π(i, ·,−), Si
−1,

and DS2
−1 are defined in a similar way to their corresponding forward

oracles. Boxed statements are included in Game 4 and are omitted from
Game 5.
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Game 0 is the RKA game augmented with a public permutation oracle (as described

in Section 2.3.2), conditioned on b = 1. In this game, the adversary interacts

with an oracle realising the public permutations π and the forward direction

of the Even–Mansour construction instantiated with π.

Game 1 is only syntactically different from Game 0. The queries to π are split

into three groups. The first group is those made to π(1, ·, ·), either by the

adversary, by an RKD function, or as the result of an RK-Enc query; these

are answered by the sampling algorithms S1 and S1
−1. The second group of

queries consists of those made directly to π(2, ·, ·), either by the adversary

or by an RKD function, which are answered by the sampling algorithms DS2

and DS2
−1. The third group of queries are those queries to π(2, ·,+) which

are made indirectly, through queries made to RK-Enc; these queries are are

answered by IS2. The oracles DS2 and IS2 maintain consistent lists D2 and I2.

As this is a purely syntactic change, Pr[S0] = Pr[S1].

Game 2 sets bad1 either if DS2 is queried on a point already defined in I2 or if IS2

is queried on a point already defined in D2 (and similarly for DS2
−1). This

occurs either because A queries π(2, ·, ·) directly at a point that is also queried

to π(2, ·, ·) through an indirect RK-Enc query, or because an RKD function

queries π(2, ·, ·) at a point that is also queried to π(2, ·, ·) through an RK-Enc

query (and similarly for DS2
−1). We will later bound the probability of this

event in terms of the output unpredictability, first-order output unpredictabil-

ity, xor query independence and first-order query independence of Φ. Game 2

sets bad2 if the value chosen at random for DS2(a) is already defined in range

of IS2, or vice versa (and similarly for the inverse queries and the domain of

IS1). This is necessary because in Game 1, for both DS2 and IS2, b may be

sampled from {0, 1}n \ Rng(DS2, IS2) whereas our objective in Game 3 is to

ensure that responses from DS2 are independent of responses from IS2. The

code of S1 and is unchanged and will remain so throughout this proof. The

outputs of DS2 and IS2 remain consistent and Pr[S1] = Pr[S2].

Game 3 omits the boxed statements in Game 2 and so is identical to Game 2 unless

one of bad1 or bad2 is set. In this game, the oracles DS2 and IS2 check consis-

tency with their own lists, but may become inconsistent with each other. It

is possible for bad1 to be set in two possible ways: event E1 is the event an

adversary directly queries DS2 (or DS2
−1) at a point coinciding with a point
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queried to (or output from) IS2 via a query to RK-Enc; event E2 is the event

an RKD function queries DS2 (or DS2
−1) at a point coinciding with a point

queried to (or output from) IS2 from a query to RK-Enc. We will analyse

each of the ways that bad1 can be set below. Similarly, bad2 can be set either

because of a query to DS2 from A, a query to DS2 from φπ, or from a query

to IS2 due to a query to RK-Enc (or similarly for the corresponding inverse

oracles); we consider all cases simultaneously below. In Game 3, the responses

to RK-Enc queries are completely decoupled from the responses to π queries,

so we can consider that RK-Enc uses Q to respond to queries and π uses P.

We have that Pr[S2] ≤ Pr[S3] + Pr[E1 ∨ E2 ∨ bad2].

Game 4 sets bad3 if two distinct queries to RK-Enc result in the same value being

queried to IS2. As A makes no queries to RK-Dec, we only need to consider

the possibility that bad3 is set as a result of a query to RK-Enc. Game 4

chooses the response to IS2 uniformly from {0, 1}n and sets bad4 if this value

is already in Rng(IS2). Game 4 is equivalent to Game 3 and, in particular,

Pr[S3] = Pr[S4].

Game 5 omits the boxed statements from Game 4 and so is identical to Game 4 unless

bad3 or bad4 is set. Let E′1, E
′
2, bad′2 represent events in Game 5 corresponding

to events E1, E2, bad2 in Game 4, then Pr[E1 ∨ E2 ∨ bad2] ≤ Pr[E′1 ∨ E′2 ∨
bad′2] + 2 Pr[bad3 ∨ bad4] In this game, calls to π(2, ·,+) through RK-Enc

(which are answered by IS1) are answered by a forgetful random oracle and so

the ciphertexts are uniform and independent of the key and the plaintexts.

In Game 5, the adversary interacts with

π(i, x, σ), $(P1(φπ(k)⊕ x)⊕ φπ(k))⊕ φπ(k) .

During the next transition to

π(i, x, σ), iF(φP,P
−1

(k), x) ,

inconsistencies only arise if the adversary makes queries (φπ1 , x1) 6= (φπ2 , x2), but

where (φπ1 (k), x1) = (φπ2 (k), x2). If an adversary A makes such a query, we can

construct an adversary B4 which wins the CF game with a list of length at most q2em
2

as follows: B4 runs A and outputs List = {(φπi , φπj ) : 1 ≤ i < j ≤ qem}.
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Considering the final transition, we switch from a random function to a random

permutation (for each φπ); the probability of an inconsistency arising in this step is

bounded by q2em
2n [32].

Therefore we have that

Advrkcpa
EMπ [1,1,1],Φ,t(A) ≤Pr[E′1 ∨ E′2 ∨ bad′2] + 2 Pr[bad3 ∨ bad4]

+ Advcf
Φ,t(B4) +

q2
em

2n
.

It remains to bound the probability that bad events occur in Game 5.

Event E′1 occurs when the adversary directly queries π(2, ·, ·) at a point that is

also queried as a result of a query to RK-Enc. Although A makes no IS2
−1

queries, it is possible to trigger E′1 with a query to DS2
−1. We will use A to

create adversaries B1a and B1b against the OUP1 and OUP games respectively,

both with lists of length q2qem. The adversary B1a runs A and then outputs

List = {(1,+, φπi , xi, aj) : 1 ≤ i ≤ qem, 1 ≤ j ≤ q2}. The adversary B1b runs A
and then outputs List = {(φπi , yi ⊕ bj) : 1 ≤ i ≤ qem, 1 ≤ j ≤ q2}. If A can set

bad by querying the permutation at a point that is also queried as a result of a

query to RK-Enc, then either B1a wins the OUP1 game or B1b wins the OUP

game. We therefore conclude that Pr[E′1] ≤ Advoup1
Φ,t (B1a) + Advoup

Φ,t (B1b),

where B1a and B1b both output a list of length q2qem.

Event E′2 occurs when an RKD function queries the P2 at a point that is also

queried as a result of a query to RK-Enc. We will use A to create ad-

versaries B2a and B2b against the QI1 and XQI games respectively, both

with lists of length q2
em. The adversary B2a runs A and outputs List =

{(1,+, φπi , xi, φπj ) : 1 ≤ i, j ≤ qem}; the adversary B2b runs A and outputs

List = {(2,−, φπi , φπj , yi) : 1 ≤ i, j ≤ qem}. If A can set bad by causing an RKD

function to query the permutation at a point that is also queried as a result of

a query to RK-Enc, then either B2a wins the QI1 game or B2b wins the XQI

game. Although A makes no IS2
−1 queries, it is possible to trigger E′2 with

a query to DS2
−1 and so we must include tuples of the form (2,−, φπi , φπj , yi).

Therefore we can conclude that Pr[E′2] ≤ Advqi1
Φ,t(B2a) + Advxqi

Φ,t(B2b), where

B2a and B2bboth output lists of length q2
em.
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Flag bad′2 is set with probability at most
qem(q2+

∑
φ q

φ
2 )

2n−(q2+
∑
φ q

φ
2 )

. It can be set in one of 8

different ways (this differs from the proof of Theorem 4.1, as this theorem only

considers CPA adversaries, so A cannot use RK-Dec to set bad′2). Collisions

between DS2 and IS2 or DS1
−1 and IS2 can set bad2; both of these cases are

counted four times, depending on the order of the queries and whether the DS2

query was triggered by A or by φπ. In each case, we use a birthday-bound

style argument, noting that a pair (x, a) has at most a 1

2n−(q1+
∑
φ q

φ
1 )

chance

of setting bad′2. Applying the union bound and recalling that q2 is the total

number of queries made to π(2, ·, ·) by A gives the claimed probability.

Flag bad3 is set when two queries to RK-Enc result in the P2 being queried at the

same point. We will use A to create an adversary B3 against the CF1 property

of Φ. The adversary B3 runs A and then outputs List = {(1,+, φπi , xi, φπj , xj) :

1 ≤ i < j ≤ qem}. Note that, as A makes no RK-Dec queries, they are unable

to set bad3 with an RK-Dec query. If this were not the case, we would require

that Φ is XCF (the XCF adversary would use tuples of the form (φπ, y ⊕ b)).
Thus Pr[bad3] ≤ Advcf1

Φ,t(B3), where B3 outputs a list of length qem(qem−1)
2 .

Flag bad4 is set with probability at most q2em
2

1
2n using similar reasoning as in the

setting of bad2.

As we have that

Advrkcpa
EMπ [1,1,1],Φ,t(A) ≤Pr[E′1 ∨ E′2 ∨ bad′2] + 2 Pr[bad3 ∨ bad4]

+ Advcf
Φ,t(B4) +

q2
em

2n
,+

q2
em

2n
,

we may conclude that

Advrkcpa
EMπ [1,1,1],Φ,t ≤Advoup1

Φ,t (B1a) + Advoup
Φ,t (B1b)

+ Advqi1
Φ,t(B2a) + Advxqi

Φ,t(B2b)

+
qem(q2 +

∑
φ q

φ
2 )

2n − (q2 +
∑

φ q
φ
2 )

+ 2

(
Advcf1

Φ,t(B3) +
q2
em

2n+1

)
+ Advcf

Φ,t(B4) +
q2
em

2n
,

where B1a and B1b output lists of length q2qem, B2a and B2b lists of length q2
em, B3

a list of length q2
em, and B4 a list of length at most q2

em. �

109



4.4 The RKCPA security of EMπ[1, 1, 1]

4.4.3 Φ⊕-RKA Security

We now show that the restrictions identified above are weak enough so that the

offset RKD set Φ⊕ can be shown to satisfy them. We start by showing that for

oracle-independent sets, Φ is output unpredictable and claw-free if and only if it is

first-order output unpredictable and first-order claw-free.

Proposition 4.3 (OUP ∧CF ⇐⇒ OUP1 ∧CF1). Let Φ be an oracle-independent

RKD set and let t ≥ 1. Then for any adversary A against the OUP game outputting

a list of size ` and placing qi permutation queries with index i, there is an adversary

B1 outputting a list of size ` and placing qi + δ1i` permutation queries with index i

such that

Advoup
Φ,t (A) ≤ Advoup1

Φ,t (B1) .

Additionally, for an adversary A against the CF game with the same parameters

as the previous adversary, there is an adversary B2 outputting a list of size ` and

placing qi permutation queries with index i, such that

Advcf
Φ,t(A) ≤ Advcf1

Φ,t(B2) .

Moreover, for any adversary A against OUP1 with parameters as before, there is an

adversary B1 against OUP outputting a list of size ` · qπ = `
∑

i qi, where it places

qi permutation queries with index i such that

Advoup1
Φ,t (A) ≤ Advoup

Φ,t (B1) +
`(1 + qπ)

2n − ` .

Finally, for any adversary A against CF1 with parameters as before, there are ad-

versaries B1 and B2, where B1 is as in the previous case, and B2 outputs a list of

size ` and makes qi permutation queries with index i such that

Advcf1
Φ,t(A) ≤ Advoup

Φ,t (B1) + 2 ·Advcf
Φ,t(B2) +

`

2n − ` +
`

2n − 2`
.

For the first inequality, given A against OUP outputting List of size `, algorithm B1

against OUP1 runs A, simulates its π queries using its own π oracle, and constructs

a new list List′ consisting of tuples (1,+, φ, 0,P1(c) ⊕ c) for each (φ, c) ∈ List. Now

if List contains an entry (φ, c) such that φ(k) = c, then the corresponding entry

(1,+, φ, 0, c′) on List′ would satisfy P1(φ(k)⊕ 0)⊕ φ(k) = c′. Note that List′ is also

of size `, but B1 places ` extra queries to P1.
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For the second inequality, given A’s output List of size `, algorithm B2 runs A, simu-

lates its π queries using its own π oracle, and constructs a new list List′ consisting of

tuples of the form (1,+, φ1, 0, φ2, 0) for each (φ1, φ2) ∈ List. If List contains an entry

(φ1, φ2) such that φ1(k) = φ2(k), then the corresponding entry (1,+, φ1, 0, φ2, 0) on

List′ would satisfy P1(φ1(k)⊕ 0)⊕ φ1(k) = P1(φ2(k)⊕ 0)⊕ φ2(k). The size of List′

is also ` and B2 places the same number of queries to P±i as A.

For the the third inequality, let us consider a modified OUP1 game where the π oracle

used in the winning condition is replaced with an independent random permutation

π′. Since the outputs of π′ are independent of A’s view, each entry in A’s list wins

the game with probability at most 1/(2n − ` + 1), and hence A’s advantage is at

most `/(2n − `). Furthermore, these two games are identical unless A’s list of π

queries (i, a, b), where either b = π(i, a,+) or a = π(i, b,−), together with π′ list

of queries (i, a′, b′), where b′ = π(i, a′,+) or a′ = π(i, b′,−) contradict the required

permutivity of π(i, ·, ·). For this it is sufficient to bound the probability that there

are two entries with matching first or second entries. There are two possibilities.

Firstly, an input to π′ may match an input or output to π. We can reduce this to

output unpredictability. Given A, algorithm B1 runs A and handles its π queries

using its own π oracle. Note that this simulation is perfect. Algorithm B1 keeps

track of A’s queries to π via Listπ containing entries (i, a, b). When A outputs List

containing entries (i, σ, φ, x, c), algorithm B1 returns a list containing (φ, a⊕ x) and

(φ, b ⊕ x) for (i, ∗, φ, x, ∗) ∈ List and (i, a, ∗), (i, ∗, b) ∈ Listπ for all i. Thus B1 wins

the OUP game with a list of size at most 2
∑

i `iqi, where `i is the size of entries in

List with index i. (With more careful counting the factor 2 can be avoided.)

Secondly, an output of π′ may match an input or output to π. Here we cannot

reduce to output unpredictability as π′ is not available to B1. But this is not

needed: π′ is independent of A’s view and the probability of this event is bounded

by
∑

i(`iqi)/(2
n −min(`i, qi)).

The inequality follows by noting that
∑

i(`iqi) ≤ `qπ and max(`,min(`i, qi)) ≤ `.

To prove the final inequality, again we consider a modified game where the win-

ning condition is performed with respect to an independent permutation π′. The
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change in A’s success probability can be bounded as in the previous case down to

output unpredictability. We modify this game further, by considering a game whose

winning requirement is changed to that of the CF game: given a list of entries

(i, σ, φ1, x1, φ2, x2) check if φ1(k) = φ2(k) for some entry on the list. The outputs of

these two games are identical unless one of the following takes place. (1) The second

game outputs false and the third outputs true. In this, case we can construct an

adversary which wins the CF game which simply outputs all pairs (φ1, φ2) in A’s list.

(2) The second game outputs true and the third outputs false. In this case, there are

two sub-possibilities: (2.1) The adversary wins with a pair (i, σ, φ1, x1, φ2, x2) such

that φ1(x1) ⊕ x1 = φ2(x2) ⊕ x2 (but of course φ1(k) 6= φ2(k)). This cannot be the

case as π′ is a permutation. (2.2) Adversary A wins with a pair (i, σ, φ1, x1, φ2, x2)

such that φ1(x1)⊕ x1 6= φ2(x2)⊕ x1. As before since π′ is independent of A’s view,

the probability of this event is at most `/(2n− 2`), since each entry places 2 queries

to π. Finally note that the final game is identical to the CF game (and oracle π′ is

not used by the game).

Bellare and Kohno [27] show that the RKD set Φ⊕ is output unpredictable with

advantage `/2n for any adversary outputting a list of size `, and claw-free with

advantage 0. The above proposition allow us to conclude that this set is also first-

order output unpredictable and first-order claw-free.

Corollary 4.4. Let t ≥ 1 and suppose Φ⊕ is defined with respect to a key space of

size 2n. Then for any A outputting a list of at most ` ≤ 2n/4 and making at most

q1 queries to its P1 oracle,

Advoup1
Φ⊕,t(A) ≤ `(q1 + 1)

2n−1
and Advcf1

Φ⊕,t(A) ≤ `(q1 + 2)

2n−1
.

This corollary, together with Theorem 4.2, allows us to establish that EMπ[1, 1, 1] is

Φ⊕-RKCPA secure.

Corollary 4.5. For an adversary A against the Φ⊕-RKCPA security of EMπ[1, 1, 1]

that makes at most qπ queries to its π oracle (of which qi are to π(i, ·, ·)) and at

most qem queries to its RK-Enc oracle, with q2, qem < 2n/2

Advrkcpa
EMπ [1,1,1],Φ⊕,2 ≤

2qem(q2 + qem)(q1 + 3)

2n
+

q2qem
2n − q2

.

Via a direct analysis (but at the expense of modularity) the cubic bound above can

be tightened to a quadratic one.
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4.4.4 A Φ⊕-RKCCA attack on EMπ[1, 1, 1]

The above result raises the question of whether the security proof can be extended

to the CCA setting. Adapting an attack due to Andreeva et al. [9] on the indif-

ferentiability of the two-round EM construction to the RKA setting, we show that

EMπ[1, 1, 1] is not Φ⊕-RKCCA secure. The adversary is shown below, where x

denotes x ⊕ 1n, and (slightly abusing notation) ∆ ∈ {0, 1}n denotes the function

k 7→ k ⊕∆. RK-Enc and RK-Dec are as defined in Section 2.3.2.

ARK-Enc,RK-Dec,π:
Query RK-Enc(0n, 0n); Get y0

Query RK-Enc(1n, 1n); Get y1

Query RK-Dec(1n, y0); Get x
Query RK-Enc(0n, x); Get y2

Return (y2 = y1)

When interacting with oracles implementing the EM construction, we show that

A returns true with probability 1. We have that y0 = P2(P1(k) ⊕ k) ⊕ k and

y1 = P2(P1(k)⊕ k)⊕ k. Now x is calculated as

y0 = P2(P1(k)⊕ k)⊕ k ⊕ 1n
⊕k−→ P2(P1(k)⊕ k)

P−1
2−→ P1(k)⊕ k
⊕k−→ P1(k)

P−1
1−→ P−1

1 (P1(k))

⊕k−→ P−1
1 (P1(k))⊕ k = x .

