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Abstract We introduce new constructions of systematic authentication codes
over finite fields and Galois rings. One code is built over finite fields using re-
silient functions and it provides optimal impersonation and substitution prob-
abilities. Other two proposed codes are defined over Galois rings, one is based
on resilient maps and it attains optimal probabilities as well, while the other
uses maps whose Fourier transforms get higher values. Being the finite fields
special cases of Galois rings, the first code introduced for Galois rings apply
also at finite fields. For the special case of characteristic p2, the maps used at
the second case in Galois rings are bent indeed, and this case is subsumed by
our current general construction of characteristic ps, with s ≥ 2.

Keywords Authentication Schemes · Resilient Maps · Finite Fields · Galois
Rings

1 Introduction

Resilient maps were introduced by Chor et al. [7] and independently by Ben-
net et al. [1] by describing several applications on key distribution at quan-
tum cryptography protocols. Resilient maps have been applied on random
sequences generation for streaming ciphers [15] as well. We introduce new au-
thentication codes with the aim to optimize by minimizing impersonation and
substitution probabilities. Similar constructions have been introduced at [3,4,
9] using bent and almost-bent maps, but now we are using resilient maps and
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another special class of functions able to provide optimal least bounds. In our
presentation we compare the introduced codes on Galois rings with previous
authentication codes that use rational functions and non-degenerate maps [13]
on Galois rings.

The first introduced authentication code is built on finite fields, and the
other two codes are built over Galois rings, the first one uses resilient maps,
while the second construction uses a class of maps that generalizes the bent
maps produced at [4]. In the introduced code for finite fields and in one at
Galois rings optimal minimal impersonation and substitution probabilities are
got.

2 Systematic authentication codes

Authentication codes have been extensively studied in the literature. Let us
recall a basic setting [9]:

A systematic authentication code is a structure (S, T,K,E) where S is the
source state space, T is the tag space, K is the key space and E = (ek)k∈K is
a sequence of encoding rules S → T .

In general terms, a transmitter sends to a receiver a source element s ∈ S
codified by a tag t ∈ T through an encoding rule. The communicating channel
is public, thus it can be intervened by an intruder that is able to perform
either impersonation or substitution attacks through the public channel. The
intruder’s success probabilities for impersonation and substitution are, respec-
tively

pI = max
(s,t)∈S×T

card ({k ∈ K| ek(s) = t})
card (K)

(1)

pS = max
(s,t)∈S×T

max
(s′,t′)∈(S−{s})×T

card ({k ∈ K| ek(s) = t & ek(s′) = t′})
card ({k ∈ K| ek(s) = t})

(2)

Thus a goal in the design of authentication codes is to maintain these proba-
bilities as lower as possible. However, they cannot be zero, because there are
positive inferior bounds for these probabilities, namely [9]:

pI ≥
1

card (T )
, pS ≥

1

card (T )
(3)

An authentication code [14] is with secrecy if for any t ∈ T , and any s ∈ S,
pS(s|T = t) = pS(s). Namely, the knowledge of a tag does not provide any
information of the source message that it codifies. The authentication code
is without secrecy if pS(s|T = t) =∈ {0, 1}. Namely, the knowledge of a tag
is enough to decide for a given message whether it is codified by the tag,
independently of the encoding map. If an encoding rule S → T is one-to-
one then pS(s|T = t) 6= pS(s), thus it is not with secrecy, while certainly
pS(s|T = t) =∈ {0, 1} does hold, thus it is without secrecy.
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Here, we will assume the following transmission protocol [9], which is with-
out secrecy: A transmitter and a receiver agree a secret key k ∈ K. Whenever
a source s ∈ S should be sent, the participants proceed as follows:

Transmitter Receiver
calculates t = ek(s) ∈ T
forms the pairing m = (s, t)

m−→ receives m′ = (s′, t′),
calculates t′′ = ek(s′) ∈ T
if t′ = t′′ then she/he accepts
s′, otherwise the message m′ is
rejected

