9,371 research outputs found

    A note on total and list edge-colouring of graphs of tree-width 3

    Full text link
    It is shown that Halin graphs are Δ\Delta-edge-choosable and that graphs of tree-width 3 are (Δ+1)(\Delta+1)-edge-choosable and (Δ+2)(\Delta +2)-total-colourable.Comment: arXiv admin note: substantial text overlap with arXiv:1504.0212

    Layout of Graphs with Bounded Tree-Width

    Full text link
    A \emph{queue layout} of a graph consists of a total order of the vertices, and a partition of the edges into \emph{queues}, such that no two edges in the same queue are nested. The minimum number of queues in a queue layout of a graph is its \emph{queue-number}. A \emph{three-dimensional (straight-line grid) drawing} of a graph represents the vertices by points in Z3\mathbb{Z}^3 and the edges by non-crossing line-segments. This paper contributes three main results: (1) It is proved that the minimum volume of a certain type of three-dimensional drawing of a graph GG is closely related to the queue-number of GG. In particular, if GG is an nn-vertex member of a proper minor-closed family of graphs (such as a planar graph), then GG has a O(1)×O(1)×O(n)O(1)\times O(1)\times O(n) drawing if and only if GG has O(1) queue-number. (2) It is proved that queue-number is bounded by tree-width, thus resolving an open problem due to Ganley and Heath (2001), and disproving a conjecture of Pemmaraju (1992). This result provides renewed hope for the positive resolution of a number of open problems in the theory of queue layouts. (3) It is proved that graphs of bounded tree-width have three-dimensional drawings with O(n) volume. This is the most general family of graphs known to admit three-dimensional drawings with O(n) volume. The proofs depend upon our results regarding \emph{track layouts} and \emph{tree-partitions} of graphs, which may be of independent interest.Comment: This is a revised version of a journal paper submitted in October 2002. This paper incorporates the following conference papers: (1) Dujmovic', Morin & Wood. Path-width and three-dimensional straight-line grid drawings of graphs (GD'02), LNCS 2528:42-53, Springer, 2002. (2) Wood. Queue layouts, tree-width, and three-dimensional graph drawing (FSTTCS'02), LNCS 2556:348--359, Springer, 2002. (3) Dujmovic' & Wood. Tree-partitions of kk-trees with applications in graph layout (WG '03), LNCS 2880:205-217, 200

    The Semantics of Graph Programs

    Get PDF
    GP (for Graph Programs) is a rule-based, nondeterministic programming language for solving graph problems at a high level of abstraction, freeing programmers from handling low-level data structures. The core of GP consists of four constructs: single-step application of a set of conditional graph-transformation rules, sequential composition, branching and iteration. We present a formal semantics for GP in the style of structural operational semantics. A special feature of our semantics is the use of finitely failing programs to define GP's powerful branching and iteration commands

    Upward Three-Dimensional Grid Drawings of Graphs

    Full text link
    A \emph{three-dimensional grid drawing} of a graph is a placement of the vertices at distinct points with integer coordinates, such that the straight line segments representing the edges do not cross. Our aim is to produce three-dimensional grid drawings with small bounding box volume. We prove that every nn-vertex graph with bounded degeneracy has a three-dimensional grid drawing with O(n3/2)O(n^{3/2}) volume. This is the broadest class of graphs admiting such drawings. A three-dimensional grid drawing of a directed graph is \emph{upward} if every arc points up in the z-direction. We prove that every directed acyclic graph has an upward three-dimensional grid drawing with (n3)(n^3) volume, which is tight for the complete dag. The previous best upper bound was O(n4)O(n^4). Our main result is that every cc-colourable directed acyclic graph (cc constant) has an upward three-dimensional grid drawing with O(n2)O(n^2) volume. This result matches the bound in the undirected case, and improves the best known bound from O(n3)O(n^3) for many classes of directed acyclic graphs, including planar, series parallel, and outerplanar
    corecore