Variable y2 is calculated as

x = P−1
1 (P1(k))⊕ k ⊕ 1n

⊕k−→ P−1
1 (P1(k))

P1−→ P1(k)

⊕k−→ P1(k)⊕ k
P2−→ P2(P1(k)⊕ k)

⊕k−→ P2(P1(k)⊕ k)⊕ k .
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Hence y2 = P2(P1(k) ⊕ k) ⊕ k = y1. On the other hand, when the adversary is

interacting with the ideal cipher, for the equality to hold we need to have that

Ek(Dk(Ek(0))) = Ek(1) i.e., Dk(Ek(0)) = Dk(Ek(1)).

The latter equality however holds with negligible probability. This attack also ap-

plies if the round permutations are identical, i.e., when P2 = P1.

Note that in the CCA setting we would need to simulate both permutations P1 and

P2 forgetfully as forward and backward outputs need to look random. To do this we

would have to re-introduce the xor claw-free condition in order to rule out collisions

on P1, which in turn excludes the Φ⊕ set.

It is instructive to check where the above sequence of queries triggers collisions in the

second permutation, irrespectively of how P1 is simulated. Let z = P1(k)⊕k. During

the first and second RK-Enc queries, P2 is queried on points z and z, respectively.

During the decryption query, P−1
2 is queried on P2(z), which is equivalent to P2

being queried on z. This is a P2 collision. Note also that in the third RK-Enc

query a second collision occurs as P2 is queried on z.

4.5 The RKCCA security of EMπ[1, 1, 1, 1]

Building on the results of the previous sections, we set out to find a key schedule for

the iterated Even–Mansour construction that provides Φ⊕-RKCCA security. Our

previous results show that at least three rounds are necessary. We start by showing

that of the fourteen possible simple key schedules for three-round EM, all but one

fall prey to Φ⊕-RKCCA attacks. We then show that the remaining EMπ[1, 1, 1, 1]

construction does indeed provide Φ⊕-RKCCA security.

4.5.1 Attacking EMπ[κ] for κ 6= [1, 1, 1, 1]

Up to relabelling, there are 14 possible key schedules for the three-round Even–

Mansour schemes. Of these, 9 are susceptible to offset-switching attacks; these are

key schedules where a key appears only in the first or last rounds and nowhere
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ARK-Enc,RK-Dec,π:
Query RK-Enc(00, 0n); Get y0

Query RK-Enc(10, 1n); Get y1

Query RK-Dec(10, y0); Get x
Query RK-Enc(00, x); Get y2

Return (y2 = y1)

ARK-Enc,RK-Dec,π:
Query RK-Enc(00, 0n); Get y0

Query RK-Enc(10, 1n); Get y1

Query RK-Dec(10, y0); Get x
Query RK-Enc(00, x); Get y2

Return (y2 = y1)

ARK-Enc,RK-Dec,π:
Query RK-Enc(00, 0n); Get y0

Query RK-Enc(10, 1n); Get y1

Query RK-Dec(10, y0); Get x
Query RK-Enc(00, x); Get y2

Return (y2 = y1)

Figure 4.8: Adversaries attacking EMπ[1, 1, 2, 1] (top left), EMπ[1, 1, 2, 2] (top right),
and EMπ[1, 2, 1, 2] (bottom). Here, c0c1 ∈ {0, 1}2 denotes the RKD
function (k1, k2) 7→ (k1 ⊕ cn1 , k2 ⊕ cn2 ).

else such as [1, 2, 2, 2], [1, 2, 2, 3], or [1, 2, 2, 1] and this rules out 9 key schedules.

Another 4 can be attacked using Andreeva et al.’s attack [9]; these are [1, 1, 2, 1],

[1, 2, 1, 1], [1, 1, 2, 2], and [1, 2, 1, 2] schedules. We give three attacks in Figure 4.8

where c0c1 ∈ {0, 1}2 denotes the RKD function (k1, k2) 7→ (k1 ⊕ cn1 , k2 ⊕ cn2 ).

The analysis of the success probabilities of these adversaries are similar to that for

the attack in Section 4.4.4 and hence is omitted.

These attacks give a generic 4-query related-key distinguisher for reduced-round

LED (8 out of 32 rounds for LED-64 and 16 out of 48 for LED-128). However, our

results in the following section support the designers’ claim that LED-64 provides

good related-key attack security despite the simple key schedule.

4.5.2 The security of EMπ[1, 1, 1, 1]

We now study the only remaining construction, EMπ[1, 1, 1, 1]; we identify conditions

under which it provides Φ-RKCCA security, examine its Φ⊕-RKA security, and

briefly discuss the impact of permutation reuse on this construction.
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4.5.2.1 Sufficient conditions for RKCCA security

We now show that EMπ[1, 1, 1, 1], achieves Φ-RKCCA security for sets Φ satisfy-

ing the conditions described in Sections 4.3.1 and 4.4.1. As before we motivate a

number of restrictions on Φ by considering a simulation strategy and analysing the

inconsistencies that could arise. The adversary in the Φ-RKCCA game with respect

to the construction has access to π and the oracles

P3(P2(P1(x⊕ φπ(k))⊕ φπ(k))⊕ φπ(k))⊕ φPi(k) ,

P−1
1 (P−1

2 (P−1
3 (y ⊕ φπ(k))⊕ φπ(k))⊕ φπ(k))⊕ φπ(k) .

Once again we aim to simulate the above two oracles by returning uniformly random

values. There are at least two way to perform this:

(a) Simulate the outer permutations (i.e. the P3 oracle in RK-Enc and the P−1
1

oracle in RK-Dec) forgetfully.

(b) Simulate the middle oracles P2 and P−1
2 forgetfully. This ensures that the

inputs to the P±1 and P±3 are randomised, so their outputs are also random.

The first approach, in some sense the more natural one, does not work. This is

because P1 (respectively P3) also appear as the first-round permutation in RK-Enc

(respectively RK-Dec). An adversary which performs an offset switch can trigger

collisions in these oracles without being detected. We therefore adopt the second

simulation strategy and, for a forgetful oracle $, consider

P3($(P1(x⊕ φπ(k))⊕ φπ(k))⊕ φπ(k))⊕ φπ(k) ,

P−1
1 ($(P−1

3 (y ⊕ φπ(k))⊕ φπ(k))⊕ φπ(k))⊕ φπ(k) .

We now consider inconsistencies, starting with a query collision between π (from

a query of A) and $ arising from either the forward or backwards direction. Here

we rely on first-order output unpredictability, but note that (i, σ) = (1,+) and

(i, σ) = (3,−) will be critically relied on. Collisions arising between an RKD query

to π and a $ query in either direction can be ruled out down to first-order query in-

dependence; once again (i, σ) ∈ {(1,+), (3,−)} will be used. Finally, the probability
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that a collision occurs as a result of two queries to $ and/or $−1 can be bounded

by the first-order claw freeness property. As before, inconsistencies also arise due to

collisions between the outputs of oracle queries; the probability of this occurring can

be bounded information-theoretically. Note that here we also rely on independence

of queries to the second permutation, but both cases (i, σ) ∈ {(1,+), (3,−)} in the

definition will be relied on. We now formally prove the following theorem.

Theorem 4.6 (Φ-RKCCA security of EMπ[1, 1, 1, 1]). Let Φ be an RKD set. Then

for any adversary A against the Φ-RKCCA security of EMπ[1, 1, 1, 1] with parameters

as before, we have adversaries B1, B2, B3, and B4 such that

Advrkcca
EMπ [1,1,1,1],Φ,3 ≤Advoup1

Φ,3 (B1) + Advqi1
Φ,3(B2)

+ 2Advcf1
Φ,3(B3) + Advcf

Φ,3(B4)

+
2q2
em

2n
+

2qem(q2 +
∑

φ q
φ
2 )

2n − (q2 +
∑

φ q
φ
2 )

,

where B1 outputs a list of length 2q2qem, B2 a list of length 2q2
em, B3 a list of length

q2
em, and B4 a list of length at most q2

em.

The proof follows a similar pattern to the proof of Theorems 4.1 and 4.2; again we

proceed through four stages. In the first, A interacts with the public permutations

and their inverses, plus the 3-round Even–Mansour scheme (and its inverse, omitted

here for conciseness) instantiated with the same permutations:

π(i, x, σ), P3(P2(P1(φπ(k)⊕ x)⊕ φπ(k))⊕ φπ(k))⊕ φπ(k) .

We then consider an environment in which P2 is replaced by $, a forgetful random

oracle, for queries made to the Even–Mansour scheme:

π(i, x, σ), P3($(P1(φπ(k)⊕ x)⊕ φπ(k))⊕ φπ(k))⊕ φπ(k)

and from here we consider a keyed random function:

π(i, x, σ), iF(φπ(k), x) .

Finally, we transition to a game in which iF is replaced by an ideal cipher (iE, iD):

π(i, x, σ), iE(φπ(k), x) .
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Game i:
k ←$ K
b′ ←$ ARK-Enc,RK-Dec,π

Return b′

RK-Enc(φπ, x):

k′ ← φπ(k)
z1 ← S1(k

′ ⊕ x)
z2 ← IS2(k

′ ⊕ z1)
Return k′ ⊕ S3(k

′ ⊕ z2)

π(1, a,+):

Return S1(a)

π(2, a,+):

Return DS2(a)

π(3, a,+):

Return S3(a)

S1(a):

If S1[a] 6=⊥
Return S1[a]

b ←$ {0, 1}n \ Rng(S1)

S1[a]← b; S−1
1 [b]← a

Rng(S1)← Rng(S1) ∪ {b}
Dom(S1)← Dom(S1) ∪ {a}
Return S1[a]

S3(a):

If S3[a] 6=⊥
Return S3[a]

b ←$ {0, 1}n \ Rng(S3)

S3[a]← b; S−1
3 [b]← a

Rng(S3)← Rng(S3) ∪ {b}
Dom(S3)← Dom(S3) ∪ {a}
Return S3[a]

Figure 4.9: Procedures common to all games in the proof of Theorem 4.6. Oracles
RK-Dec, π(i, ·,−), Si

−1, DS2
−1, and IS2

−1 are defined in a similar way
to their corresponding forward oracles.

We will now argue that the above changes alter A’s winning probabilities negligibly

and bound A’s winning probability in terms of the conditions on Φ introduced in

Sections 4.3.1 and 4.4.1.

The first transition is analysed via a series of games, given in Figures 4.9, 4.10,

and 4.11. These games include two intermediate transitions: in the first, P2 is

replaced with Q (a random permutation, chosen independently of π) for queries

arising through RK-Enc or RK-Dec; in the second, Q is replaced with $ (a forgetful

random oracle). We identify the points at which these two intermediate transitions

lead to inconsistencies, by setting bad flags.

We omit a specification of the inverse oracles for conciseness; they are defined analo-

gously to their respective forward oracles. As before, the event where the adversary

outputs 1 in game i is denoted by Si.
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Game 1:

DS2(a):

If D2[a] 6=⊥ Return D2[a]
If I2[a] 6=⊥

Return I2[a]

b ←$ {0, 1}n \ Rng(DS2)
If b ∈ Rng(IS2)

b ←$ {0, 1}n \ Rng(DS2, IS2)

D2[a]← b; D−1
2 [b]← a

Rng(DS2)← Rng(DS2) ∪ {b}
Dom(DS2)← Dom(DS2) ∪ {a}
Return D2[a]

IS2(a):

If I2[a] 6=⊥
Return I2[a]

If D2[a] 6=⊥
Return D2[a]

b ←$ {0, 1}n
If b ∈ Rng(IS2)

b ←$ {0, 1}n \ Rng(IS2)

If b ∈ Rng(DS2)

b ←$ {0, 1}n \ Rng(DS2, IS2)

I2[a]← b; I2
−1[b]← a

Rng(IS2)← Rng(IS2) ∪ {b}
Dom(IS2)← Dom(IS2) ∪ {a}
Return I2[a]

Game 2 Game 3:

DS2(a):

If D2[a] 6=⊥ Return D2[a]
If I2[a] 6=⊥

bad1 ← true; Return I2[a]

b ←$ {0, 1}n \ Rng(DS2)
If b ∈ Rng(IS2)

bad2 ← true

b ←$ {0, 1}n \ Rng(DS2, IS2)

D2[a]← b; D−1
2 [b]← a

Rng(DS2)← Rng(DS2) ∪ {b}
Dom(DS2)← Dom(DS2) ∪ {a}
Return D2[a]

IS2(a):

If I2[a] 6=⊥
Return I2[a]

If D2[a] 6=⊥
bad1 ← true; Return D2[a]

b ←$ {0, 1}n
If b ∈ Rng(IS2)

b ←$ {0, 1}n \ Rng(IS2)

If b ∈ Rng(DS2)
bad2 ← true

b ←$ {0, 1}n \ Rng(DS2, IS2)

I2[a]← b; I2
−1[b]← a

Rng(IS2)← Rng(IS2) ∪ {b}
Dom(IS2)← Dom(IS2) ∪ {a}
Return I2[a]

Figure 4.10: Games 1 to 3 in the proof of Theorem 4.6. Oracles π(i, ·,−), Si
−1,

DS2
−1, and IS2

−1 are defined in a similar way to their corresponding
forward oracles. Boxed statements are included in Game 2 and are
omitted from Game 3.
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Game 4 Game 5:

DS2(a):

If D2[a] 6=⊥ Return D2[a]
If I2[a] 6=⊥

bad1 ← true

b ←$ {0, 1}n \ Rng(DS2)
If b ∈ Rng(IS2)

bad2 ← true

D2[a]← b; D−1
2 [b]← a

Rng(DS2)← Rng(DS2) ∪ {b}
Dom(DS2)← Dom(DS2) ∪ {a}
Return D2[a]

IS2(a):

If I2[a] 6=⊥
bad3 ← true; Return I2[a]

If D2[a] 6=⊥
bad1 ← true

b ←$ {0, 1}n
If b ∈ Rng(IS2)

bad4 ← true

b ←$ {0, 1}n \ Rng(IS2)

If b ∈ Rng(DS2)
bad2 ← true

I2[a]← b; I2
−1[b]← a

Rng(IS2)← Rng(IS2) ∪ {b}
Dom(IS2)← Dom(IS2) ∪ {a}
Return I2[a]

Figure 4.11: Games 4 and 5 in the proof of Theorem 4.6. Oracles π(i, ·,−), Si
−1,

DS2
−1, and IS2

−1 are defined in a similar way to their corresponding
forward oracles. Boxed statements are included in Game 4 and are
omitted from Game 5.
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Game 0 is the RKA game augmented with a public permutation oracle (as described

in Section 2.3.2), conditioned on b = 1. In this game, the adversary interacts

with an oracle realising the public permutations π and the Even–Mansour

construction instantiated with π.

Game 1 is only syntactically different from Game 0. Sampling algorithms S1 and S3

are introduced to respond to queries made to π(1, ·,+) and π(3, ·,+). Queries

to π(2, ·,+) are split into two groups: those made directly to π, either by

the adversary or by an RKD function, which are answered by the sampling

algorithm DS2 and those made indirectly (through queries made to RK-Enc),

which are answered by IS2. Appropriate inverse sampling algorithms are also

introduced. The oracles DS2 and IS2 maintain consistent lists, D2 and I2. The

lists used by inverse oracles are identical to the lists used by the corresponding

forward oracles. As this is a purely syntactic change, Pr[S0] = Pr[S1].

Game 2 sets bad1 either if DS2 is queried on a point already defined in I2 or if

IS2 is queried on a point already defined in D2 (and similarly for the inverse

oracles). This occurs either because A queries π(2, ·, ·) directly at a point

that is also queried to π(2, ·, ·) through an indirect RK-Enc query, or because

an RKD function queries π(2, ·, ·) at a point that is also queried to π(2, ·, ·)
through an RK-Enc query (and similarly for the inverse oracles). We will

later bound the probability of this event in terms of the first-order output

unpredictability and first-order query independence of Φ. Game 2 sets bad2

if the value chosen at random for IS2(a) is already defined in range of DS2,

or vice versa (and similarly for the inverse queries and the domain of IS2 or

DS2). This is necessary because in Game 1, for both DS2 and IS2, b is sampled

from {0, 1}n \Rng(DS2, IS2) whereas our objective in Game 3 is to ensure that

responses from DS2 are independent of responses from IS2. The code of S1

and S3 remains unchanged throughout this proof. The outputs of DS2 and IS2

remain consistent and Pr[S1] = Pr[S2].

Game 3 omits the boxed statements in Game 2 and so is identical to Game 2 unless

one of bad1 or bad2 is set. In this game, the oracles DS2 and IS2 check consis-

tency with their own lists, but may become inconsistent with each other. It

is possible for bad1 to be set in two possible ways: event E1 is the event an

adversary directly queries DS2 at a point coinciding with a point queried to IS2

from a query to RK-Enc (or comparable conditions resulting from queries to
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inverse oracles); event E2 is the event an RKD function queries DS2 at a point

coinciding with a point queried to IS2 from a query to RK-Enc (or comparable

conditions resulting from queries to inverse oracles). We will analyse each of

the ways that bad1 can be set below. Similarly, bad2 can be set either because

of a query to DS2 from A, a query to DS2 from φπ, or from a query to IS2 due

to a query to RK-Enc (or similarly for the corresponding inverse oracles); we

consider all cases simultaneously below. In Game 3, the responses to RK-Enc

queries are completely decoupled from the responses to π queries, so we can

consider that RK-Enc uses Q to respond to queries and π uses P2. We have

that Pr[S2] ≤ Pr[S3] + Pr[E1 ∨ E2 ∨ bad2].

Game 4 sets bad3 if two distinct queries to RK-Enc result in the same value being

queried to IS2. The flag bad3 can be set on a query to RK-Enc or RK-Dec;

these cases are dealt considered when we analyse the probability of setting bad

events below. Game 4 chooses the response to IS2 uniformly from {0, 1}n and

sets bad4 if this value is already in Rng(IS2). Game 4 is equivalent to Game 3

and, in particular, Pr[S3] = Pr[S4].

Game 5 omits the boxed statements from Game 4 and so is identical to Game 4 unless

bad3 or bad4 is set. Let E′1, E
′
2, bad′2 represent events in Game 5 corresponding

to events E1, E2, bad2 in Game 4, then Pr[E1∨E2∨bad2] ≤ Pr[E′1∨E′2∨bad′2]+

2 Pr[bad3 ∨ bad4] In this game, calls to π(2, ·, ·) through RK-Enc (RK-Dec),

which are answered by IS2 (IS2
−1) are answered by a forgetful random oracle

and so the ciphertexts (plaintexts) are uniform and independent of the key

and the plaintext (ciphertexts).