At [9] there are introduced systematic authentication codes using perfect
and almost-perfect non-linear functions. Two codes are presented using perfect
non-linear functions with

pI =
1

q
, pS ≤

1

q
+
q − 1

q
m+2

2

. (4)

in one case and

pI ≤
1

q
+
q − 1

q

1

q
m
2

, pS ≤
1

q

[
1 +

q2 − 1

q
m
2 − q + 1

]
. (5)

in the second case. Two other codes are presented using almost-perfect non-
linear functions with

pI =
1

q
, pS ≤

1

q
+

1 + 2(q − 1)(1 + q
m
2 )

qm+1
. (6)

for the first case, and

pI ≤
1

q
+

(q − 1)(1 + 2q
m
2 )

qm+1
, pS ≤

1

q

[
1 +

2(q2 + q − 2)q
m
2 + q2

qm − 2(q − 1)q
m
2 − 1

]
. (7)

for the second case.
At [6] a similar approach is assumed within constructed authentication

codes without secrecy, using Boolean functions with high nonlinearity, and
their optimality, with respect to reduce the number of encoding rules and the
impersonation and substitution probabilities.

Our purpose here is the introduction of authentication codes without se-
crecy with minimal impersonation and substitution probabilities.

3 Authentication codes over finite fields

3.1 Preliminaries on finite fields

Let Fn
2 and Fm

2 be the n- and m-dimensional vector spaces over the prime field
F2 of characteristic 2, 1 ≤ m ≤ n. For any index t-subset J ⊂ {0, . . . , n− 1},



4 Ku-Cauich, J. C. and Morales-Luna, G.

say J = {j0, . . . , jt−1}, and any a = (a0, . . . , at−1) ∈ Ft
2, let the affine J-variety

determined by a be

VJ,a,n = {x ∈ Fn
2 | ∀k ∈ {0, . . . , t− 1} : xjk = ak}.

A map f : Fn
2 → Fm

2 is J-resilient if ∀a = (a0, . . . , at−1) ∈ Ft
2, the map

f |VJ,a,n is balanced, namely, ∀y ∈ Fm
2 , card

(
VJ,a,n ∩ f−1(y)

)
= 2n−t−m. Map

f : Fn
2 → Fm

2 is t-resilient if it is J-resilient for any set J such that card (J) = t.
This characterization, assumed here as a definition, is suitable to be stated

in the context of Galois rings [2] as well.
For instance [2], let S = GR (ps, `m) be the Galois ring of characteristic ps

and order `m, where p is a prime and s, `,m ∈ Z+. For the particular case of
s = 1, the Galois ring is the finite field S = Fp`m . Let Sn be the n-Cartesian
power of S with its structure of S-module, let t = n− 1, let g : Sn → S be an
arbitrary map and

φ : Sn → Sn ,

(
s−1∑
i=0

ai0p
i, . . . ,

s−1∑
i=0

ai,n−1p
i

)
7→ (a00, . . . , a0,n−1), (8)

then the map

f : S2n → S , (x, y) 7→ f(x, y) = x · φ(y) + g(y),

where · is the inner product, is t-resilent. ut
An equivalent definition will be quoted at section 4.1 below.
Let q = p` be the power of a prime number, m ∈ Z+ be a positive integer

and TFqm/Fq be the trace map. Clearly, ∀a ∈ F∗qm , map Fqm → Fp, x 7→
TFqm/Fp(ax), is balanced. Let n ∈ Z+ be a positive integer and · be the inner
product map Fn

qm × Fn
qm → Fqm . Then ∀b ∈ Fn

qm − {0} map Fn
qm → Fp, x 7→

TFqm/Fq (b · x) is balanced as well. Let wH : Fn
qm → N be the Hamming weight

x 7→ wH(x) = card ({i| xi 6= 0}).
We observe that whenever t ≤ n, f : Fn

qm → Fqm is t-resilient, and a ∈ Fqm ,
b ∈ Fn

qm are such that wH(b) ≤ t and (a, b) 6= (0, 0) then:

– As shown in [2,11]:

ζaf (b) =
∑

x∈Fn
qm

e
2π
p i TFqm/Fp (a f(x)+b·x)

= 0. (9)

– As a more general result than Corollary 2 at [17] we have that

γabf : Fqm → Fq , γabf : x 7→ TFqm/Fp(a f(x) + b · x). (10)

is balanced.