In Game 5, the adversary interacts with

π(i, x, σ), P3($(P1(φπ(k)⊕ x)⊕ φπ(k))⊕ φπ(k))⊕ φπ(k) .

During the next transition to

π(i, x, σ), iF(φP,P
−1

(k), x) ,

inconsistencies only arise if the adversary makes queries (φπ1 , x1) 6= (φπ2 , x2), but

where (φπ1 (k), x1) = (φπ2 (k), x2). If an adversary A makes such a query, we can

construct an adversary B4 which wins the CF game with a list of length at most q2em
2

as follows: B4 runs A and outputs List = {(φπi , φπj ) : 1 ≤ i < j ≤ qem}.
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Considering the final transition, we switch from a random function to a random

permutation (for each φπ); the probability of an inconsistency arising in this step is

bounded by q2em
2n [32].

Therefore we have that

Advrkcca
EMπ [1,1,1,1],Φ,t(A) ≤Pr[E′1 ∨ E′2 ∨ bad′2] + 2 Pr[bad3 ∨ bad4]

+ Advcf
Φ,t(B4) +

q2
em

2n
.

It remains to bound the probability that bad events occur in Game 5.

Event E′1 occurs when the adversary directly queries π(2, ·, ·) at a point that is

also queried as a result of a query to RK-Enc. We will use A to create

an adversary B1 against the OUP1 game with a list of length 2q2qem. The

adversary B1 runs A and then outputs List = {(1,+, φπi , xi, aj) : 1 ≤ i ≤
qem, 1 ≤ j ≤ q2} ∪ {(3,−, φπi , yi, bj) : 1 ≤ i ≤ qem, 1 ≤ j ≤ q2}. If A sets bad1

with an RK-Enc or DS2 query, then B1 wins the OUP1 game with a tuple

of the form (1,+, φπi , xi, aj) and if A sets bad1 with a query to RK-Dec or

DS2
−1 then B wins the OUP1 game with a tuple of the form (3,−, φπi , yi, bj).

We therefore conclude that Pr[E′1] ≤ Advoup1
Φ,t (B1), where B1 outputs a list of

length 2q2qem.

Event E′2 occurs when an RKD function queries the π(2, ·, ·) at a point that is also

queried as a result of a query to RK-Enc. We will use A to create an adversary

B2 against the QI1 game with a list of length 2q2
em. The adversary B2 runs A

and outputs List = {(1,+, φπi , xi, φπj ) : 1 ≤ i, j ≤ qem}∪{(3,−, φπi , yi, φπj ) : 1 ≤
i, j ≤ qem}. If A can set bad by causing an RKD function to query the permu-

tation at a point that is also queried as a result of a query to RK-Enc, then the

adversary B2 will win the QI1 game with a tuple of a form (1,+, φπi , xi, φ
π
j )

and if A sets bad1 with a query to IS2
−1 or π(1, ·,−) then B wins the QI1

game with a tuple of the form (3,−, φπi , yi, φπj ). Therefore we can conclude

that Pr[E′2] ≤ Advqi1
Φ,t(B2), where B2 outputs a list of length 2q2

em.

Flag bad′2 is set with probability at most
qem(q2+

∑
φ q

φ
2 )

2n−(q2+
∑
φ q

φ
2 )

. It can be set in one of

16 different ways. Collisions between DS2 and IS2, DS2
−1 and IS2

−1, DS2
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and IS2
−1, or DS2

−1 and IS2 can all set bad2 and we count each case twice,

depending on which query set bad2. This gives 8 ways to set bad2, however

the query to DS2 can arise through a query by A or through φπ, which gives

16 ways. In each case, we use a birthday-bound style argument, noting that

each pair (x, a) has at most a 1

2n−(q1+
∑
φ q

φ
1 )

chance of setting bad′2; applying

the union bound and recalling that qem is the total number of queries made

to RK-Enc and RK-Dec (and thus to IS and IS2
−1) by A (and similarly for

q1 and qφ1 ) gives the claimed probability.

Flag bad3 is set when two queries to RK-Enc result in the P2 being queried at the

same point. We will use A to create an adversary B3 against the CF1 property

of Φ. The adversary B3 runs A and then outputs List = {(1,+, φπi , xi, φπj , xj) :

1 ≤ i < j ≤ qem} ∪ {(3,−, φπi , yi, φπj , yj) : 1 ≤ i < j ≤ qem} If A sets

bad3 with query to IS2, then B3 wins the CF1 game with a tuple of the form

(1,+, φπi , xi, φ
π
j , xj) and if A sets bad3 with query to IS2

−1, then B3 wins the

CF1 game with a tuple of the form (3,−, φπi , yi, φπj , yj). Thus Pr[bad3] ≤
Advcf1

Φ,t(B3), where B3 outputs a list of length at most q2
em.

Flag bad4 is set with probability at most q2em
2

1
2n using similar reasoning as in the

setting of bad2.

As we have that

Advrkcca
EMπ [1,1,1,1],Φ,t(A) ≤Pr[E′1 ∨ E′2 ∨ bad′2] + 2 Pr[bad3 ∨ bad4]

+ Advcf
Φ,t(B4) +

q2
em

2n
,

we may conclude that

Advrkcca
EMπ [1,1,1,1],Φ,t ≤Advoup1

Φ,t (B1) + Advqi1
Φ,t(B2) + 2

qem(q2 +
∑

φ q
φ
2 )

2n − (q2 +
∑

φ q
φ
2 )

+ 2

(
Advcf1

Φ,t(B3) +
q2
em

2n+1

)
+ Advcf

Φ,t(B4) +
q2
em

2n
,

where B1 outputs a list of length 2q2qem, B2 a list of length 2q2
em, B3 a list of length

q2
em, and B4 a list of length at most q2

em. �
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4.5.2.2 Φ⊕-RKA security

Corollary 4.4 together with Theorem 4.6 allow us to establish that the three-round

single-key Even–Mansour construction with independent round permutations is Φ⊕-

RKCCA secure:

Corollary 4.7. For an adversary A (with parameters defined as before and ` ≤
2n/4) against the Φ⊕-RKCCA security of EMπ[1, 1, 1, 1], we have that

Advrkcca
EMπ [1,1,1,1],Φ⊕,3 ≤

4qem(q2 + qem)(q1 + q3 + 3)

2n
+

2qemq2

2n − q2
.

Once again, via a direct analysis (but at the expense of modularity) the cubic bound

above can be tightened to a quadratic one.

4.6 Discussion

In this chapter, we have given three strong, positive results about the security of

Even–Mansour ciphers under related key attacks. It is interesting to consider the

open questions which remain and possible future directions for research in this area.

An obvious open question is whether similar results can be obtained for other block

cipher design strategies. Barbosa and Farshim have given a positive answer in the

case of Feistel networks, but the answer is not known for Lai–Massey ciphers, Misty-

like ciphers or other generalisations of Feistel ciphers.

A second question is whether the results in this chapter can be generalised to cover

modifications to the Even–Mansour scheme. Dunkelman, Keller, and Shamir [98]

consider several variants of the Even–Mansour scheme, including addition and invo-

lution Even–Mansour ciphers (where the xors are replaced with modular additions

or the random permutations are replaced with random involutions, respectively). It

appears straightforward to apply the techniques used in this chapter to obtain results

about these schemes, although we have not worked through the precise details.

Another possible variant of the Even–Mansour scheme is one in which the same

permutation is reused across the rounds. If the same permutation is used in the first

125



4.6 Discussion

and third rounds, a similar proof strategy applies as these oracles would be faithfully

simulated in the reduction. The proof, however, does not immediately apply if the

same permutation is used in all rounds as a forgetful simulation of the middle oracle

introduces inconsistencies across the rounds.

Without going into the details, a proof can be obtained by introducing a new CF-

type assumption which requires that it is infeasible to find (φ1, x1, φ2, x2) such that

φ2(k)⊕x2 = P±(x1⊕φ1(k))⊕φ1(k); this condition would ensure that inconsistencies

resulting from a P query in the first or thirds rounds and a $ query happen with

low probability. Following the proof of Proposition 4.3, we can also reduce this

new property to standard OUP and CF notions: starting from the above winning

condition, first consider the game where the winning condition uses an independent

permutation (this change reduces to OUP), then consider the winning condition

φ1(k) = φ2(k) (an adversary winning this game wins the CF game), finally if an

adversary wins the second game but not the third, then they have found a solution to

φ1(k)⊕φ2(k) = x⊕R where R is the random output of the independent permutation,

which happens with probability at most `/(2n − 2`) as x, φ1(k), and φ2(k) are

independent of R. We remark that Biryukov and Wagner [49] describe slide attacks

which can be applied to this construction, giving an upper bound on its security.

A further potential research direction to examine is the effect of more complex

key schedules on our results. For example, it would be interesting to ask whether

security under the wider range of RKD functions considered in this chapter can be

established for schemes using the key schedules that Cogliati and Seurin [78] study.

A final open question is how to use these results when designing concrete proposals

for block ciphers. We have shown that the three round Even–Mansour construction

is sufficient for a wide range of uses, however the vast majority of schemes use many

more rounds than this. The optimal trade off between the number of rounds and the

complexity of the round functions, for given performance requirements, is not clear.

An interesting question is therefore whether using ‘stronger’ round functions could

significantly reduce the number of rounds required. AES2 [60] uses this idea: it has

only two rounds, but the round functions are full applications of AES using publicly

known keys. We remark that Dinur et al. [96] have cryptanalysed this proposal (in

the single-key model and not contradicting our bounds).
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Chapter 5

The CLRW2 tweakable block cipher

Contents
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5.6 A limitation of this proof technique . . . . . . . . . . . . 150

Tweakable block ciphers are flexible primitives, which are being adopted as useful

components from which to build efficient cryptographic schemes. In this chapter, we

study Landecker et al.’s tweakable block cipher construction, CLRW2, and identify an

error in the reduction given for this scheme. Fortunately, the issue can be resolved

and a new bound for the security of CLRW2 is given. Additionally we identify a

potential limitation of this proof technique when looking to extend the scheme to

provide asymptotic security.

The work described in this chapter is available at [223].

5.1 Introduction

Several recent proposals for symmetric encryption primitives, particularly AEAD

schemes, feature tweakable block ciphers as part of their design. As discussed in

Section 2.2.5, a tweakable block cipher is a block cipher that admits an additional

public input (the ‘tweak’ ) to introduce extra variability at the message-block level.
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In their seminal paper on tweakable block ciphers, Liskov et al. [186, 187] describe

the syntax and security requirements for tweakable block ciphers and describe sev-

eral methods for building tweakable block ciphers from conventional block ciphers.

There are a few dedicated designs for tweakable block ciphers [248, 87], however

most research effort has focused on designing conventional block ciphers along with

methods for transforming them into tweakable block ciphers (e.g. [238, 149]).

Many block-cipher-based encryption and authentication schemes are secure up to the

birthday bound, i.e. provided that fewer than 2
n
2 queries are made, where n is the

width of the block cipher (in bits). Beyond this point, one would expect the input

to the block cipher to be repeated and for this to perhaps leak some information

or simplify forgery attempts (as described in, for example, [23, 28, 30]). However

for some applications, security beyond the birthday bound may be desirable, for

example if large amounts of data are to be encrypted and the use of a block cipher

with a larger block size is undesirable. Several works have studied the security of

schemes beyond the birthday bound (e.g. [145, 151]); one related question is how to

achieve beyond-birthday-bound security for tweakable block ciphers.

Minematsu [200] suggests a method to build a 2n-bit tweakable block cipher that

provides O(2
n+m

2 ) security from an n-bit block cipher, where m is the size of the

tweak. This scheme has a Luby–Rackoff or Feistel structure, but has the disadvan-

tage of only supporting short tweaks and requiring per-invocation rekeying of the

block cipher which makes changing the tweak computationally expensive.

Landecker et al. [176] continue the study of tweakable block ciphers that remain

secure beyond the birthday bound. They specify CLRW2, a tweakable block cipher

construction (based on two copies of LRW2 [186]) which remains secure up to ap-

proximately 2
2n
3 queries; they also study the security of TBC-MAC (an analogue of

CBC-MAC defined in terms of tweakable block ciphers). CLRW2 allows arbitrarily

long tweaks and does not require excessive rekeying of the block cipher.

Lampe and Seurin [175] extend the CLRW2 construction and consider longer chains

of the LRW2 construction and are able to show (asymptotically in the number

of rounds, using a coupling argument) that this provides greater security further

beyond the birthday bound than the CLRW2 construction. Their bounds agree
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with Landecker et al.’s bound for two rounds against non-adaptive chosen-plaintext

attacks. They extend this result, additionally giving a weaker bound under chosen-

ciphertext attacks. They conjecture that their non-adaptive chosen-plaintext bound

also holds for chosen-ciphertext attacks.

Each of the constructions described above comes with a security proof. Recently,

flaws have been found in the proofs given for two high-profile ciphers: GCM [148]

and XCB [71]. In order for security proofs to provide meaningful guarantees and

for the community to have faith in the proofs given for schemes, it is important

that they are correct and any errors are removed. The factor lost by correcting the

bound for CLRW2 is significantly smaller than for these schemes, however it remains

important that any errors in a security reduction are removed.

Contributions

In this chapter, we provide a detailed analysis of the proof given for CLRW2 [176].

We identify an error in the proof and are able to resolve it, giving more accurate

bounds for the security offered by this construction. We also describe a potential

limitation of this proof technique, which prevents it from being used to extend these

results asymptotically.

Landecker et al. have independently identified and corrected the error in their

proof [177, 252]; they correct the proof using a neat coupling argument which results

in a tighter bound than is obtained in this chapter.

5.2 Preliminaries

This section contains a brief description of the CLRW2 scheme (further details are

given in [176]) and some new notation used throughout this chapter.
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X ⊕ Ek1 ⊕ ⊕ Ek2 ⊕

hH1 hH2

Y

T

Figure 5.1: The CLRW2 tweakable block cipher construction.

5.2.1 Description of CLRW2

The scheme proposed by Landecker et al. [176] combines an ε-AXU hash function

and a block cipher. The ciphertext Y is computed from plaintext X using key

k = (k1, H1, k2, H2) and tweak T as follows:

Y = Ek2 (Ek1(X ⊕ hH1(T))⊕ hH1(T)⊕ hH2(T))⊕ hH2(T) .

This construction is illustrated in Figure 5.1. The intuition behind the security of

CLRW2 is that an adversary can only obtain a birthday-bound style advantage by

causing the input to both block ciphers to be repeated.

5.2.2 Notation

We largely follow the notation used by Landecker et al. [176] to avoid introducing

confusion. Throughout we will use X and T to denote plaintext and tweak inputs to

a tweakable block cipher respectively; Y will denote the output ciphertext. Queries

made by an adversary and the value of random variables related to those queries are

be indexed by a counter i.

When using a random permutation (in place of a block cipher), we will lazily sam-

ple the random permutations instead of defining all pairs of input and output up

front. When referring to the domain and range of a permutation π : {0, 1}n →
{0, 1}n, we will use Domfull(π) and Rngfull(π) to denote the set {0, 1}n in order to

make clear the context that this set relates to. When lazy-sampling a permutation

π : {0, 1}n → {0, 1}n we will use the sets Domlazy(π) ⊆ Domfull(π) = {0, 1}n and

Rnglazy(π) ⊆ Rngfull(π) = {0, 1}n to keep track of which values have been defined in
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the domain and range (respectively) of π. We will often drop the subscript for the

sets Domlazy(π) and Rnglazy(π) provided that the meaning is clear. The ‘lazy’ sets

have an implicit query index because they are only defined relative to the previous

queries and random choices within them.

We reiterate that for CLRW2, a tweakable block cipher key includes two keys for

the underlying block cipher and two keys for the universal hash function family, i.e.

k = (k1, H1, k2, H2). For simplicity and clarity, we abbreviate hHj to hj .

5.3 Proof summary

In this section, we give a brief overview of Landecker et al.’s proof below but refer

to the original paper [176] for the full details. The reduction given by Landecker

et al. relies on the SPRP security of the block cipher and the universality of the

hash function family to show that CLRW2 realises a strong tweakable block cipher

(i.e. the TSPRP notion described in Section 2.2.5). The proof proceeds through a

series of games in which the adversary interacts with a tweakable block cipher oracle,

but not the individual component parts of the construction (the block ciphers and

universal hash functions).

5.3.1 Partitioning the output set

Landecker et al. partition {0, 1}n (corresponding to points in the range of the tweak-

able block cipher) into four sets. The first step of the proof is to replace the block

ciphers with permutations (chosen uniformly at random). The definition of the sets

used to partition {0, 1}n depends on the particular tweak value used in a query and

the sets Rnglazy(πi); these sets therefore have an implicit query index.

Informally, we define Yi to be the set of possible output values from an ideal tweak-

able block cipher, given the responses to previous queries and recalling that each

TE(k, T, ·) is a permutation. That is, we set Yi = {Yj : j < i and Tj = Ti} and

Yi = {0, 1}n \ Yi.
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⊕h1(T) ⊕h1(T)⊕ h2(T) ⊕h2(T)

X L Z M Yπ1 π2

S3 ∪ S4

S2

S1

Old

New

Old

New

Figure 5.2: A graphical representation of the sets Si. The domain and range of
each permutation are divided into two sets: the input/output pairs that
are ‘Old’ (in Dom(πj) and Rng(πj)), shown above the dashed line; and

the points that are ‘New’ (in Dom(πj) and Rng(πj)), shown below the
dashed line. For a query with L /∈ Dom(π1), any value corresponding to
a black box in the above diagram is impossible.

The set {0, 1}n is then further partitioned as follows:

S1 = {Y ∈ Yi : Y ⊕ h2(T) /∈ Rng(π2)} ,
S2 = {Y ∈ Yi : Y ⊕ h2(T) ∈ Rng(π2) and

π−1
2 (Y ⊕ h2(T))⊕ h1(T)⊕ h2(T) /∈ Rng(π1)} ,

S3 = {Y ∈ Yi : Y ⊕ h2(T) ∈ Rng(π2) and

π−1
2 (Y ⊕ h2(T))⊕ h1(T)⊕ h2(T) ∈ Rng(π1)} ,

S4 = {Y ∈ Yi} .

These sets are shown graphically in Figure 5.2. ‘Old’ values are those in Domlazy(π)

and Rnglazy(π); the behaviour of π on ‘New’ values has not yet been defined.

That is, S1 is the set of output values corresponding to undefined outputs from π2.

The elements of S2 correspond to defined outputs from π2 with undefined outputs

from π1. The set S3 contains output values for which the inputs and outputs to both

block ciphers are defined. Finally, S4 = Yi is the set of values that are not possible

for either an ideal tweakable block cipher or the CLRW2 construction; responding

to a (non-repeated, non-redundant) query with an element of this set would violate

the requirement that each TE(k, T, ·) is a permutation.

At a first glance, S3 appears to be the difference between CLRW2 and an ideal

tweakable block cipher: elements in S4 are not possible in either case; elements in
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TE(k, T,X):

i← i+ 1; Xi ← X; Ti ← T
L ← X ⊕ h1(T)
Z ← Ek1(L)
M ← Z ⊕ h1(T)⊕ h2(T)
Y ← Ek2(M)⊕ h2(T)
Return Y

Figure 5.3: The TE oracle in Game 0 for the proof of Theorem 5.3.

S1 and S2 are possible in both cases; elements in S3 are not excluded from the

output of an ideal tweakable block cipher but are impossible in the case that L is

‘New’ when CLRW2 is used.

This informal summary does not give the full detail—if the situation were this simple,

the original proof would be correct. Additionally, it is necessary to ensure that the

probability of each element appearing as the output from the tweakable block cipher

(or its inverse) is approximately equal in both the real and ideal cases.

We use pTBC(Y) to denote the probability that Y is the output of the ideal tweakable

block cipher and pG3(Y) for the probability that Y is the output of the intermediate

cipher defined in Game 3 of the proof; these probabilities are both conditioned on

all previous queries and responses. Note that pTBC(Y) = pTBC(Y ′) and pG3(Y) =

pG3(Y ′) if Y and Y ′ are in the same set Si.

5.3.2 Structure of the games

The proof given by Landecker et al. considers an adversary interacting with the

TSPRP game defined in Section 2.2.5; a series of eight games is then defined in

which the TE oracle is modified.

Figure 5.3 defines TE so that it realises the CLRW2 scheme. In Game 1, the block

cipher is replaced with a random permutation, which is lazily sampled. The security

of this scheme relies on the assumption that the block cipher used to instantiate

the scheme is a strong pseudorandom permutation and an adversary’s advantage in

distinguishing between Game 0 and Game 1 is bounded above by 2Advsprp
E (A).
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The behaviour of TE is further changed in the following games. There are two cases

considered for each query, as π1 is lazily sampled: either π1(L) is already defined or

L is a fresh value.

Games 2 and 3 modify TE in the case that π1(L) is already defined. In both games,

the ciphertext is chosen uniformly at random (from the set of possible outputs Yi)
and the value of π1(L) is defined in such a way that it remains consistent with this

choice of ciphertext. If the definition of π1(L) contradicts the permutivity of π2, one

of bad1 and bad2 is set to true. In Game 2, Y is redefined when a bad event occurs;

this is not the case in Game 3.

The probability of these bad events occurring bounds the distinguishing advantage

between Games 1 and 3. The analysis of these games ensures that queries which

cause both (lazily sampled) permutations to be queried at a defined value are rare

and do not significantly distort the distribution of output values from that of an

ideal tweakable block cipher.

Games 4 through to 7 modify TE when π1(L) has not been defined; no changes

are made to the code that is executed when π1(L) is already defined. It is in these

games that we have identified the problem with the proof. The objective of these

changes is to show that the ciphertext can be chosen uniformly from Yi without the

probability distribution differing significantly from ideal. The main idea is to sample

the ciphertext uniformly from one of the Si for each query (using a biased coin to

decide which Si) and then to show that the resulting ciphertext distribution is close

to uniform on Yi (as would be the case for an ideal tweakable block cipher).

Again, bad flags are set to true if the permutivity of π1 or π2 is contradicted; the

probability of these bad events occurring bounds the distinguishing advantage be-

tween Games 4 and 7. The analysis of these games leads to the same conclusion as

the previous games, in the case that π1(L) has not already been defined.

Finally, in Game 8, the adversary can choose the Y values that are returned for each

query. The motivation for this step is that this makes it no harder for an adversary

to trigger any of the bad events, but makes it easier to reason about the probability

of bad events occurring.
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Landecker et al. conclude that the scheme remains secure up to approximately 2
2n
3

queries, at which point one would expect to have observed a bad event.

5.3.3 Games 4 and 5

The identified error is in the transition between Games 4 and 5, so it is useful to

have a detailed description of these games. The games, as defined by Landecker et

al., are given in Figures 5.4 and 5.5. Between these two games, the methods used to

sample V and Y (and in particular, the order in which they are sampled) changes;

the final joint distribution of V and Y should not change between these games, but

we will see that this is not achieved.

We briefly describe the sampling techniques used to choose Y in the different games.

In Game 3, Z is chosen uniformly at random from Dom(π1) (as one would expect,

because π1 is lazily sampled) and Y is defined to be consistent with this choice of Z.

In Game 4, an appropriately weighted coin is tossed and Y is chosen from either S1 or

S2 depending on the outcome; Z is then defined consistently, so that the distributions

of Z and Y are identical to the distribution in Game 3. In Game 5, Y is sampled

from Yi before the output of tossing the weighted coin is known. This introduces

the possibility that Y ∈ S3 (which is not possible in Game 4 if L /∈ Dom(π1)); if Y

is chosen in S3, then bad is set and Y is resampled from either S1 or S2. Game 6 is

identical to Game 5, except that if Y ∈ S3 then it is not resampled.

Landecker et al. define ∆i =
∑

Y∈Si |pG3(Y)− pTBC(Y)|, the absolute magnitude of

the difference between the ideal probability that Y ∈ Si and the actual probability

realised when using CLRW2. They also define N = |Dom(π1)|. The distributions of

ciphertext in Games 4, 5, and 6 are illustrated in Figures 5.6, 5.7, and 5.8.
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Game 4:

TE(T,X):

i← i+ 1; Xi ← X; Ti ← T
L ← X ⊕ h1(T)
If L ∈ Dom(π1)
M ← π1(L)⊕ h1(T)⊕ h2(T)
Y ←$ Yi
If M ∈ Dom(π2)
bad1 ← true

If Y ⊕ h2(T) ∈ Rng(π2)
bad2 ← true
π2(M)← Y ⊕ h2(T)

Else

Vi ←$ ξ(|S2|/|Rng(π1)|)
If Vi = 1
Y ←$ S2

If Vi = 0
Y ←$ S1

If Y ∈ S2

Z ← π−1
2 (Y ⊕ h2(T))⊕ h1(T)⊕ h2(T)

If Y ∈ S1

Z ←$ Rng(π1) \ (Dom(π2)⊕ h2(T)⊕ h1(T))
π2(Z ⊕ h1(T)⊕ h2(T))← Y ⊕ h2(T)

π1(L)← Z
M ← π1(L)⊕ h1(T)⊕ h2(T)

Return Y

Figure 5.4: Game 4 as defined by Landecker et al.
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Game 5 , Game 6:

TE(T,X):

i← i+ 1; Xi ← X; Ti ← T
L ← X ⊕ h1(T)
If L ∈ Dom(π1)
M ← π1(L)⊕ h1(T)⊕ h2(T)
Y ←$ Yi
If M ∈ Dom(π2)
bad1 ← true

If Y ⊕ h2(T) ∈ Rng(π2)
bad2 ← true
π2(M)← Y ⊕ h2(T)

Else
Y ←$ Yi
If Y ∈ S1

Vi ← 0
If Y ∈ S2

Vi ← 1
If Y ∈ S3

bad3 ← true

Vi ←$ ξ(∆2/(∆1 + ∆2))

Z ← π−1
2 (Y ⊕ h2(T))⊕ h1(T)⊕ h2(T)

// In Game 6, Vi =⊥.
If Vi = 1
Y ←$ S2

If Vi = 0
Y ←$ S1

If Y ∈ S2

Z ← π−1
2 (Y ⊕ h2(T))⊕ h1(T)⊕ h2(T)

If Y ∈ S1

Z ←$ Rng(π1) \ (Dom(π2)⊕ h2(T)⊕ h1(T))
π2(Z ⊕ h1(T)⊕ h2(T))← Y ⊕ h2(T)

π1(L)← Z
M ← π1(L)⊕ h1(T)⊕ h2(T)

Return Y

Figure 5.5: Games 5 and 6 as defined by Landecker et al. Boxed statements are
included in Game 5 and are omitted from Game 6.
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Figure 5.6: Ciphertext distribution in Game 4. The output of CLRW2 is denoted
by solid, black lines. The dashed line indicates the behaviour of an ideal
tweakable block cipher. The shaded areas correspond to ∆i.
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Figure 5.7: Ciphertext distribution in Game 5. The solid, grey line denotes the
distribution from which the output is initially sampled. The output is
resampled according to the bold arrows. The solid, black lines represent
the final distribution, which is identical to that of Game 4.
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Figure 5.8: Ciphertext distribution in Game 6. The solid, black line denotes the
distribution of outputs from CLRW2 in Game 6; this is the same as that
for an ideal tweakable block cipher. bad3 is set if the output is sampled
from the labelled region. The dashed line indicates the behaviour of
CLRW2 in previous games; Game 6 is identical to Game 5 unless bad3

is set to true.
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5.4 The flaw in the proof

In the proof of security given for CLRW2 [176], Landecker et al. assert that the

output distributions of Games 4 and 5 are identical. However, due to the way that Y

is resampled if it is drawn from S3 in Game 5, this is only the case if pG3(Y)−pTBC(Y)

is non-negative for Y ∈ S1∪S2. Unfortunately, it is possible for a series of queries to

result in pG3(Y)−pTBC(Y) being negative for all Y ∈ S1. This leads to a contradiction

of the claim that the output distributions of Games 4 and 5 are always identical. We

call the situation in which pG3(Y)− pTBC(Y) < 0 for some Y ∈ Si ∪ S2 an inversion.

In order to describe the problem and fix the proof, we redefine ∆i as

∆i =
∑
Y∈Si

pG3(Y)− pTBC(Y) ,

which lacks the modulus signs from Landecker et al.’s definition. It is worth noting

that |∆i| =
∑

Y∈Si |pG3(Y)− pTBC(Y)| for each i, because for a given set Sj pG3(Y)−
pTBC(Y) has the same sign for every Y in Sj . Using our definition, |∆j | corresponds

precisely with Landecker et al.’s definition of ∆j .

5.4.1 Flawed sampling methods

We briefly describe the differences between the sampling methods employed when L

is new in the relevant games. When Y is resampled in Game 5, the probability that

it is chosen in S2 is |∆2|
|∆1|+|∆2| . This probability is used because if |∆1|+ |∆2| = |∆3|

then the distribution of Y does not change between Games 4 and 5. However, if

pG3(Y) − pTBC(Y) < 0 then |∆2| = |∆1| + |∆3|, so |∆1| + |∆2| > |∆3| and the

distribution of Y does change.

In fact, the difference between the distributions in Games 4 and 5 is exaggerated

by the method used by Landecker et al. to resample from S1 ∪ S2 if Y ∈ S3, as

illustrated in Figure 5.13. In the case that pG3(Y) − pTBC(Y) < 0 for Y ∈ S1, the

desired difference between the distributions in Game 4 and Game 5 for Y ∈ S1 is

−|∆1|, i.e. ∑
Y∈S1

pG3(Y) =
∑
Y∈S1

pTBC(Y)− |∆1| ,
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but using the sampling method described, this increases to |∆1| · |∆3|
|∆1|+|∆2| , so that

∑
Y∈S1

pG3(Y) =
∑
Y∈S1

pTBC(Y) + |∆1| ·
|∆3|

|∆1|+ |∆2| .

Similarly, the difference for Y ∈ S2 is decreased from |∆2| to |∆2| · |∆3|
|∆1|+|∆2| .

5.4.2 Causing an inversion

The proof given by Landecker et al. [176] is correct provided no inversions occur.

We now describe how an adversary can, with high probability, cause an inversion.

First, recall that:

pTBC(Y) = 1
2n−|S4| for Y /∈ S4 ,

pG3(Y) = N−|S2|
N|S1| for Y ∈ S1 ,

pG3(Y) = 1
N for Y ∈ S2 ,

where N = |Dom(π1)|. Also, note that for Y ∈ S1, an inversion occurs if

1

2n − |S4|
= pTBC(Y) > pG3(Y) =

N − |S2|
N|S1|

.

We now consider the possibility of an inversion occurring for Y ∈ S1; in this case an

adversary can cause an inversion to occur with high probability.

Lemma 5.1. Suppose that the adversary asks a number of queries (with no restric-

tions on how X and T are chosen) so that |Dom(π1)| = a and |Dom(π2)| = b. If the

adversary uses a new tweak for the next query, L is new, and for every Z ∈ Rng(π1)

we have that Z ⊕ h1(T)⊕ h2(T) ∈ Dom(π2) then an inversion occurs.

Proof. In this case:

N = 2n − a, |S1| = 2n − b, |S2| = b, and |S3| = |S4| = 0 ,
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and the following statements are equivalent:

ab > 0 ,

22n − (a+ b)2n + ab > 22n − (a+ b)2n ,

(2n − a)(2n − b) > 2n(2n − a− b) ,
1

2n
>

2n − a− b
(2n − a)(2n − b) ,

1

2n − |S4|
>
N − |S2|
N|S1|

,

pTBC(Y) > pG3(Y) ,

which is the condition for an inversion. �

This situation can occur and indeed it is easy for an adversary to force this event to

happen. If T1 6= T2 then an inversion occurs on the second query (where a = b = 1)

with probability 1 − ε ≈ 2n−1
2n (which is the probability that hj(T1) 6= hj(T2) when

T1 6= T2) provided that L ∈ Dom(π1) for the second query.

It is also possible to show that inversions never occur for Y ∈ S2.

Lemma 5.2. For every Y ∈ S2 and every adversary A, pG3(Y)− pTBC(Y) ≥ 0.

Proof. In this case, we would require that

1

2n − |S4|
= pTBC(Y) > pG3(Y) =

1

N
.

However, note that

2n − |S4| ≥ |S1|+ |S2| ≥ N ,

and so
1

2n − |S4|
≤ 1

|S1|+ |S2|
≤ 1

N
.

Therefore, for Y ∈ S2, there is no situation in which pTBC(Y) ≥ pG3(Y). �

5.5 A revised proof

The proof given by Landecker et al. can be fixed by modifying only Games 5 to

8; in doing so, we do not deviate from their proof strategy. This leads to the
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following theorem. We remark that Landecker et al. have independently identified

an alternative method to correct the error in their proof [177, 252], using a coupling

argument resulting in a tighter bound than is achieved here.

Theorem 5.3. Let A be an adversary asking a total of q queries to its oracles.

Consider the CLRW2 construction instantiated with an ε-AXU hash function. Let

ε̂ = max{1/(2n−2q), ε}. Then there exists an adversary B using the same resources,

such that

Advtsprp
TBC (A) ≤ Advsprp

BC (B) +
8q3ε̂2

1− q3ε̂2
.

This should be contrasted with the original result, which concludes that there is an

adversary B against the SPRP security of E, such that:

Advtsprp
TBC (A) ≤ Advsprp

BC (B) +
6q3ε̂2

1− q3ε̂2
.

Proof. The idea of the proof is to leave Games 1 to 4 unchanged from Landecker

et al.’s description, but to sample Y in Game 5 in such a way as to ensure that the

distribution of ciphertexts in Games 4 and 5 remain identical, even in the presence

of inversions (and propagate this modification forward through the later games).

This requires us to reduce the probability of Y being sampled from S1 when ∆1 < 0

in Game 5; we do this näıvely by tossing an appropriately weighted coin to decide

whether to resample Y from S2. We add conditional branches to differentiate between

the cases ∆1 ≥ 0 and ∆1 < 0; this is a simple approach, but appears to work well

and we lose only a small factor in the bound.

As before, the proof proceeds through 8 games; the revised versions of Games 5 to

8 are given in Figures 5.9, 5.10, and 5.11. We have only specified the encryption

algorithm for each of game; it is straightforward to derive the corresponding de-

cryption algorithms. The ciphertext distributions realised by each of these games

if an inversion occurs are graphically represented in Figures 5.12, 5.13, and 5.14; in

the absence of an inversion, the distributions are identical to those illustrated for

Landecker et al.’s original proof in Figures 5.6, 5.7, and 5.8.