Proposition 1 Under the above conditions: f : Fn
qm → Fqm t-resilient, a ∈

Fqm , b ∈ Fn
qm , wH(b) ≤ t and (a, b) 6= (0, 0), for any u ∈ Fqm :

card
(
γ−1abf (u)

)
= qmn−1. (11)
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Proof If a = 0 then (11) follows immediately.
If a 6= 0 then

q card
(
γ−1abf (u)

)
=
∑
x∈Fnq

 ∑
y∈Fqm

e
2π
p i TFq/Fp (y (TFqm/Fq (a f(x)+b·x)−u))


= qmn +

∑
y∈F∗

qm

∑
x∈Fn

qm

e
2π
p i TFq/Fp (y (TFqm/Fq (a f(x)+b·x)−u))

= qmn +
∑

y∈F∗
qm

e
2π
p i TFq/Fp (−y u))

∑
x∈Fn

qm

e
2π
p i TFqm/Fp (ya f(x)+yb·x)

= qmn

since, by (9),
∑

x∈Fn
qm
e

2π
p i TFqm/Fp (ya f(x)+yb·x)

= 0. Hence, relation (11) fol-

lows. ut

3.2 A new construction for an authentication code on finite fields

Let q be the power of a prime number, say q = p`, m ∈ Z+ a positive integer,
TFqm/Fq : Fqm → Fq the trace map, n ∈ Z+ another positive integer and

ei = (δij)
n−1
j=0 the i-th vector in the canonical basis of Fn

qm . Let f : Fn
qm → Fqm

be a t-resilient map, t ≤ n.
For any b = (b0, . . . , bn−1) ∈ Fn

qm , let

Xb,t = {
t−2∑
j=0

bjej , bt−1et−1, . . . , bn−1en−1} ⊂ Fn
qm ,

then card (Xb,t) = n− t+ 1. Let

(S, T,K) =

{1} × ⋃
b∈Fn

qm

Xb,t

 ∪ ({0} × (ej)
n−1
j=0

)
, Fq , Fn

qm

 (12)

From relation (12) we have

card (S) = qm(t−1) + (n− t+ 1)qm + n

card (T ) = q

card (K) = qmn

We define the following encoding maps: ∀k ∈ Fn
qm ,

ek : s = (s0, s1) 7→ TFqm/Fq (s0 f(k) + s1 · k) , (13)

namely, ∀k ∈ Fn
qm , ∀s = (s0, s1) ∈ S: ek(s) = γs0s1f (k), according to (10).

Proposition 2 Map k 7→ ek defined by the relation (13) is one-to-one.
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Proof Namely, let us assume ek = ek′ for two keys k, k′ ∈ Fn
qm . Then, neces-

sarily

∀s = (s0, s1) ∈ S : TFqm/Fq (s0 (f(k)− f(k′)) + s1 · (k − k′)) = 0,

In particular, for each j = 0, . . . , n− 1, by taking (s0, s1) = (0, ej) we get

0 = TFqm/Fq (0 (f(k)− f(k′)) + ej · (k − k′)) = TFqm/Fq
(
kj − k′j

)
,

by taking now (s0, s1) = (1, ej) we get

TFqm/Fq (f(k)− f(k′)) = −TFqm/Fq
(
kj − k′j

)
= 0,

and finally, by taking (s0, s1) = (1, bjej), with bj ∈ Fqm , we get

TFqm/Fq
(
bj(kj − k′j)

)
= −TFqm/Fq (f(k)− f(k′)) = 0.

Then necessarily, kj = k′j . Thus, k = k′. ut

Proposition 3 Let s0 = (s00, s10), s1 = (s01, s11) ∈ S be two different points
at S, t0, t1 ∈ Fq, and

C(f ; s0, s1; t0, t1) = {k ∈ Fn
qm | (ek(s0) = t0) & (ek(s1) = t1)}

Then card (C(f ; s0, s1; t0, t1)) = qmn−2.

Proof Let us write N(f ; s0, s1; t0, t1) = card (C(f ; s0, s1; t0, t1)). Through a
direct calculation,

q2N(f ; s0, s1; t0, t1) =
∑

x∈Fn
qm

 ∑
y0∈Fq

e
2π
p i TFq/Fp (y0 (TFqm/Fq (s00 f(x)+s10·x)−t0))


 ∑
y1∈Fq

e
2π
p i TFq/Fp (y1 (TFqm/Fq (s01 f(x)+s11·x)−t1))


=

∑
x∈Fn

qm

∑
(y0,y1)∈F2

q

Σ(y0, y1, x)(0)

= qmn +
∑

x∈Fn
qm

∑
(y0,y1)∈F2

q−{(0,0)}

Σ(y0, y1, x)(0)

= qmn +
∑

(y0,y1)∈F2
q−{(0,0)}

∑
x∈Fn

qm

Ψ(y0, y1, x)(1) Ψ(y0, y1)(2)

= qmn +
∑

(y0,y1)∈F2
q−{(0,0)}

Ψ(y0, y1)(2)
∑

x∈Fn
qm

Ψ(y0, y1, x)(1)

= qmn
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where

Σ(y0, y1, x)(0) = exp

[
2π

p
i TFq/Fp

(
y0 (TFqm/Fq (s00 f(x) + s10 · x)− t0)+

y1 (TFqm/Fq (s01 f(x) + s11 · x)− t1)
)]

Ψ(y0, y1, x)(1) = exp

[
2π

p
i TFqm/Fp ((y0 s00 + y1 s01) f(x) + (y0 s10 + y1 s11) · x)

]
Ψ(y0, y1)(2) = exp

[
2π

p
i TFq/Fp (−y0t0 − y1t1))

]
,

because, by (9),
∑

x∈Fn
qm
Ψ(y0, y1, x)(1) = 0.

It is worth to note that the equations y0 s00 + y1 s01 = 0 and y0 s10 +
y1 s11 = 0 cannot hold simultaneously because the points s0 and s1 are linearly
independent.

The claim follows. ut

Proposition 4 For the authentication code defined by relations (12)-(13):

pI =
1

q
, pS =

1

q
. (14)

Proof The result follows from relations (1) and (2) and the above calculations.
ut

Observe that also within this construction, the source space can be replaced
by the space

S =

(
{1} × {b ∈ Fn

qm | wH(b) ≤ t

2
}
)
∪
(
{0} × (ej)

n−1
j=0

)
producing the same probability values as in (14).

4 Authentication codes over Galois rings

4.1 Preliminaries on Galois rings

Let p be a prime number, s, `,m ∈ Z+ positive integers, and q = p`. Let
R = GR (ps, `) and S = GR (ps, `m) be the corresponding Galois rings, R is
an extension of Zps and S is an extension of R. The corresponding trace maps
are TS/R : S → R, TS/Zps : S → Zps and TR/Zps : R → Zps , and the sets of
zero divisors of R and S are denoted, respectively, pR and pS. Let us denote
by U(S) = (S − pS) ∪ {0} the set of elements at the Galois ring S that are
either units or zero.

Firstly, let us recall well known facts [13]:

Lemma 1 Let u ∈ R. Then the following assertions hold:
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1.
∑
x∈R

e
2π
ps i TR/Zps (ux) =

{
qs if u = 0
0 if u 6= 0

2.
∑
x∈pR

e
2π
ps i TR/Zps (ux) =

{
qs−1 if u ∈ ps−1R

0 if u /∈ ps−1R

3.
∑
x 6∈pR

e
2π
ps i TR/Zps (ux) =

 qs − qs−1 if u = 0
−qs−1 if u ∈ ps−1R− {0}

0 if u /∈ ps−1R

The notion of t-resilient maps has been studied by several authors in the
context of Galois rings and well known wider classes of t-resilient maps have
been provided. For instance, from Theorem 1 in [2], we have that for any
n ∈ Z+, if f0 : Sn → Sn is a map such that any element at its image f0(Sn)
has more than t entries which are units in S and f1 : Sn → S is any map,
then the map f : S2n → S, (x, y) 7→ x · f0(y) + f1(y) is a t-resilient map. In
particular the map f0 = φ : Sn → Sn defined by the relation (8), produces
t-resilient maps, with t < n.

Let n ∈ Z+ be another positive integer, and f : Sn → S a t-resilient map.
The following assertions hold:

– For a ∈ S − pS, map Sn → S, x 7→ a f(x), is t-resilient, hence it is also
balanced.

– For a ∈ S − pS, map Sn → S, x 7→ TS/Zps (a f(x)), is balanced (as compo-
sition of balanced maps).

– Whenever the entries of b ∈ Sn−{0} are units or zero, i.e., b ∈ U(S)n − {0},
Sn → S, x 7→ TS/Zps (b · x), is balanced.

– As shown in [2]:

ζaf (b) =
∑
x∈Sn

e
2π
ps i TS/Zps (a f(x)+b·x)

= 0.

whenever a ∈ U(R), b ∈ U(S)n, with wH(b) ≤ t, and (a, b) 6= (0, 0).
– As a more general result than Corollary 2 at [17] we have that

γabf : Sn → R , γabf : x 7→ TS/R(a f(x) + b · x). (15)

is balanced whenever a ∈ R− pR, b ∈ U(S)n, and wH(b) ≤ t.