142



5.5 A revised proof

Game 5′ , Game 6′:

TE(T,X):

i← i+ 1; Xi ← X; Ti ← T
L ← X ⊕ h1(T)
If L ∈ Dom(π1)
M ← π1(L)⊕ h1(T)⊕ h2(T)
Y ←$ Yi
If M ∈ Dom(π2)
bad1 ← true

If Y ⊕ h2(T) ∈ Rng(π2)
bad2 ← true
π2(M)← Y ⊕ h2(T)

Else Y ←$ Yi
If ∆1 ≥ 0

If Y ∈ S1

Vi ← 0
If Y ∈ S2

Vi ← 1
If Y ∈ S3

bad3 ← true

Vi ←$ ξ( |∆2|
|∆1|+|∆2|)

Z ← π−1
2 (Y ⊕ h2(T))⊕ h1(T)⊕ h2(T)

If Vi = 1
Y ←$ S2

If Vi = 0
Y ←$ S1

If ∆1 < 0
If Y ∈ S3

bad3 ← true

Y ←$ S2

If Y ∈ S1

Vi ← 0

Ui ←$ ξ( |∆1|(2n−|S4|)
|S1| )

If Ui = 1
bad4 ← true

Y ←$ S2

If Y ∈ S2

Vi ← 1

If Y ∈ S2

Z ← π−1
2 (Y ⊕ h2(T))⊕ h2(T)⊕ h1(T)

Else If Y ∈ S1

Z ←$ Rng(π1) \ (Dom(π2)⊕ h2(T)⊕ h1(T)
π2(Z ⊕ h1(T)⊕ h2(T))← Y ⊕ h2(T)

π1(L)← Z
M ← π1(L)⊕ h1(T)⊕ h2(T)
Return Y

Figure 5.9: Games 5′ and 6′ in the proof of Theorem 5.3. Boxed statements are
included in Game 5′ and are omitted from Game 6′. Note that in Game
6′ when ∆1 ≥ 0 and Y ∈ S3, Vi is not defined so neither of the following
conditional branches are executed. Between Game 4 and Game 5′, the
order in which Vi and Y are sampled is reversed. Game 5′ is identical to
Game 5 and Game 6′ is identical to Game 6, except for the addition of
the conditional branch for the case where ∆1 < 0.
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Game 7′:

TE(T,X):

i← i+ 1; Xi ← X; Ti ← T
Y ←$ Yi
L ← X ⊕ h1(T)
If L ∈ Dom(π1)
M ← π1(L)⊕ h1(T)⊕ h2(T)
If M ∈ Dom(π2)
bad1 ← true

If Y ⊕ h2(T) ∈ Rng(π2)
bad2 ← true
π2(M)← Y ⊕ h2(T)

Else
If Y ∈ S1

Vi ← 0
If ∆1 < 0

Ui ←$ ξ( |∆1|(2n−|S4|)
|S1| )

If Ui = 1
bad4 ← true

If Y ∈ S2

Vi ← 1
If Y ∈ S3

bad3 ← true

Z ← π−1
2 (Y ⊕ h2(T))⊕ h1(T)⊕ h2(T)

If Vi = 1

Z ← π−1
2 (Y ⊕ h2(T))⊕ h2(T)⊕ h1(T)

If Vi = 0

Z ←$ Rng(π1) \ (Dom(π2)⊕ h2(T)⊕ h1(T))
π2(Z ⊕ h1(T)⊕ h2(T))← Y ⊕ h2(T)

π1(L)← Z
M ← π1(L)⊕ h1(T)⊕ h2(T)

Return Y

Figure 5.10: Game 7′ in the proof of Theorem 5.3. The distributions of random
variables in Games 6′ and 7′ are identical, with Game 7′ simplifying
some of the program flow. Game 7′ is identical to Game 7, except for
the addition of the conditional branch for the case where ∆1 < 0.
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Game 8′:

TE(T,X, Y):

i← i+ 1; Xi ← X; Ti ← T
Yi ← Y
L ← X ⊕ h1(T)
If L ∈ Dom(π1)
M ← π1(L)⊕ h1(T)⊕ h2(T)
If M ∈ Dom(π2)
bad1 ← true

If Y ⊕ h2(T) ∈ Rng(π2)
bad2 ← true
π2(M)← Y ⊕ h2(T)

Else
If Y ∈ S1

If ∆1 < 0

Ui ←$ ξ( |∆1|(2n−|S4|)
|S1| )

If Ui = 1
bad4 ← true

Z ←$ Rng(π1) \ (Dom(π2)⊕ h2(T)⊕ h1(T)
π2(Z ⊕ h1(T)⊕ h2(T))← Y ⊕ h2(T)

If Y ∈ S2

Z ← π−1
2 (Y ⊕ h2(T))⊕ h1(T)⊕ h2(T)

If Y ∈ S3

bad3 ← true

Z ← π−1
2 (Y ⊕ h2(T))⊕ h1(T)⊕ h2(T)

π1(L)← Z
M ← π1(L)⊕ h1(T)⊕ h2(T)

Return Y

Figure 5.11: Game 8′ in the proof of Theorem 5.3. This game gives the adversary
control over Y values, so the ‘bad flags’ can be set at least as easily as
they can in Game 7′. Game 8′ is identical to Game 8, except for the
addition of the conditional branch for the case where ∆1 < 0.
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Figure 5.12: Ciphertext distribution in Game 4 when ∆1 ≤ 0. The output of
CLRW2 is denoted by solid, black lines. The dashed line indicates
the behaviour of an ideal tweakable block cipher. We do not need to
redefine Game 4 when ∆1 ≥ 0.
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Figure 5.13: Ciphertext distribution in Game 5′ when ∆1 < 0. The solid, grey line
denotes the distribution from which the output is initially sampled; this
is the output distribution according to an ideal tweakable block cipher.
The output is resampled according to the bold arrows. The solid, black
lines represents the final distribution, which is identical to that of Game
4. The dashed lines labelled by ? indicate the incorrect probabilities
realised in Game 5 from Landecker et al.’s paper if ∆1 < 0.
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Figure 5.14: Ciphertext distribution in Game 6′, when ∆1 < 0. The solid, black line
denotes the distribution of CLRW2 in Game 6, which coincides with
the distribution of outputs from an ideal tweakable block cipher. bad3

and bad4 are set to true if the output is sampled from the respectively
labelled regions.
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It remains to bound the maximum distinguishing advantage available to an adversary

between each of these games. As Games 1 to 4 have not been modified, Landecker

et al.’s original analysis still applies for this part of the proof. Thus,

Pr
[
AG1 → 1

]
≤ Pr

[
AG4 → 1

]
+ Pr

[
AG4 : bad1 ∨ bad2

]
.

The distributions of all random variables in Games 4 and 5′ are identical, so

Pr
[
AG4 → 1

]
+ Pr

[
AG4 : bad1 ∨ bad2

]
≤ Pr

[
AG5′ → 1

]
+ Pr

[
AG5′ : bad1 ∨ bad2

]
.

Games 5′ and 6′ are identical unless either bad3 or bad4 gets set to true, meaning

that

Pr
[
AG5′ → 1

]
≤ Pr

[
AG6′ → 1

]
+ Pr

[
AG6′ : bad3 ∨ bad4

]
,

Pr
[
AG5′ : bad1 ∨ bad2

]
≤ Pr

[
AG6′ : (bad1 ∨ bad2)

]
+ Pr

[
AG6′ : (bad3 ∨ bad4)

]
.

The distributions of random variables in Games 6′ and 7′ are identical, with Game 7′

simplifying some of the program flow. Finally, Game 8′ gives the adversary control

over Y values, so the bad flags can be set at least as easily as they can in Game 7′.

Thus

Pr
[
AG1 → 1

]
≤Pr

[
AG8′ → 1

]
+ Pr

[
AG8′ : (bad1 ∨ bad2)

]
+ 2 Pr

[
AG8′ : bad3 ∨ bad4

]
.

Noticing that bad1, bad2, and bad3 are set in identical conditions in our revised

games and Landecker et al.’s original games, we reuse their analysis:

Pr
[
AG8′ : bad1 ∨ bad2

]
≤ 2q3ε̂2

1− q3ε̂2
and Pr

[
AG8′ : bad3

]
≤ 2q3ε̂2

1− q3ε̂2
.

In order to bound the probability of an adversary setting bad4, we need to bound

|∆1| (2
n−|S4|)
|S1| in the case that ∆1 < 0. Lemma 5.4 gives us that

|∆1|
(2n − |S4|)
|S1|

≤ q3ε̂2

1− q3ε̂2
.

As the adversary in Game 8′ is interacting with an ideal tweakable block cipher, we

can conclude that:

Pr
[
AG1 → 1

]
≤ Pr

[
AiTBC → 1

]
+

8q3ε̂2

1− q3ε̂2
.
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Thus, there is an adversary B against the SPRP security of E, such that:

Advtsprp
TBC (A) ≤ Advsprp

BC (B) +
8q3ε̂2

1− q3ε̂2
,

as required. �

As mentioned above, bounding |∆1| (2
n−|S4|)
|S1| in the case that ∆1 < 0 bounds the

advantage an adversary gains when we change from Game 5′ to Game 6′.

Lemma 5.4. Using the notation of Theorem 5.3, if ∆1 < 0 then we have that

|∆1| ·
(2n − |S4|)
|S1|

≤ q2

(2n − q)2
≤ q3ε̂2

1− q3ε̂2
.

Proof. We can bound |∆1| in the case that ∆1 < 0 as follows. Begin by noting that:

N ≥ 2n − q, |S1| ≥ 2n − q, |S2| ≤ q, |S3| ≥ 0, and |S4| ≥ 0 .

It is straightforward to see that

|∆1| =
|S1|

2n − |S4|
− N − |S2|

N

=
|S1|

2n − |S4|
− 1 +

|S2|
N

=
|S1| − (2n − |S4|)

2n − |S4|
+
|S2|
N

=
−|S2| − |S3|

2n − |S4|
+
|S2|
N

.

Applying the bounds noted above, we can derive that

−|S2| − |S3|
2n − |S4|

+
|S2|
N
≤ −|S2|+ |S3|

2n
+
|S2|
N

= |S2|
(

1

N
− 1

2n

)
− |S3|

2n

≤ |S2|
(

1

N
− 1

2n

)
≤ q

(
1

N
− 1

2n

)
≤ q

(
1

2n − q −
1

2n

)
=

q2

2n(2n − q) ,
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and hence that

|∆1| ·
(2n − |S4|)
|S1|

≤ q2

2n(2n − q) ·
(2n − |S4|)
|S1|

≤ q2

2n(2n − q) ·
2n

(2n − q)

=
q2

(2n − q)2
.

Finally, noting that 1
2n−q ≤ 1

2n−2q ≤ ε̂ and that 1− q3ε̂2 ≤ 1, it can be seen that

q2

(2n − q)2
≤ q2ε̂2 ≤ q3ε̂2

1− q3ε̂2
,

as required. �

The first inequality in the statement of Lemma 5.4 is tight, in the sense that it is

possible for an adversary to ask a series of q queries and for

|∆1| ·
(2n − |S4|)
|S1|

=
q2

(2n − q)2
.

For this to occur we require that |S4| = |S3| = 0, |S2| = q, and N = 2n − q.

5.6 A limitation of this proof technique

A natural extension of the work of Landecker et al. [176] is to consider longer chains

of the LRW2 construction, as per Lampe and Seurin’s work [175]. The näıve ap-

proach to proving results in this case (which we emphasise is not the approach taken

by Lampe and Seurin) would be to mimic Landecker et al.’s proof, increasing the

number of sets Si in order to describe where the last ‘fresh’ input to a permutation

occurs. This approach fundamentally depends on the ability to sample from a set

Rnglazy(πi)∩(Domlazy(πi+1)⊕hi(T)⊕hi+1(T)). If this set is ever empty, an adversary

may make a query that cannot be answered using this method and a different proof

technique is required.

We bound, by q < 2n−1, the number of queries that may be asked before the sampling

method described above fails. We emphasise that this does not constitute an error

in Landecker et al.’s proof and is not an issue in Lampe and Seurin’s work [175]; it

simply prevents the näıve, asymptotic extension of Landecker et al.’s result.
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This bound is obtained as follows. First, note that for every j, |Domlazy(πj)| =

|Rnglazy(πj)| after every query. Also for every tweak, hj(T)⊕hj+1(T) defines a perfect

matching {0, 1}n → {0, 1}n (representing Rngfull(πj) and Domfull(πj+1)). Consider,

in parallel, all matchings (corresponding to all possible values of hj(T) ⊕ hj+1(T)).

In responding to a query, we remove (again from every matching) up to two edges:

one edge that matches the output of πj and one edge matching the input to πj+1.

For it to remain possible to respond to any later query, we must be able to sample

from the each of the sets Rnglazy(πj) ∩ (Domlazy(πj+1) ⊕ hj(T) ⊕ hj+1(T)). This

means that every matching must have at least one edge remaining. If there is a

matching with no remaining edges, then there is a value a for which one of the

Rnglazy(πj) ∩ (Domlazy(πj+1) ⊕ a is empty and thus, with this simulation strategy,

we cannot respond to every query made using a tweak for which a = hj(T)⊕hj+1(T).

We can guarantee that Rnglazy(πj)∩ (Domlazy(πj+1)⊕hj(T)⊕hj+1(T)) is not empty

for every i and j, provided that q < 2n−1. While it may remain possible to sample

from this set beyond this bound, it is not guaranteed and depends on both the

adversary’s queries and the random choices in the lazy sampling of the functions.

This does not cause a problem until n−1 block ciphers are chained together because

up to that point security is only provided for q < 2n−1. However if n−1 block ciphers

are chained together using the CLRW2 construction, then this issue can occur and

it may not be possible to respond to queries using this method.
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Chapter 6

Standardisation and cryptography
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In this chapter, we study the security of two schemes that have been proposed for

standardisation. The first is a composition of Bernstein’s ChaCha20 and Poly1305

proposed as an authenticated encryption scheme for use in IETF protocols; the sec-

ond is an ultra-lightweight RFID authentication protocol proposed as part of ISO/IEC

29167. We conclude that the first is a secure authenticated encryption scheme, while

the second can be catastrophically broken by algebraic attacks.

The work described in this chapter on ChaCha20 and Poly1305 is available at [224].

The work described in this chapter on ISO/IEC 29167 is joint work with Carlos

Cid, Löıc Ferreira, and Matthew Robshaw; it appears as [74]. All experiments were

performed by the author.

6.1 Introduction

Cryptographic schemes typically enable a number of parties to achieve some security

objective: the classic example is two parties wanting to ensure confidentiality of their

messages. Although this example only includes two parties, the ecosystem within

which it exists consists of many users, possibly each with their own opinion on how
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6.1 Introduction

to appropriately protect their data. Before they can communicate, they must first

agree the precise details of the schemes that they will use. This includes a number

of factors such as each party’s intended security objectives, a choice of schemes

claiming to achieve those objectives, and then parameters for those schemes.

In this situation, without some prior arrangement, it would be very unlikely that

two parties would happen to have both implemented a protocol that they could

use: in the extreme, they could find themselves agreeing on their security objec-

tives and the algorithms that they wish to use, but a different choice of parameters

(such as the choice of base-point on an elliptic curve) could leave them unable to

communicate. Implementing cryptosystems comes at a non-zero cost, so there is

merit in attempting to reduce the number of algorithms that must be implemented,

without significantly reducing the likelihood that any two members of a community

will be able to communicate. This is the objective of standardisation: defining a

(small) number of schemes in order that two parties using those schemes gain some

confidence that they will be able to interoperate successfully.

Because standardised schemes are likely to see widespread adoption, a critical fea-

ture of the standardisation process is that it must engender confidence in all parties.

NIST’s AES process is often given as an excellent example of how to standardise

cryptosystems: proposals from a large number of teams were publicly and compre-

hensively evaluated for several years, before an open and transparent decision was

reached. The SHA-3 process followed a similar formula. Unfortunately, this method

is very intensive, requiring many parties to propose schemes and study the proposals.

There is plenty of demand for standardisation, due to the numerous potential appli-

cations for cryptography. This leads to a few techniques seeing widespread adoption,

covering the majority of use cases. As an example, the original objective of the AES

process was to standardise a block cipher for protecting sensitive government in-

formation in the United States [212], but it has been widely reused in a range of

situations, in part because the process led to such trust in the algorithm.

For some applications, pre-existing standardised techniques are not appropriate:

heavily resource-constrained devices may not have the memory, processors, power,

or reliable randomness sources necessary to utilise these techniques; some environ-
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6.2 The composition of ChaCha20 and Poly1305

ments may require a large degree of parallelism, high throughput or low latency;

or there may be a desire to avoid dependence on a single scheme in case significant

crytanalytic progress requires a rapid transition to a stand-by scheme. In these sit-

uations, one could look to the output from projects such as eSTREAM to inform

the decision [214]: although the objective was not to standardise schemes, it enjoyed

involvement from a large group of academics, greatly expanded the understanding

of stream ciphers, and concluded with a portfolio of novel, but well-studied designs.

A final option, for when no existing standards or well-studied schemes meet the re-

quirements, is to specify a new scheme; as we will see, this approach is not without

its risks.

Contributions

In this chapter we discuss two cryptosystems, both proposed for standardisation.

The first is Langley’s novel combination [211] of Bernstein’s ChaCha20 stream ci-

pher [35] and Poly1305 universal-hash-based message authentication code [34]. This

combination was proposed for use in IETF protocols and has since been deployed as

part of TLS. ChaCha20 and Poly1305 are both established algorithms and we give

a security reduction demonstrating that this composition results in a secure authen-

ticated encryption scheme, requiring standard assumptions on the primitives. The

second scheme we consider is an RFID authentication protocol proposed as part

of ISO/IEC 29167 [140]. This is a novel construction targeting ultra-lightweight

devices; we demonstrate that it is insecure and can be catastrophically broken by

algebraic attacks.

6.2 The composition of ChaCha20 and Poly1305

There has recently been a proposal to the Crypto Forum Research Group (CFRG)

of the Internet Research Task Force (IRTF) to consider a combination of ChaCha20

and Poly1305 for inclusion in future internet protocols [211]. This proposal has come

about, in part, due to concern over the reliance of existing IETF protocols on AES

and the risk that advances in the cryptanalysis of AES could leave users without a

good choice for a symmetric cryptographic primitive. A similar concern led to the
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SHA-3 competition: improvements in attacks against SHA-1 caused NIST to tran-

sition to the SHA-2 family of hash functions and begin considering the specification

of SHA-3. The SHA-3 competition aimed to identify an alternative hash function

that would ‘improve the robustness of NIST’s hash algorithm toolkit’ [213].

Additionally, although GCM enjoys enviable performance on platforms that offer

hardware acceleration for some of the component operations, it is less well suited

to more constrained devices [178]. As these devices become more widespread, it is

desirable to standardise a scheme that is better suited to this environment.

In this section, we give a reduction from the security of the proposed combination

of ChaCha20 and Poly1305 to the PRF security of the ChaCha20 block function.

Although both primitives are believed to be secure, it is possible to combine secure

primitives in a way that is insecure (as described in Section 2.2.8 and [29]); for this

reason, a security analysis of the combined scheme is important. The generic results

of Bellare and Namprempre [29] do not apply in this case; they rely on independent

keys being used in the component primitives.

The analysis presented in this section does not concern the security of the underlying

primitives and we will assume that the ChaCha20 block function behaves as a PRF.

The proof will also make use of the fact that Poly1305 is an ε-almost ∆ universal

hash function [262] where ∆ represents addition modulo 2128.

6.2.1 Notation

For brevity, the ChaCha20 block function will be denoted by CC, Poly1305 by

Poly, and the composition as defined in draft-irtf-cfrg-chacha20-poly1305-00 [211]

by CC&Poly. The key will be denoted by k and the initialisation vector (which must

be a per-message nonce) will be denoted by N. Associated data, plaintext, and

ciphertext will be denoted by A, P, and C respectively.

The ChaCha20 block function outputs blocks of keystream that are 512 bits wide,

so the plaintext and ciphertext will be encrypted and decrypted in blocks of 512

bits. These blocks of plaintext and ciphertext will be denoted Pi and Ci with
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P = P1|| . . . ||Pp and |Pi| = 512 bits, except perhaps for Pp which may be shorter

(similarly for C).