Proposition 5 Let us assume one of the following conditions:

1. a ∈ U(R), b ∈ U(S)n, wH(b) ≤ t and (a, b) 6∈ (0, 0), or
2. a ∈ R− pR, b ∈ Sn and wH(b) ≤ t.

Then for any u ∈ R:

card
(
γ−1abf (u)

)
= qs(mn−1). (16)

Proof Under the stated conditions, γabf is balanced, hence (16) holds for each
u ∈ R. ut

Let us recall the important notion of bent functions in Galois rings.
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Let n,m ∈ N, n ≥ 2m, n even. A map f : Fn
2 → Fm

2 is called bent if

∀b ∈ Fn
2 , a ∈ Fm

2 − {0} : |ζ̂a·f (b)| = 2
n
2 (17)

where
ζ̂a·f (b) =

∑
x∈Fn2

(−1)a·f(x)+b·x.

This definition is extended to finite fields of odd prime characteristic [8] and
to Galois rings [2]. We recall that the perfectly non-linear maps are those
whose derivatives are balanced, and the almost-perfectly non-linear maps are
characterized by {0, 2}-valued derivatives. The perfectly non-linear maps are
equivalent to bent maps, however it is not the case in Galois rings. For odd n
and m = n, the almost-bent maps [5] are f : Fn

2 → Fn
2 such that

∀b ∈ Fn
2 , a ∈ Fn

2 − {0} : |ζ̂a·f (b)| ≤ 2
n+1
2 . (18)

Almost-bent maps are almost-perfectly non-linear, although the converse does
not hold. At [4] a family of bent maps is produced in Galois rings of character-
istic p2. Although up to now we have failed in providing a bent map in Galois
rings with characteristic ps, with s > 2, we are going to introduce now a family
of more general maps, useful for the construction of systematic authentication
codes.

Let us now introduce an useful class of maps for systematic authentication
codes. At [4] there was introduced a class of bent maps over Galois rings of
characteristic p2. Let us introduce a class of maps defined over Galois rings of
characteristic ps, with s ≥ 2, that, although they are not bent, they preserve
some of the bent maps properties quite useful in the context of systematic
authentication codes.

Let p be a prime number, s, ` ∈ Z+two positive integers, and q = p`. Let

us consider the Galois ring R = GR (ps, `). T (R) = {0} ∪
(
ξj
)q−2
j=0

is a set of

Teichmüller representatives at R.
For any map f : R→ R and a ∈ R− {0}, the Fourier transform of af is

b 7→ ζaf (b) =
∑
x∈R

e
2π
ps i TR/Zps (a f(x)−bx)

.

From the p-adic representation,

∀x ∈ R ∃t = (t0, . . . , ts−1) ∈ T (R)s : x =

s−1∑
j=0

tjp
j .

For any unit u ∈ R we have:∑
t∈T (R)s−1

e
2π

ps−1 i TR/Zps (u (
∑s−2
j=0 tjp

j)) =
∑

t∈T (R)s−1

e
2π
ps i TR/Zps (u (

∑s−1
j=1 tjp

j))

=
∑
r∈pR

e
2π
ps i TR/Zps (u r)

= 0 (19)
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In a similar way as for the cyclic multiplicative group of a finite field, we also
have:

Remark 1 Let r ∈ Z+ be such that (r, p` − 1) = 1. Then Fp` → Fp` , y 7→
f(y) = yr, is a polynomial permutation on Fpm [12]. Under the same condi-
tions, T (R)→ T (R), y 7→ Y r, is a permutation on the set T (R) of Teichmüller
representatives.

Proposition 6 Let R = GR (ps, `) be the Galois ring, extension of order ` of
Zps , with p ≥ s. Let r be an exponent relative prime with q− 1, (r, q− 1) = 1,
and c ∈ R. Let us consider

f : R→ R , x 7→ f(x) = xpr+1 + cxp. (20)

Then, for any u ∈ T (R), the map uf is such that for any b ∈ T (R) the absolute
value of the Fourier transform of uf at b satisfies:

|ζuf (b)| = qs−1. (21)

Proof Using the p-adic representation, for any x =
∑s−1

j=0 tjp
j ∈ R, t ∈ T (R)s,

and any u, b ∈ T (R):

uf(x)− bx = u

s−1∑
j=0

tjp
j

prs−1∑
j=0

tjp
j

+ c

s−1∑
j=0

tjp
j

p− b s−1∑
j=0

tjp
j

= u

tpr0
s−1∑

j=0

tjp
j

+ ctp0

− b s−1∑
j=0

tjp
j

= u
[
tpr+1
0 + ctp0

]
− bt0 + utpr0

s−1∑
j=1

tjp
j − b

s−1∑
j=1

tjp
j

= u
[
tpr+1
0 + ctp0

]
− bt0 + u (tpr0 − d)

s−1∑
j=1

tjp
j

= [uf(t0)− bt0] + u (tpr0 − d)

s−1∑
j=1

tjp
j

with d = u−1b ∈ T (R). Thus,∑
x∈R

e
2π
ps i TR/Zps (uf(x)−bx)

=
∑

(t0,t)∈T (R)×T (R)s−1

e
2π
ps i TR/Zps ([uf(t0)−bt0]+u(tpr0 −d)

∑s−1
j=1 tjp

j)

=
∑

t0∈T (R)

e
2π
ps i TR/Zps (uf(t0)−bt0)Ξ(t0, t, d) (22)



Authentication Codes Based on Resilient Boolean Maps 11

where

Ξ(t0, t, d) =
∑

t∈T (R)s−1

e
2π
ps i TR/Zps (u(tpr0 −d)

∑s−1
j=1 tjp

j).

Since (r, q − 1) = 1, we have also (pr, q − 1) = 1, hence τ 7→ τpr determines a
permutation on T (R) according to the remark 1.

Since d ∈ T (R), then there is exactly one index t0 such that tpr0 = d,

namely t0 = d
1
pr , and for this one we have Ξ(t0, t, d) = (q)s−1. For any other

values of t0, we have that u (tpr0 − d) is an unit in R, thus, from (19) we have
Ξ(t0, t, d) = 0. Consequently, from (22) we have:∑

x∈R
e

2π
ps i TR/Zps (uf(x)−bx) = qs−1

[
e

2π
ps i TR/Zps

(
u

[
d
pr+1
pr +cd

p
pr

]
−bd

1
pr

)]
.

By taking absolute value we have |ζuf (b)| = qs−1. ut

4.2 A first authentication code on Galois rings

Let p be a prime number, s, `,m ∈ Z+ positive integers, and q = p`. Let
R = GR (ps, `) and S = GR (ps, `m) be the corresponding Galois rings, TS/R :
S → R the trace map and U(S) = (S − pS) ∪ {0} the set of elements at S
that are either units or zero. Let T (S) be a set of Teichmüller representatives
at S.

Let n ∈ Z+ be another positive integer and for each i < n let ei =
(δij)

n−1
j=0 ∈ S

n, where δij is Kroenecker’s delta. Let f : Sn → S be a t-resilient
map, t ≤ n.

For any b = (b0, . . . , bm−1) ∈ U(S)n, let

Xb,t = {
t−2∑
j=0

bjej , bt−1et−1, . . . , bn−1en−1} ⊂ Sn,

then card (Xb,t) = n− t+ 1. Let

(Src, T,K) =

T (S)×
⋃

b∈T (S)n

Xb,t , R , Sn ×R

 (23)

From relation (23) we have

card (Src) = qm
[
qm(t−1) + (n− t+ 1)qm

]
(24)

card (T ) = qs

card (K) = qs(mn+1),

here, the cardinality of the source space Src, expressed by eq. (24), does not
depend on the exponent s at the characteristic ps of the Galois ring S. We
define the following encoding maps: ∀k = (k0, k1) ∈ Sn ×R,

ek : s = (s0, s1) 7→ TS/R (s0 f(k0) + s1 · k0) + k1, (25)
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namely, ∀k = (k0, k1) ∈ Sn ×R , ∀s = (s0, s1) ∈ T (S)×
⋃

b∈T (S)n Xb,t:

ek(s) = γs0s1f (k0) + k1,

according to (15).

Proposition 7 Map k 7→ ek defined by the relation (25) is one-to-one.