Poly1305 operates on 128-bit blocks, so each block of 512 bits is further divided into

128-bit blocks, however the results in this section do not require us to consider this

so we only parse strings into 512-bit blocks. When the strings A and C are zero

padded to fill 128-bit blocks this will be denoted A and C; padding is not required

in ChaCha20, so there can be no confusion about the block size (either for parsing

or padding). In the description of Poly1305, lenA,C will represent the 128-bit block

consisting of a 64-bit representation of the length of A in bytes, concatenated with

a 64-bit block corresponding to the length of C.

We use LA and LC to denote the maximum bit-lengths of associated data and

ciphertexts that may be sent using CC&Poly according to the specification. Addition

modulo 2128 will be denoted by +, with the corresponding subtraction operation

denoted by −.

6.2.2 Description of the algorithms

We now briefly describe the algorithms studied in this section. The internal details

of these algorithms are not relevant to this note and readers are referred to papers

such as [34] and [35] for further details.

6.2.2.1 ChaCha20

ChaCha20 is a stream cipher proposed by Bernstein [35], which is designed following

similar principles as Salsa20 [36] (an eSTREAM finalist). ChaCha20 generates a

keystream by applying the ChaCha20 block function to the key, nonce, and a block

counter, in a mode reminiscent of the counter mode of operation for block ciphers.

Plaintext is then encrypted using this keystream, with block i of the plaintext xored

with the output of the ChaCha20 block function, evaluated using block counter i.
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The syntax of the ChaCha20 block function is

CC : {0, 1}256 × {0, 1}32 × {0, 1}96 → {0, 1}512 .

That is, the ChaCha20 block function takes as input a 256-bit key, a 32-bit block

number, and a 96-bit nonce, and outputs 512 pseudorandom bits.

ChaCha20 is widely believed to be secure, for example it is recommended by the

European Union Agency for Network and Information Security (ENISA) [115]. A

few papers have attacked reduced round versions for ChaCha20 (e.g. [13, 144, 250]),

however this analysis has not contradicted its PRF security.

6.2.2.2 Poly1305

Poly1305 is a polynomial-based universal hash function (as studied in Chapter 3),

also designed by Bernstein [34]. Some details were given in Sections 2.2.7 and 3.2.1.4;

we re-iterate the relevant facts here. The syntax of Poly1305 is

Poly : {0, 1}128 × {0, 1}? → {0, 1}128 ,

that is, Poly1305 takes as input a 128-bit key (which has some specific bits set to

zero) and a message of arbitrary length, outputting a 128-bit string as the message

digest. The output of Poly1305 is computed by evaluating a particular polynomial

in F2130−5 (as described in Section 3.2.1) and then truncating the output to 128

bits. The key used in Poly1305 has certain bits ‘clamped’ to zero for performance

reasons. The polynomial’s coefficients are determined by the message, with each

128-bit message block encoded to an integer modulo 2130 − 5.

Bernstein [34] shows that Poly1305 is ε-almost ∆ universal where ∆ represents

addition modulo 2128, ε = 8dL/16e
2106

and messages are at most L bytes long. Although

the universality of polynomial-evaluation-based hash functions is well established

(as described in Section 2.2.7), the disparity between the field used to evaluate the

polynomial and the group used for the encryption of the hash output means that

this result is not inherited from other polynomial-based schemes. The outcome

of this is that if the output of Poly1305 is encrypted by adding (modulo 2128) a

uniform random string then the resulting string is an information-theoretic message
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authentication code (see [168] and [262]) and any adversary attempting to forge an

authentication tag succeeds with probability at most ε.

6.2.2.3 The composition

The composition defined in Section 2.8 of draft-irtf-cfrg-chacha20-poly1305 [211] has

three main parts, informally given below and more precisely described by E0
k and

D0
k of Figure 6.1:

Key derivation: A one-time Poly1305 key, r, and pseudo-one-time-pad, s, are

derived from k and N using the ChaCha20 block function with 0 as value of

the block counter.

Encryption: The plaintext is encrypted using ChaCha20, with block i of the plain-

text xored with the output of ChaCha20 block function on input (k, i,N).

Tag generation: Poly1305 is evaluated using the one time key r, which has certain

bits set to zero. The input to Poly1305 is a message consisting of: associ-

ated data (padded with zeros to the next 128-bit block boundary), ciphertext

(padded similarly), and a 128-bit block containing 64-bit representations of

the length (in bytes) of both the associated data and the ciphertext. The

pseudo-one-time-pad is then added (modulo 2128) to the resulting digest.

6.2.3 Security model

The objective of this section is to demonstrate that the combination of ChaCha20

and Poly1305 described above is a secure authenticated encryption scheme, in the

sense defined in Section 2.2.8. We will parametrise the adversary by the number of

queries that are made to an encryption oracle and a decryption oracle (qE and qD

queries respectively).

In this section, we use a slightly different definition of adversarial advantage than

the one introduced in Section 2.2.8:

Advaead
CC&Poly =

∣∣∣Pr[ACC&Poly → 1]− Pr[A$,⊥ → 1]
∣∣∣ ,
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where $ represents an oracle returning an appropriate number of random bits and ⊥
is an oracle that returns the distinguished value representing an invalid ciphertext

on every input. These two definitions are well-known to be equivalent; noting that

Pr[AEADAEAD,A ] = Pr[b = 1] Pr[AAEAD → 1] + Pr[b = 0] Pr[A$,⊥ → 0] ,

it is easy to see that∣∣∣2 Pr[AEADAEAD,A ]− 1
∣∣∣ =

∣∣∣Pr[AAEAD → 1] + Pr[A$,⊥ → 0]− 1
∣∣∣

=
∣∣∣Pr[AAEAD → 1] + (1− Pr[A$,⊥ → 1])− 1

∣∣∣
=
∣∣∣Pr[AAEAD → 1]− Pr[A$,⊥ → 1]

∣∣∣ .
The proof proceeds via a series of games such that the AE-Enc and AE-Dec oracles

in Game 0 realise CC&Poly and in Game 4 realise ($,⊥); the AE-Enc and AE-Dec

oracles in Game i are denoted Ei and Di respectively.

All adversaries considered in this section will be restricted to nonce-respecting ad-

versaries. This is common for nonce-based authenticated encryption schemes and

means that an adversary will never ask encryption queries (N,A, P) and (N,A′, P ′)

for (A,P) 6= (A′, P ′). There is no restriction on the adversary’s use of nonces

for decryption queries. Without loss of generality, we only consider repeat- and

redundancy-free adversaries (i.e. the input to an oracle is never repeated and the

output from an E query is never input to the D oracle, or vice versa).

6.2.4 Our result

It is assumed in this security analysis that no pair (k,N ′) is ever repeated, where N ′

is the 96-bit nonce that is input to the ChaCha20 block function; this assumption is

critical to the security of CC&Poly. The draft recognises that not all protocols will

use 96-bit nonces and ‘it is up to the protocol document to define how to transform the

protocol nonce into a 96-bit nonce’ [211, Sect. 2.8]; one suggestion is that prepending

a constant value could provide a way to expand a shorter nonce to 96 bits.

If an implementation permits both 96-bit nonces and shorter nonces and an adver-

sary is able to predict how a short nonce will be expanded to 96 bits (for example,

by guessing the value that will be prepended), then a nonce collision could be forced
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by querying the encryption oracle using a short N and a 96-bit N ′ which is the

expanded version of N.

The following theorem assumes that all nonces are 96 bits long and that no pair

(key,nonce) is ever repeated to the encryption oracle; the protocol specification

therefore must prevent nonce collisions of this form.

Theorem 6.1. For every adversary A against the AEAD security of CC&Poly,

there is an adversary B against the PRF security of the ChaCha20 block function,

such that

Advaead
CC&Poly(A) ≤ Advprf

CC(B) + qD
8(dL/128e)

2106
,

where L = 128(dLA128e+d
LC
128e+1), A makes qE encryption queries and qD decryption

queries, and B makes at most (qE + qD) (dLC/512e+ 1) queries.

Proof. The proof of this theorem proceeds via a series of games, specified in Fig-

ures 6.1 and 6.2. Game 0 defines a combined IND$-CPA and INT-CTXT game,

with oracles that realise CC&Poly. The scheme specified in Game 4 clearly gives

no adversary any advantage in either of the IND$-CPA and INT-CTXT games: the

ciphertext blocks and tag are sampled independently of P and uniformly at ran-

dom from {0, 1}512 (as they would be if generated by $) and it is impossible for an

adversary to make a query to D4 that returns (N,A, P) 6=⊥.

The transitions between these games are justified as follows:

Games 0 and 1 If an adversary is able to distinguish between these two games,

then they can distinguish the ChaCha20 block function from a function chosen

uniformly at random from the set of all functions with domain {0, 1}128 and

range {0, 1}512. The advantage gained by an adversary in this transition is

therefore bounded above by Advprf
CC(B), where B is an adversary that makes

at most (qE + qD) (dLC/512e+ 1) queries to its oracle in the PRF game.

Games 1 and 2 These games are identical, on the condition that the inputs to urf

in Game 1 never repeat. The inputs to urf are all of the form (i||N); for each

query, N is constant, but i is never reused and no two encryption queries use

the same value for N (as A is nonce respecting and non-repeating), therefore

the random variables in Games 1 and 2 are identically distributed.
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Games 2 and 3 These games are identical unless an adversary submits (N,A,C, τ)

to their decryption oracle and D1 returns (N,A, P) 6=⊥. However, for each

query that an adversary makes, this happens with probability at most ε be-

cause A is non-redundant and Poly is ε-almost ∆ universal, using results from

[168], [34], and [262]. By a standard hybrid argument, the probability that an

adversary making at most qD queries to D successfully forges is at most εqD.

Games 3 and 4 The random variables in these games are sampled in different

orders, however the joint distributions are identical and therefore these games

are identical.

A standard game-hopping argument allows the probability Pr[AG(i−1) → 1] to be

bounded in terms of Pr[AGi → 1]:

Pr[AG0 → 1] ≤ Pr[AG1 → 1] + Advprf
CC(B) ,

Pr[AG1 → 1] = Pr[AG2 → 1] ,

Pr[AG2 → 1] ≤ Pr[AG3 → 1] + εqD ,

Pr[AG3 → 1] = Pr[AG4 → 1] = Pr[A$,⊥ → 1] ,

where B makes at most (qE + qD) (dLC/512e+ 1) queries.

Bernstein [34] demonstrates that Poly1305 is ε-almost ∆ universal for ε = 8dL/128e
2106

where L denotes the maximum bit length of messages and ∆ represents addition

modulo 2128. For CC&Poly, L = 128(dLA128e + dLC128e + 1) as A and C are padded to

128-bit blocks and an extra 128 bits are added to encode the length of additional

data and ciphertext.

Therefore it can be concluded that for every adversary A there is an adversary

B against the PRF security of the ChaCha20 block function that makes (qE +

qD) (dLC/512e+ 1) queries in the PRF game such that:

Advaead
CC&Poly(A) ≤ Advprf

CC(B) + qD
8(dL/128e)

2106
.

�
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6.2 The composition of ChaCha20 and Poly1305

Game i:
k ←$ {0, 1}256

urf ←$ Func({0, 1}128, {0, 1}512)

b′ ←$ AEik ,D
i
k

Return b′

Game 0:

E0
k(N,A, P)

r||s← trunc256(CCk(0||N))
For i = 1, . . . , p− 1:

Zi ← CCk(i||N)
Ci ← Zi ⊕ Pi

Z?p ← trunc|Pp|(CCk(p||N))

Cp ← Z?p ⊕ Pp
τ ← Polyr(A||C||lenA,C) + s
Return (N,A,C, τ)

D0
k(N,A,C, τ)

r||s← trunc256(CCk(0||N))

τ ′ ← Polyr(A||C||lenA,C) + s
If τ 6= τ ′

Return ⊥
For i = 1, . . . , p− 1:

Zi ← CCk(i||N)
Pi ← Zi ⊕ Ci

Z?p ← trunc|Cp|(CCk(p||N))

Pp ← Z?p ⊕ Cp
Return (N,A, P)

Game 1:

E1
k(N,A, P)

r||s← trunc256(urf(0||N))
For i = 1, . . . , p− 1:

Zi ← urf(i||N)
Ci ← Zi ⊕ Pi

Z?p ← trunc|Pp|(urf(p||N))

Cp ← Z?p ⊕ Pp
τ ← Polyr(A||C||lenA,C) + s
Return (N,A,C, τ)

D1
k(N,A,C, τ)

r||s← trunc256(urf(0||N))

τ ′ ← Polyr(A||C||lenA,C) + s
If τ 6= τ ′

Return ⊥
For i = 1, . . . , p− 1:

Zi ← urf(i||N)
Pi ← Zi ⊕ Ci

Z?p ← trunc|Cp|(CCk(p||N))

Pp ← Z?p ⊕ Cp
Return (N,A, P)

Figure 6.1: Games 0 and 1 in the proof of Theorem 6.1.
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Game 2:

E2
k(N,A, P)

r||s ←$ {0, 1}256

For i = 1, . . . , p− 1:
Zi ←$ {0, 1}512

Ci ← Zi ⊕ Pi
Z?p ←$ {0, 1}|Pp|
Cp ← Z?p ⊕ Pp
τ ← Polyr(A||C||lenA,C) + s
Return (N,A,C, τ)

D2
k(N,A,C, τ)

r||s ←$ {0, 1}256

τ ′ ← Polyr(A||C||lenA,C) + s
If τ 6= τ ′

Return ⊥
For i = 1, . . . , p− 1:

Zi ←$ {0, 1}512

Pi ← Zi ⊕ Ci
Z?p ←$ {0, 1}|Cp|
Pp ← Z?p ⊕ Cp
Return (N,A, P)

Game 3:

E3
k(N,A, P)

r||s ←$ {0, 1}256

For i = 1, . . . , p− 1:
Zi ←$ {0, 1}512

Ci ← Zi ⊕ Pi
Z?p ←$ {0, 1}|Pp|
Cp ← Z?p ⊕ Pp
τ ← Polyr(A||C||lenA,C) + s
Return (N,A,C, τ)

D3
k(N,A,C, τ)

Return ⊥

Game 4:

E4
k(N,A, P)

r||τ ←$ {0, 1}256

For i = 1, . . . , p− 1:
Ci ←$ {0, 1}512

Zi ← Ci ⊕ Pi
Cp ←$ {0, 1}|Pp|
Z?p ← Pp ⊕ Cp
s← τ − Polyr(A||C||lenA,C)
Return (N,A,C, τ)

D4
k(N,A,C, τ)

Return ⊥

Figure 6.2: Games 2 to 4 in the proof of Theorem 6.1.
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6.3 Algebraic cryptanalysis and ISO/IEC 29167-15

The standardisation of cryptography for low-cost ultra-high frequency (UHF) RFID

tags has begun; these standards allow (tag, interrogator and mutual) authentication

and secure tag-interrogator communications to be securely implemented. Passive

UHF RFID tags pose some major challenges when deploying cryptography as they

are very limited in terms of the space available in silicon and the power available

for on-tag computation. By comparison the high frequency (HF) RFID tags found

in public transport ticketing and NFC applications are positively luxurious.

The standardisation group ISO/IEC SC31/WG7 is working on a set of cryptographic

suites to provide security to wireless devices including UHF RFID tags. These cryp-

tographic suites are presented as independent parts to a single standard ISO/IEC

29167. Within this multi-part standard, 29167-15 is based around very simple op-

erations and is intended to provide tag, interrogator, and mutual authentication.

The primary conclusion of this section is that ISO/IEC 29167-15 offers poor—in

fact non-existent—security. While the scheme in 29167-15 can be compromised in

many ways, we leverage algebraic cryptanalysis to provide an elegant and efficient

attack, recovering the entire key after eavesdropping just four authentications.

A secondary, but arguably more far-reaching conclusion, is a warning that technically

poor proposals can advance far into the standardisation process. There are many

existing sound (and standardised) cryptographic designs for both HF and UHF RFID

tags and it is hoped that this analysis deters standardisation bodies and product

developers from adopting schemes that have received little technical scrutiny.

6.3.1 The standardisation landscape for UHF RFID

To understand why the standardisation work examined in this section is underway,

it is necessary to understand the role of other standards in this field. The commands

that can be sent to a (standardised) UHF RFID tag are defined in two documents
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6.3 Algebraic cryptanalysis and ISO/IEC 29167-15

command RFU SenRep IncRepLen

length 8 2 1 1

value d5x 00b 0b/1b 0b/1b

CSI Length Message RN CRC

length 8 12 variable 16 16

value ? ? ? handle CRC-16

Table 6.1: The format of an Authenticate command in Gen2v2.

that have been published1 by EPCglobal, part of GS1. The dominant standard

covering all current large-scale deployments is known as Gen2v1 [103] and the final

update to this standard was published in 2008. In 2013 the Gen2v2 standard was

published [104], extending the functionality of Gen2v1. The most significant and

far-reaching additions are optional over-the-air commands that allow the deployment

of security functionality.

Gen2v2 defines the over-the-air commands for UHF RFID but this is all that it does.

For instance, a command authenticate is defined and this can be used to develop

a solution for tag, interrogator, or mutual authentication. However all the security

commands in Gen2v2, including authenticate, have been deliberately designed to

be flexible and crypto-agnostic; they are completely independent of any specific cryp-

tographic technology. As an example, the format of the authenticate command is

given in Table 6.1. The handle and CRC-16 are part of the communication protocol

while SenRep and IncRepLen are application options. The fields marked ? are the

most important for our purposes; their values are not defined by Gen2v2. The CSI

field identifies the cryptographic algorithm/protocol and the Length/Message fields

locate the cryptographic payload being carried by the command.

For the cryptographic technology itself we would likely turn to the usual sources.

NIST standardises cryptographic technologies such as the AES [208]. Other crypto-

graphic technologies have been standardised within ISO/IEC SC27 including some,

such as Present [59, 143] and cryptoGPS [123, 141], which are explicitly targeted at

constrained environments.

1The Gen2v1 specifications are also standardised within ISO/IEC 18000-63 with Gen2v2 stan-
dardisation underway as a revision.
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6.3 Algebraic cryptanalysis and ISO/IEC 29167-15

However there is an implementation gap between the over-the-air commands and the

cryptographic primitives. For example, the authenticate command says nothing

about how to achieve tag authentication using, say, a challenge-response authentica-

tion protocol and in particular does not specify which algorithms might be supported

on the tag or interrogator. Similarly, the AES standard (FIPS-197 [208]) does not

tell us how to use the AES block cipher to perform tag authentication; instead

FIPS-197 tells us how a 128-bit output is derived from a 128-bit input and a key.

It is the goal of the work in ISO/IEC SC31/WG7, therefore, to provide a mapping

between the cryptographic primitive and the generic over-the-air command; that is,

to fill in the information marked ? in the command above. This mapping is referred

to as a cryptographic suite and the ISO/IEC 29167 standard consists of several

parts, each describing a cryptographic suite and a solution. If one wishes to perform

tag authentication using AES-128 then ISO/IEC 29167-10 is the cryptographic suite

of interest. For tag authentication with Present-80, Grain-128a or cryptoGPS, parts

29167-11 [143], 29167-13 [139], and 29167-17 [141] are, respectively, the ones to use.

Many of the cryptographic suites in ISO/IEC 29167 are built on trusted or previously

standardised primitives. However some of the cryptographic suites, most notably

29167-15, have been built around new, immature, or weak proposals. Unfortunately,

the ISO/IEC voting structure is such that even a technically poor proposal can

advance far through the standardisation process. Indeed, the long-term outcome for

the final version of 29167-15 is not currently clear: one of the more likely outcomes

is that it becomes a technical specification. This would temporarily halt work on

the standard and provide the opportunity for public comment; after three years

technical standards are either abandoned or re-introduced to the standards process.

6.3.2 The first version of ISO/IEC 29167-15

One reason for the longevity of ISO/IEC 29167-15 is that patches have been ap-

plied throughout the voting process. All variants of ISO/IEC 29167-15 propose

mechanisms for tag, interrogator, and mutual authentication. These mechanisms

are simple and built around the supposed difficulty of analysing a combination of

bitwise xor and integer addition. The first proposals were even simpler; see Table 6.2.
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Interrogator (secret key PSK) Tag (secret key PSK)

Choose RnInt
RnInt−−−−−−−−→
RnTag←−−−−−−−− Choose RnTag

SK = PSK⊕ RnInt⊕ RnTag SK = PSK⊕ RnInt⊕ RnTag

Choose ChInt

A = SK⊕ ChInt
A−−−−→

ChInt = SK⊕ A

RChInt = reverse(ChInt)
B←−−−− B = SK⊕ RChInt

T = SK⊕ B

reverse(T)
?
= ChInt

Table 6.2: The first version of the tag authentication scheme with the notation used
in the original document. All variables are 64 bits long.

There are many problems with the proposal in Table 6.2 but the most pressing is

that there is no security. The sole use of a single operator (in this case bitwise xor)

gives a differential attack. By eavesdropping an attacker recovers RnInt, RnTag, A,

and B. The adversary can then make a fake tag that fools a legitimate reader without

knowing the secret key PSK. The attack is outlined in Table 6.3 where we denote the

variables in a subsequent run of the protocol with *.

To confirm that the fake tag is always accepted as genuine we observe that

reverse(T*) = reverse(SK* ⊕ B⊕ reverse(X)⊕∆SK)

= reverse(SK⊕ B)⊕ X = reverse(SK⊕ (SK⊕ RChInt))⊕ X

= ChInt⊕ X = ChInt⊕∆A ⊕∆SK

= (SK⊕ A)⊕ (A⊕ A*)⊕ (SK⊕ SK*) = A* ⊕ SK* = ChInt* .

A tag can be cloned after eavesdropping one legitimate authentication.
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Interrogator (secret key PSK) Fake Tag

Choose RnInt*
RnInt*−−−−−−−−−→
RnTag*←−−−−−−−−− Choose RnTag*

SK* = PSK⊕ RnInt* ⊕ RnTag* SK* is unknown

∆I = RnInt⊕ RnInt*

∆T = RnTag⊕ RnTag*

Save ∆SK = ∆I ⊕∆T

Choose ChInt*

A* = SK* ⊕ ChInt*
A*−−−−−→

A⊕ A* = ∆A

X = ∆A ⊕∆SK

B*←−−−−− B* = B⊕ reverse(X)⊕∆SK

T* = SK* ⊕ B*

reverse(T*)
?
= ChInt*

Table 6.3: Fooling a legitimate reader during tag authentication. The attacker has
eavesdropped on one run of the protocol in Table 6.2. The (changing)
parameters in this second run are indicated using *.

6.3.3 The working draft of ISO/IEC 29167-15

After this inauspicious start a variant was formally proposed as a working draft

(WD). The tag authentication protocol is illustrated in Table 6.4. Interrogator au-

thentication is provided by reversing the roles of the two participants while mutual

authentication is derived by interleaving two sessions that establish tag and inter-

rogator authentication.

We now show that the key can be recovered in a passive attack with high reliability.

Indeed, suppose an attacker intercepts SRN and SORN from a legitimate authentica-

tion session. We then have that

SRN⊕ SORN = (RN + 0x55 · · · 55)⊕ RN .

The least significant bit of SRN ⊕ SORN is always set to 1 and further analysis of

SRN⊕ SORN is easy to make.
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Interrogator (secret key PSK) Tag (secret key PSK)

Choose RN

SRN = RN⊕ PSK
SRN−−−−−−→ RN = SRN⊕ PSK

A = RN + 0x55 · · · 55
B = SORN⊕ PSK

SORN←−−−−−−− SORN = A⊕ PSK

B
?
= RN + 0x55 · · · 55

Table 6.4: The first formal proposal of the ISO/IEC 29167-15 tag authentication
scheme. For clarity the notation is slightly adapted from that used in
documentation. The shared secret key PSK and all intermediate values
are 64 bits long, ⊕ denotes bitwise xor, and + denotes integer addition
modulo 264.

For instance, the 232 values of RN for which RN ∧ 0x55 · · · 55 = 0x00 · · · 00 will give

SRN⊕SORN = 0x55 · · · 55 and so observations based on the distribution of SRN⊕SORN
can be used to recover RN and, via SRN, the shared secret key PSK.

For an alternative approach, we simplify the notation by setting Z = SRN ⊕ SORN,

R = RN, and C = 0x55 · · · 55 and so SRN⊕ SORN = Z = R⊕ (R + C). Considering this

equation bit-by-bit gives, for bit position j with j ≥ 0,

Zj = Rj ⊕ ((Rj + Cj + Tj−1) mod 2) = Cj ⊕ Tj−1 ,= Cj ⊕ Tj−1 ,

where Tj−1 denotes the carry given at bit j−1 generated within the integer addition

R + C. Setting T−1 = 0, the carry bit Tj for j ≥ 0 is computed as

Tj = maj(Rj , Cj , Tj−1) = (Rj ∧ Cj)⊕ (Rj ∧ Tj−1)⊕ (Cj ∧ Tj−1)

= (Rj ∧ (Cj ⊕ Tj−1))⊕ (Cj ∧ Tj−1) ,

where maj denotes the majority function. Hence, for j ≥ 0,

Zj+1 = Cj+1 ⊕ (Rj ∧ (Cj ⊕ Tj−1))⊕ (Cj ∧ Tj−1)

= Cj+1 ⊕ (Rj ∧ Sj)⊕ (Cj ∧ (Zj ⊕ Cj))

= Cj+1 ⊕ (Rj ∧ Sj)⊕ (Cj ∧ (Zj ⊕ 1)) .

This means that, for j ≥ 0, we have Rj ∧ Zj = Zj+1 ⊕ Cj+1 ⊕ (Cj ∧ (Zj ⊕ 1)), which

we write, setting Vj = Rj ∧ Zj , as

Vj = Zj+1 ⊕ Cj+1 ⊕ (Cj ∧ (Zj ⊕ 1)) for j ≥ 0 .
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Looking at the expression for Vj we see that it consists entirely of arguments from

Z, which is available to an eavesdropper, and C which is fixed and known. Thus if

Zj = 1 for bit j, which we expect half the time, then we can compute Rj directly

and the corresponding bit of the shared secret PSK is given by

PSKj = Rj ⊕ SRNj .

Each bit of PSKj , for 0 ≤ j ≤ 62 can be recovered and we expect to be able to

recover all but the most significant bit of PSKj with two intercepted authentications.

The work-effort is negligible. Note that this gives us two possible values for the

full 64-bit shared secret PSK. However these two keys are equivalent, that is they

behave identically in the authentication protocol, and so they can both be used to

impersonate a tag.

6.3.4 The first committee draft of ISO/IEC 29167-15

Early versions of ISO/IEC 29167-15 (several new work item proposals and a working

draft) were clearly weak and offered little promise. However, sufficiently many na-

tional bodies abstained or voted positively at each round of voting that the scheme

moved forward towards standardisation anyway. Once we arrive at a committee draft

(CD) the document should, in theory, be technically mature: subsequent stages of

the process, namely draft international standard (DIS) and final draft international

standard (FDIS), provide little opportunity for technical modification before pub-

lication. Yet as we will show in this section, even the latest versions of ISO/IEC

29167-15 are far from being technically mature and are, in fact, completely insecure.

To repair the weaknesses in the first formal submission to ISO/IEC WD 29167-15 a

patched version was briefly proposed; see Table 6.5.

6.3.4.1 Conventional observations

Again, we can immediately see that the least significant bit of SRNi ⊕ SORNi is

always set to 0. It is easy to find other faults and we simplify the notation by

setting R = RNi, C = 0x55 · · · 55, and S = SRNi, with SO = SORNi.
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Interrogator (secret key PSK) Tag (secret key PSK)

Choose RNi

SRNi = (RNi + C)⊕ PSK
SRNi−−−−−−−→ RNi = (SRNi⊕ PSK)− C

SORNi⊕ RNi
?
= PSK + C

SORNi←−−−−−−−− SORNi = (PSK + C)⊕ RNi

Table 6.5: A ‘patched’ version of the ISO/IEC 29167-15 tag authentication scheme
from which the final committee draft version is derived. All variables are
64 bits long and C = 0x55 · · · 55.

This gives us S = (R + C)⊕ PSK and SO = (PSK + C)⊕ R, so

S⊕ PSK = ((PSK + C)⊕ SO) + C . (6.1)

We can use Equation 6.1 as a distinguisher to check if a possible value for the key

PSK is a correct candidate. This can be done in several ways, but we illustrate a

byte-by-byte approach, first considering the least significant byte of PSK.

Suppose p, s, so are the least significant bytes of PSK, S, and SO respectively. Then

any x satisfying s ⊕ x = ((x + 0x55) ⊕ so) + 0x55 is a good candidate for p. After

eight to sixteen runs, one value should be predicted with close to 100% reliability

and the least significant byte of the key is recovered. In parallel, we can process

other bytes of PSK in the same manner.

There is a slight complication due to the possibility of a carry from one byte to

another in the integer addition; at the same time the most significant bit of each

byte might also need some attention. However, closer analysis when using particular

values S and SO can be used to avoid significant carry propagation. This allows us to

filter incorrect values and the few key candidates that remain can be tested against

the tag to find the right one.

Passively eavesdropping on eight to sixteen authentication runs appears to be suf-

ficient to recover each byte of the key PSK with good reliability. The work effort is

negligible since all bytes can be treated in parallel.
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6.3.4.2 Algebraic cryptanalysis

The scheme in ISO/IEC 29167-15 uses a set of very simple operations and algebraic

cryptanalysis proves to be very effective.

Let n be the size of all variables in the protocol; in our case we have n = 64.

We will assume that an attacker can eavesdrop on k runs of a uni-directional (tag

or interrogator) authentication protocol. Since the mutual authentication protocol

consists of two interleaved runs of a uni-directional protocol, observing k runs of

the mutual authentication protocol will give identical results to 2k runs of the uni-

directional protocol. Without loss of generality we have implemented the attack on

the protocol for uni-directional (tag or interrogator) authentication.

Denote the value of SRNi on the tth run of the protocol by SRNit, similarly for SORNi

and RNi. We use variables pi, st i, rt i, sot i, at i, and bt i for 0 ≤ i < n and

0 ≤ t < k assuming that all strings are written using big-endian convention, i.e.

PSK = pn−1 . . . p1p0. The equations used to represent the scheme will be defined

over F2, using + to denote addition and ∗ to denote multiplication.

We represent the computation of SRNit as

st i = pi + rt i + at i + ci ,

for 0 ≤ i < n, 0 ≤ t < k, where at i is the carry bit during the modular addition of

RNit and C. This gives, for 0 ≤ i < n,

at 0 =0

at i =maj(rt (i−1), ci−1, at (i−1))

=rt (i−1) ∗ ci−1 + rt (i−1) ∗ at (i−1) + at (i−1) ∗ ci−1 .

Similarly the computation of SORNit can be represented (with the same indices) as

bt 0 =0 ,

sot i =pi + rt i + bt i + ci ,

bt i =pi−1 ∗ ci−1 + pi−1 ∗ bt (i−1) + bt (i−1) ∗ ci−1 ,

where the variable b denotes the carry bits.
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Finally, we define equations to represent the observed values of SRNit and SORNit

and the specified value of C; st i = SRNiti, sot i = SORNiti, and ci = Ci. Our system

is presented as polynomials over the finite field F2, i.e. all variables and coefficients

take values in {0, 1}. We therefore include the equations of the form x2 = x for

every variable x.

The complete set of equations can be summarised as follows:

st i = pi + rt i + at i + ci 0 ≤ i < n 0 ≤ t < k
at (i+1) = rt i ∗ ci + rt i ∗ at i + at i ∗ ci 0 ≤ i < n− 1 0 ≤ t < k

at 0 = 0 0 ≤ t < k
sot i = pi + rt i + bt i + ci 0 ≤ i < n 0 ≤ t < k
bt (i+1) = pi ∗ ci + pi ∗ bt i + bt i ∗ ci 0 ≤ i < n− 1 0 ≤ t < k

bt 0 = 0 0 ≤ t < k
st i = SRNiti 0 ≤ i < n 0 ≤ t < k
sot i = SORNiti 0 ≤ i < n 0 ≤ t < k
ci = Ci 0 ≤ i < n
x2 = x for all x .

This system of polynomial equations includes 5nk + 2n variables and 11nk + 3n

equations of degree at most two. Of course this system can be greatly simplified,

by substituting the variables that have a fixed value (e.g. ci, at 0, bt 0), as well as

the ones observed in the protocol runs (st i and sot i). This reduces the number of

variables to (3n − 2)k + n, and the number of equations to (7n − 4)k + n. For the

parameter values of relevance to ISO/IEC 29167-15, the entire system will consist

therefore of 444k + 64 equations in 190k + 64 variables, which can be constructed

for the very small values of k that are required to recover the key. We use Gröbner

bases algorithms to solve this system [77].

The average number of key bits recovered and the average time required to solve the

system of equations are given in the following table and illustrated in Figure 6.3.

Number of protocol runs (k) 1 2 3 4

Average number of key bits recovered 19.7 51.1 59.4 61.7
Average run time (s) 8 83 113 255

The attack was implemented on SageMathCloud [257] and timed using Python’s

timeit function; any set-up time is assumed to be pre-computed or amortised over

many protocol runs.
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Figure 6.3: Results from experiments against the first committee draft of ISO/IEC
29167-15. The number of protocol runs is given by k and each set of
experiments on k authentications was repeated 45 independent times.

The values (PSK, RNi1) were chosen randomly for each trial when k = 1. As the

number of protocol runs was increased PSK remains unchanged but fresh random

choices were used for RNi2, RNi3, and RNi4 as would be expected in a real-life im-

plementation.

Our experiments suggest that after witnessing four uni-directional runs of the pro-

tocol (or just two mutual authentication runs) the attacker would be able to recover

62 out of 64 bits of the secret key in around 84% of the time. While the entirety of

the key can often be recovered, we conjecture that the ‘missing’ bits that occur from

time-to-time are neutral bits; the values of these bits cannot be determined by that

particular instance of the equation system. This is a feature of many cryptanalytic

techniques and is often exhibited in the most significant bits of operations such as

integer addition. While it may be interesting to provide an exact explanation of this

phenomenon, it is not relevant to the essential message of our cryptanalysis.
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6.3.5 The final committee draft of ISO/IEC 29167-15

The fourth iteration to be described in this chapter is the final committee draft of

ISO/IEC 29167-15. The mutual authentication protocol is given in Table 6.6. As

in previous versions of the scheme, tag and interrogator authentication are derived

from the relevant halves of the full authentication protocol.

Several changes have been made to this latest proposal to complicate the task of

the cryptanalyst. The use of the (unknown) bitwise rotation seems to prevent the

attacker from aligning bits in the challenge and response in a trivial way. For

example a single bit change in the challenge will change the Hamming weight of the

candidate RNi derived by the tag; this would result in different rotation amounts

being used for the computation of the final response.

Despite these complications, it is straightforward to compromise the scheme. Our

initial analysis suggested that even with the rotation operation, the scheme can

be compromised using conventional cryptanalysis after intercepting around 32 uni-

directional authentication runs. However, as demonstrated in the previous section,

it is more elegant and efficient to use algebraic cryptanalysis against ISO/IEC 29167-

15 scheme. This technique allows us again to recover the shared secret key PSK after

eavesdropping on as few as four authentication runs.

6.3.5.1 Algebraic cryptanalysis of ISO/IEC 29167-15 final committee draft

As before, we need to set up a system of multivariate polynomial equations. The

system used to describe this latest scheme is similar to that of Section 6.3.4. However

it is helpful to introduce some additional variables to take account of the rotation:

mt i corresponds to PSK′i in the tth protocol run and nt i corresponds to RNi′i in

the tth protocol run. In truth these variables have been introduced to improve the

exposition of the attack. It would be straightforward to work without them if there

were significant advantage in doing so.
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Interrogator Tag
(secret key PSK) (secret key PSK)

Choose RNi

SRNi = (RNi + C)⊕ PSK
SRNi−−−−−−−→ RNi = (SRNi⊕ PSK)− C

wi = hw(RNi)

PSK′ = PSK≪ wi

RNi′ = RNi≪ wi

SORNi = (PSK′ + C)⊕ RNi′

Choose RNt

wi = hw(RNi)
SORNi←−−−−−−−−
SRNt

SRNt = (RNt + C)⊕ PSK

PSK′ = PSK≪ wi

RNi′ = RNi≪ wi

(SORNi⊕ RNi′)
?
= (PSK′ + C)

tag authenticated

RNt = (SRNt⊕ PSK)− C

wt = hw(RNt)

PSK′ = PSK≪ wt

RNt′ = RNt≪ wt

SORNt = (PSK′ + C)⊕ RNt′
SORNt−−−−−−−−→ wt = hw(RNt)

PSK′ = PSK≪ wt

RNt′ = RNt≪ wt

(SORNt⊕ RNt′)
?
= (PSK′ + C)

interrogator authenticated

Table 6.6: Mutual authentication, as specified in the latest version of ISO/IEC
29167-15. The Hamming weight of A is denoted hw(A) while A ≪ w
denotes the left bitwise rotation of A by w bits.
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In this variant of the scheme we need to take account of the unknown rotation

amount. The simplest way to do this is to guess the rotation amount, and to solve

each set of equations that arise for each guess. To include this within the equation

system we introduce an array rot guess where rot guess[t] is a guess for the Hamming

weight of RNit.