Proof Namely, let us assume ek = ek′ for two keys k = (k0, k1), k′ = (k′0, k
′
1) ∈

Sn ×R. Evaluation at s = (0, 0) produces, according to (25),

k1 = ek(0, 0) = ek′(0, 0) = k′1

consequently, ∀s = (s0, s1) ∈ T (S)×
⋃

b∈T (S)n Xb,t:

0 = TS/R (s0 (f(k0)− f(k′0)) + s1 · (k0 − k′0)) ,

hence, in particular, for s0 = 0,

∀s1 ∈
⋃

b∈T (S)n

Xb,t : 0 = TS/R (s1 · (k0 − k′0)) ,

thus necessarily k0 = k′0, and k = k′. ut

Proposition 8 For the authentication code defined by relations (23) and (25)
the following equations hold:

pI =
1

qs
, pS =

1

qs
. (26)

Proof Let us determine the impersonation probability pI according to (1). For
any s ∈ Src = T (S) ×

⋃
b∈T (S)n Xb,t consider the equivalence relation on the

key space K = Sn × R: [k ∼s k
′ ⇐⇒ ek(s) = ek′(s)] . For any t ∈ T = R,

the map (k0, k1) 7→ (k0, k1 + t) determines a bijection among two equivalence
classes, thus all equivalence classes have the same cardinality, namely qsmn =
1
qs card (K). From (1), we obtain pI = 1

qs .

Now, let us determine the substitution probability pS according to (2).
For any (s, t), (s′, t′) ∈ Src × T , with s′ = (s′0, s

′
1) 6= (s0, s1) = s, we have

∀k = (k0, k1) ∈ K:

(ek(s) = t) &
(ek(s′) = t′)

}
⇐⇒

{
(γs0s1f (k0) + k1 = t) &(
γs0−s′0,s1−s′1,f (k0) = t− t′

)
Thus, the numerator at the right side of (2) consists of the cardinality of inverse
images of points under the map k0 7→ γs0−s′0,s1−s′1,f (k0). Let us observe that
wH(s1 − s′1) ≤ t, and s1 − s′1 ∈ U(S)n because s1, s

′
1 ∈ T (S)n. Thus the

conditions of the Proposition 5 are fulfilled. From relation (16), it follows that
this numerator equals qs(mn−1). From (2), we obtain pS = 1

qs . ut
Observe that within this construction, the source space can be replaced by

the space

Sb = T (S)× {b ∈ T (S)n| wH(b) ≤ t

2
}

producing the same probability values as in (26).
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4.3 A second authentication code on Galois rings

Let us introduce now a second systematic authentication code over Galois
rings.

Let p be a prime number, s, `,m ∈ Z+ positive integers, R = GR (ps, `)
and S = GR (ps, `m) the corresponding Galois rings. Let f : S → S be a map
as in Proposition 6, defined by (20) but over the ring S.

Proposition 9 Under the above conditions, for (a, b) ∈ T (S)2 − {(0, 0)} and
u ∈ R let

C(a, b;u) = {x ∈ S| TS/R(af(x) + bx) = u}
N(a, b;u) = card (C(a, b;u)) .

Then

N(a, b;u) ≤ q(s+1)m + qsm+1 − qsm

qm+1
. (27)

Proof Let us estimate

V := card (R− pR) N(a, b;u) + (card (S)−N(a, b;u))(−qs−1).

We have,

V ≤
∑
x∈S

∑
y∈R−pR

e
2π
ps i TR/Zps (y (TS/R(af(x)+bx)−u))

=
∑

y∈R−pR
e

2π
ps i TR/Zps (−yu)

∑
x∈S

e
2π
ps i TR/Zps (y TS/R(af(x)+bx))

=
∑

y∈R−pR
e

2π
ps i TR/Zps (−yu)

∑
x∈S

e
2π
ps i TS/Zps (y (af(x)+bx))

.

Thus, taking absolute value at the last term in the above relations,

V ≤
∑

y∈R−pR

∣∣∣e 2π
ps i TR/Zps (−yu)

∣∣∣ ∣∣∣∣∣∑
x∈S

e
2π
ps i TS/Zps (y (af(x)+bx))

∣∣∣∣∣ .
and from Proposition 6,

V ≤ (qs − qs−1)q(s−1)m.

Hence,

N(a, b;u)qs − qs(m+1)−1 ≤ (qs − qs−1)q(s−1)m.