The complete set of equations can be summarised as follows:

st i = pi + rt i + at i + ci 0 ≤ i < n 0 ≤ t < k
at (i+1) = rt i ∗ ci + rt i ∗ at i + at i ∗ ci 0 ≤ i < n− 1 0 ≤ t < k

at 0 = 0 0 ≤ t < k
mt i = p(i+rot guess[t]%n) 0 ≤ i < n 0 ≤ t < k

nt i = rt (i+rot guess[t]%n) 0 ≤ i < n 0 ≤ t < k

sot i = mt i + nt i + bt i + ci 0 ≤ i < n 0 ≤ t < k
bt (i+1) = mt i ∗ ci + mt i ∗ bt i + bt i ∗ ci 0 ≤ i < n− 1 0 ≤ t < k

bt 0 = 0 0 ≤ t < k
st i = SRNiti 0 ≤ i < n 0 ≤ t < k
sot i = SORNiti 0 ≤ i < n 0 ≤ t < k
ci = Ci 0 ≤ i < n
x2 = x ∀x

This system of equations includes 7nk + 2n variables and 15nk + 3n equations of

degree at most two. Again, this system can be greatly simplified by substituting

fixed/known value variables, as well as redundant ones, to a system with (3n−2)k+n

variables, and (7n − 4)k + n equations. For the parameter values of relevance to

ISO/IEC 29167-15, the entire system consists of 444k + 64 equations in 190k + 64

variables, which can be constructed for the small values of k that are required to

recover the key.

6.3.5.2 Guessing the rotation amount

The equation system depends on rot guess, an array of guesses for the Hamming

weight of RNi. We expect that a correct guess for the Hamming weight of RNi will

yield a system of equations that is easily solved to reveal many key bits.

The values RNi are random and so assuming that they are generated uniformly the

random variable hw(RNi) will be distributed according to a binomial distribution

with parameters (64, 1
2). It is therefore straightforward to compute the probability

that a randomly chosen RNi has a particular Hamming weight.
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Of particular relevance to our attack is the fact that a substantial fraction of all

possible RNi have a Hamming weight lying within a small range:

x 32 33 34 35 36

PrRNi [hw(RNi) = x] 0.10 0.10 0.09 0.08 0.06

This means that the probability hw(RNi) lies in the interval [32− δ, 32 + δ] is:

δ 0 1 2 3 4

PrRNi [hw(RNi) ∈ [32− δ, 32 + δ]] 0.10 0.29 0.46 0.62 0.74

Now assume an attacker eavesdrops on one uni-directional authentication session.

He could simply run the equation solving algorithm three times with the guesses of

31, 32, and 33 for the rotation amount. With a probability close to 30% one of these

guesses would be correct. Alternatively, he could elect to further try the values

28, 29, 30, 34, 35, and 36 which would require nine runs of the equation solving

algorithm. The probability that the eavesdropped session is covered by one of these

nine guesses is close to 74%. This has been confirmed by experiments.

It turns out that the Gröbner basis algorithm provides a good method to verify

whether the guessed rotation amount is correct. Empirically, it seems that selecting

the wrong rotation makes the system inconsistent, i.e. there will be no valid solution,

and this is quickly detected by the Gröbner basis algorithm. Of course it cannot be

ruled out that cases exist when an incorrect guess of rotation results in a system

for which solutions exist (corresponding to an incorrect key). However this does not

appear to be common; in over 20 experiments no false solutions were found for any

δ ≤ 5. Of course, even if they did occur, false alarms could easily be filtered out

using further intercepted authentication attempts or even a forgery attempt.

6.3.5.3 Results

The average number of key bits recovered and the average time required to solve the

system of equations are given in the following table and illustrated in Figure 6.4.
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Figure 6.4: Results of experiments against the final committee draft of ISO/IEC
29167-15. The number of protocol runs is given by k and 45 random
instances were generated. In each case, it is assumed that the rotation
amount was guessed correctly.

These results assume a correct guess for each of the hw(RNij), as discussed in the

previous section.

Number of protocol runs (k) 1 2 3 4

Average number of key bits recovered 21.3 51.4 60.6 63.2
Average run time (s) 10 53 87 193

Again, the attack was implemented on SageMathCloud [257] and timed using the

timeit function provided by Python; any set-up time is assumed to be pre-computed

or amortised over many protocol runs. The values (PSK, RNi1) were chosen randomly

for each trial when k = 1. As the number of protocol runs was increased PSK remains

unchanged but fresh random choices were used for RNi2, RNi3, and RNi4 as would

be expected in a real-life implementation.
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Witnessing four uni-directional runs, or two mutual authentication runs, of the

scheme in Section 6.3.5 and guessing the rotation amount correctly gives a prob-

ability of approximately 85% for recovering all but two bits of the key. However

different attack strategies are possible.

Note that the attack using a single observed run is much faster than the attack with

four observed runs, although it would recover a smaller proportion of the secret key

bits. Moreover, as discussed above, when attempting to solve the resulting system

of equations it is straightforward to recognise when an incorrect rotation has been

guessed. Thus an efficient way to perform the full attack is as follows: we repeat

the single-observation attack (k = 1) several times for each run (1 ≤ t ≤ 4) of the

protocol with different guesses for hw(RNit). Once we have identified the correct

rotation for all four runs of the protocol we would then be able to apply the four-run

(k = 4) attack thereby recovering almost all bits of the key with high probability.

There are numerous possible trade-offs related to this strategy. For example, re-

peating the single run attack for guesses in the range [30, 34] gives a ∼ 46% chance

of finding the correct rotation. Doing this for eight observed protocol runs re-

quires us to run the single-round attack at most 40 times to have a probability of

∼ 54% to recover the correct rotations for four runs of the protocol. By combin-

ing this with a second phase that attacks four runs (k = 4) with correct rotation

amounts, all but two bits of the key will be recovered with probability approxi-

mately 0.54 × 0.85 ≈ 46%. This is expected to take around 10 minutes to run on

SageMathCloud.

Alternatively, the attacker could repeat the attack for each guess in the range [28, 36],

giving a 74% chance of guessing the rotation amounts correctly. Doing this for

six observed protocol runs requires us to run the single-round attack at most 54

times and would give a probability of ∼ 81% to recover the rotations for four runs

of the protocol. This attack would recover all except two bits of the key with

probability approximately 0.81× 0.85 ≈ 69% and take around 20 minutes to run on

SageMathCloud.

180



6.3 Algebraic cryptanalysis and ISO/IEC 29167-15

6.3.6 Other insecure variants of ISO/IEC 29167-15

With the hope of discouraging further patches to ISO/IEC 29167-15, we pro-actively

anticipate some modifications that might be made with the hope of increasing secu-

rity. In this section, we show that none of the obvious variants provide a significantly

increased level of security.

One variant would be to increase the size of all parameters, using a secret key of

size n = 64 + n′ bits. The intention would be to increase the size of the equations

systems since algebraic cryptanalytic schemes do not scale well. However this is

particularly ineffective for the scheme of Table 6.5 since one can simply discard the

n′ high bits of the transmitted values and run precisely the same attack, recovering

many of the lower 64 bits. We could then guess the value of the carry bit aj 64 which

would allow the remaining bits to be attacked independently. We view this kind of

attack as ‘slicing’ the problem and we will return to this below.

We can apply a similar technique to remove any advantage from increased parame-

ters in the scheme of Table 6.6. The rotation r = hw(RNi) will, with high probability,

lie in an interval (n2 − δ, n2 + δ) for small δ. This means we can consider a subset

of equations consisting of SRNij0 . . . SRNi
j
s−1 and SORNi

j
r . . . SORNi

j
r+s−1 (and the cor-

responding pi, rj i, aj i, bj i, etc.) for some value of the rotation r. As before,

this attack requires us to guess the value of the rotations, and additionally we must

guess the value of bj r; this does not significantly affect the complexity of the attack.

(In this case we do not need to guess aj 0, however had we considered a subset of

equations not including SRNi
j
0 we would have needed to guess another carry bit.)

Figure 6.5 illustrates the results of implementing this attack. From two runs of the

uni-directional authentication, the attacker guesses the values of four bits and, for

the correct rotation amount, the number of key bits recovered when using a single

16-bit or 24-bit ‘slice’. One strategy that may improve the efficiency of our attack

would be to first attack a small number of bits (via the slicing attack) for several

possible guessed values of hw(RNij). Then to carry out a full attack against all k

protocol runs (simultaneously) once the correct rotation values have been identified.

This way one could recover almost all the key bits without having to run the full

attack many times.
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Figure 6.5: Results of the ‘slicing’ attack applied against the final committee draft
of ISO/IEC 29167-15 with two runs of the uni-directional authentication
scheme. The values of four bits were guessed and the black dashed line
highlights this value. Dashed lines (green and yellow) show the maxi-
mum possible number of key bits that can be recovered, this restriction
being set by the size of the ‘slice’ (s).

An alternative modification to the protocol might be to change the value of the

constant C. We implemented an attack assuming that two runs of the uni-directional

authentication protocol were observed. We implemented a 16-bit ‘slicing’ attack and

repeated the whole set of experiments twice (using fresh random choices of PSK and

RNi) for each of 256 different values of C. The 256 C values were built up as a single

byte pattern repeated eight times. The number of key bits that were recovered in

our attacks for different C are illustrated in Figure 6.6.

Zero is the only value for C that leaked no key bits. However 064 is a particularly

bad choice for C since this makes SRNi = SORNi and forgeries are trivial; in this

case no key bits were recovered because if C is zero then the protocol transcript is

independent of the key. Every other choice of C leads to at least four key bits out of

16 being recovered. This suggests that changing the value of C is unlikely to improve

the security of the proposed protocol.
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Figure 6.6: Results of implementing the attack against variants of ISO/IEC 29167-
15 where the constant C moves through 256 possible values. Experiments
were run twice, each using two runs of the uni-directional authentication
scheme.
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6.3.7 Results and discussion

Through this section we have seen several incremental versions of the work in

ISO/IEC 29167-15 and observed that none offer any substantive security. We have

also seen that future versions, if based on identical principles, are unlikely to provide

additional security. These results are summarised here, with all attacks applicable

to passive adversaries; most results in this section have been implemented.

Version Net Result # Authentications

Table 6.2 Tag cloning 1
Table 6.4 Key recovery 2
Table 6.5 Key recovery 8–16
Table 6.5 Key recovery 4
Table 6.6 Key recovery 4

Although we have concentrated on uni-directional authentication, mutual authenti-

cation simply consists of two interleaved versions of a tag and interrogator authenti-

cation. This means that all of our attacks will also apply to mutual authentication,

but often with less effort since twice as much information is leaked during each

protocol run.

The scheme in ISO/IEC 29167-15 is intrinsically weak due to the simple operations

used by the tag and the interrogator; for all but the first variant the long term PSK

key can be recovered. For completeness, we note that the latest draft of ISO/IEC

WD 29167-15 also includes a method to provide a secure channel, but the encryption

method is wholly insecure.

The project editors for 29167-15 motivate their use of the simplest operations by

stating that this will result in a low-area solution. However this is misguided: the

bulk of the area for an implementation comes from the cryptographic state which

is governed by the size of the variables. So even though ISO/IEC 29167-15 uses

simple operations it doesn’t lead to a dramatic implementation advantage. More

importantly, there are already very good cryptographic solutions for UHF RFID

tags that provide good security; the AES is one option and those that prefer a bit

more implementation agility might find that Present [143] or Grain-128a [1] provide

different security/area/performance trade-offs.
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One goal of the work presented in this section was to demonstrate that ISO/IEC

29167-15 is broken and to emphasise the contributions that cryptographers can make

to a variety of ISO/IEC initiatives [93]. A second, more important, goal was to stress

that cryptography for RFID does not need to be bad cryptography. The state of

the art is such that well-studied standardised schemes are available and these can

be deployed in even the most demanding environments.

The code used to generate the data in this section can be found at

http://www.isg.rhul.ac.uk/~ccid/publications/iso-iec-29167-15.htm.

6.4 Discussion

This chapter has shown two sides of the standardisation of cryptosystems. On

the one hand, we have ChaCha20 and Poly1305: they are mature, well-established

algorithms that have been combined into an AEAD construction in order to surface a

more appropriate interface and that construction is (now) accompanied by a security

proof. The other hand illustrates a much less optimistic picture: a novel construction

is rushed through standardisation with little analysis, heavily tweaked, and kept alive

by politics and voting patterns rather than technical merit. This pessimistic picture

is not unique to ISO/IEC 29167-15; it is reminiscent of PLAID [93] and the HB+

proposals [154] (where a string of attacks [120, 182, 97, 121] alternated with new

versions [12, 64, 203, 122]).

Many insecure RFID authentication protocols have been proposed. LMAP [218],

M2AP [219] and EMAP [220] all somewhat resemble ISO/IEC 29167-15 as they also

use integer additions, bitwise rotations, and exclusive-ors (ARX) for the basis of the

construction; they too have been broken [183, 133, 184].

These ARX designs can be a good basis from which to build a secure primitive: they

are (rightly) popular and featured prominently in the NIST SHA-3 initiative [213].

However these are typically multi-round algorithms, whereas the ultra-lightweight

RFID authentication protocols have perhaps achieved just a ‘single round’ of com-

putational complexity (if one can make the analogy). Fortunately, ChaCha20 is an

example of an ARX-based scheme that is currently believed to be secure and, as the
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analysis contained in this chapter demonstrates, the novel combination of ChaCha20

and Poly1305 is also secure.

It is reassuring that, of the two schemes analysed in this chapter, it is the combination

of ChaCha20 and Poly1305 that has seen widespread adoption. This perhaps reflects

the confidence provided by choosing established algorithms and explicitly requesting

a security analysis of the novel component, compared with the process of repeatedly

refining and tweaking a poor initial design.
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[24] Mihir Bellare, Roch Guérin, and Phillip Rogaway. XOR MACs: New meth-

ods for message authentication using finite pseudorandom functions. In Don

Coppersmith, editor, Advances in Cryptology – CRYPTO’95, volume 963 of

Lecture Notes in Computer Science, pages 15–28. Springer, August 1995.

[25] Mihir Bellare, Joe Kilian, and Phillip Rogaway. The security of cipher block

chaining. In Yvo Desmedt, editor, Advances in Cryptology – CRYPTO’94,

volume 839 of Lecture Notes in Computer Science, pages 341–358. Springer,

August 1994.

[26] Mihir Bellare, Joe Kilian, and Phillip Rogaway. The security of the cipher

block chaining message authentication code. Journal of Computer and System

Sciences, 61(3):362–399, 2000.

[27] Mihir Bellare and Tadayoshi Kohno. A theoretical treatment of related-key

attacks: RKA-PRPs, RKA-PRFs, and applications. In Eli Biham, editor,

Advances in Cryptology – EUROCRYPT 2003, volume 2656 of Lecture Notes

in Computer Science, pages 491–506. Springer, May 2003.

[28] Mihir Bellare, Ted Krovetz, and Phillip Rogaway. Luby-Rackoff backwards:

Increasing security by making block ciphers non-invertible. In Kaisa Nyberg,

editor, Advances in Cryptology – EUROCRYPT’98, volume 1403 of Lecture

Notes in Computer Science, pages 266–280. Springer, May / June 1998.

[29] Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Re-

lations among notions and analysis of the generic composition paradigm. In

190



BIBLIOGRAPHY

Tatsuaki Okamoto, editor, Advances in Cryptology – ASIACRYPT 2000, vol-

ume 1976 of Lecture Notes in Computer Science, pages 531–545. Springer,

December 2000.

[30] Mihir Bellare, Krzysztof Pietrzak, and Phillip Rogaway. Improved security

analyses for CBC MACs. In Victor Shoup, editor, Advances in Cryptology

– CRYPTO 2005, volume 3621 of Lecture Notes in Computer Science, pages

527–545. Springer, August 2005.

[31] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm

for designing efficient protocols. In V. Ashby, editor, ACM CCS 93: 1st Con-

ference on Computer and Communications Security, pages 62–73. ACM Press,

November 1993.

[32] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a

framework for code-based game-playing proofs. In Serge Vaudenay, editor,

Advances in Cryptology – EUROCRYPT 2006, volume 4004 of Lecture Notes

in Computer Science, pages 409–426. Springer, May / June 2006.

[33] E. R. Berlekamp. Factoring polynomials over large finite fields. Math. Comp.,

24:713–735, 1970.

[34] Daniel J. Bernstein. The Poly1305-AES message-authentication code. In Henri

Gilbert and Helena Handschuh, editors, Fast Software Encryption – FSE 2005,

volume 3557 of Lecture Notes in Computer Science, pages 32–49. Springer,

February 2005.

[35] Daniel. J. Bernstein. ChaCha, a variant of Salsa20, 2008. http://cr.yp.to/

papers.html#chacha. Document ID: 4027b5256e17b9796842e6d0f68b0b5e.

[36] Daniel J. Bernstein. The Salsa20 family of stream ciphers. In Matthew Rob-

shaw and Olivier Billet, editors, New Stream Cipher Designs, volume 4986 of

Lecture Notes in Computer Science, pages 84–97. Springer Berlin Heidelberg,

2008.

[37] Daniel J. Bernstein and Tanja Lange. Non-uniform cracks in the concrete:

The power of free precomputation. In Kazue Sako and Palash Sarkar, editors,

Advances in Cryptology – ASIACRYPT 2013, Part II, volume 8270 of Lecture

Notes in Computer Science, pages 321–340. Springer, December 2013.

191



BIBLIOGRAPHY

[38] Daniel J. Bernstein, Tanja Lange, and Peter Schwabe. The security impact of

a new cryptographic library. In Alejandro Hevia and Gregory Neven, editors,

Progress in Cryptology - LATINCRYPT 2012: 2nd International Conference

on Cryptology and Information Security in Latin America, volume 7533 of

Lecture Notes in Computer Science, pages 159–176. Springer, October 2012.
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Knežević, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar,

Christian Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga Yalçin.
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[74] Carlos Cid, Löıc Ferreira, Matthew J. B. Robshaw, and Gordon Procter. Al-

gebraic cryptanalysis and RFID authentication. In Radio Frequency Identi-

fication: Security and Privacy Issues, Lecture Notes in Computer Science.

Springer, 2015. (to appear).
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