The result follows. ut

After this digression, let us introduce the new systematic authentication
code:

(Src, T,K) =
(
T (S)2 , R , S ×R

)
(28)



14 Ku-Cauich, J. C. and Morales-Luna, G.

From relation (28) we have

card (Src) = q2m (29)

card (T ) = qs

card (K) = qs(m+1)

also in this case we have that according to (29), the cardinality of the source
space does not depend on the exponent s of the characteristic ps of S. We
observe also that in case s = 2, we have card (K) = card (Src) · card (T ). Let
us define the following encoding maps: ∀k = (k0, k1) ∈ S ×R,

ek : s = (s0, s1) 7→ TS/R (s0 f(k0) + s1k0) + k1. (30)

Proposition 10 Map k 7→ ek defined by the relation (30) is one-to-one.

Proof Namely, let us suppose that for k = (k0, k1), k′ = (k′0, k
′
1) ∈ K we have

ek = ek′ . Then, evaluation at s = (0, 0) gives k1 = k′1. Thus ∀s = (s0, s1) ∈ Src,

0 = TS/R (s0 (f(k0)− f(k′0)) + s1(k0 − k′0))

in particular, for s0 = 0,

∀s1 : 0 = TS/R (s1(k0 − k′0)) .

Necessarily, k0 = k′0. ut

Proposition 11 For the authentication code defined by the relations (28)
and (30) the following equations hold:

pI =
1

qs
, pS =

1

q
+
q − 1

qm+1
. (31)

Proof Let us determine the impersonation probability pI according to (1). For
any s ∈ Src consider the equivalence relation on the key space K = S × R:
[k ∼s k

′ ⇐⇒ ek(s) = ek′(s)] . For any t ∈ T = R, the map (k0, k1) 7→ (k0, k1+
t) determines a bijection between two equivalence classes, thus all equivalence
classes have the same cardinality, namely qsm. From (1), we obtain pI = 1

qs .

Now, let us determine the substitution probability pS according to (2). For
any (s, t), (s′, t′) ∈ Src× T , with s′ 6= s, we have ∀k = (k0, k1) ∈ K:

(ek(s) = t) &
(ek(s′) = t′)

}
⇐⇒

{
(γs0s1f (k0) + k1 = t) &(
γs0−s′0,s1−s′1,f (k0) = t− t′

)
Thus, the numerator at the right side of (2) consists of the cardinality of inverse
images of points under the map k0 7→ TS/R ((s0 − s′0) f(k0) + (s1 − s′1)k0). By
recalling Proposition 9 and the relation (27).

pS =
N(s0 − s′0, s1 − s′1; ek(s)− ek(s′))

qsm
≤ q(s+1)m + qsm+1 − qsm

qm+1
· 1

qsm
.

The result follows. ut
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5 Conclusions

Most of former authentication codes using bent maps over finite fields or
almost-bent maps over finite fields or Galois rings show impersonation and
substitution probabilities of successful attacks of the form

pI =
1

q
+ o

(
1

qε+
m
2

)
, pS =

1

q
+ o

(
1

qε+
m
2

)
for some ε > 0, as in the above estimations (4), (5), (6), (7) quoted from [9] or
as in the estimations appearing at [3,13]. The systematic authentication code
using resilient maps over finite fields proposed here is improving these prob-
abilities. The calculated probabilities at (14) are optimal, according with (3).
Besides, in this case, within the authentication code proposed here, the result-
ing source spaces can be made much larger by a variation of the parameter n,
the dimension of the involved vector arrays.

On the other hand, in the context of Galois rings, we also propose two sys-
tematic authentication codes, the first one based on t-resilient maps and the
second code on a particular class of maps with “large curvature”. The imper-
sonation and substitution probabilities for the first code, calculated at (26) are
optimal, according with (3), and they are indeed improving the corresponding
values for the authentication codes formerly proposed at [4]. The bounds cal-
culated at (31) for the second systematic authentication code do not improve
the bounds at [4], however they coincide with these bounds for the special case
s = 2. Also, the source spaces can be enlarged by a variation of the extension
degree of the ring S with respect to R.

Since there are no known or reported bent maps for s > 2 and the codes
defined by the relations (28)-(30) coincide with those built at [4], the con-
struction presented here can be regarded as a generalization of the former
construction at [4].

We do not consider optimality with respect to the size of the source space,
the tagging space and the key space, with the criteria stated at [16]. Our
optimality criteria are those at [6], where the introduced authentication codes
use perfectly non-linear maps. At [10], a subcode of the Reed-Muller code
generalized to first order is employed to build an authentication code such
that the key space size is bounded by the product of the sizes of the source
and tagging spaces. Our optimality criteria is in line with those at [6].
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