1,464 research outputs found

    The science of color and color vision

    Get PDF
    A survey of color science and color vision

    Cast shadow modelling and detection

    Get PDF
    Computer vision applications are often confronted by the need to differentiate between objects and their shadows. A number of shadow detection algorithms have been proposed in literature, based on physical, geometrical, and other heuristic techniques. While most of these existing approaches are dependent on the scene environments and object types, the ones that are not, are classified as superior to others conceptually and in terms of accuracy. Despite these efforts, the design of a generic, accurate, simple, and efficient shadow detection algorithm still remains an open problem. In this thesis, based on a physically-derived hypothesis for shadow identification, novel, multi-domain shadow detection algorithms are proposed and tested in the spatial and transform domains. A novel "Affine Shadow Test Hypothesis" has been proposed, derived, and validated across multiple environments. Based on that, several new shadow detection algorithms have been proposed and modelled for short-duration video sequences, where a background frame is available as a reliable reference, and for long duration video sequences, where the use of a dedicated background frame is unreliable. Finally, additional algorithms have been proposed to detect shadows in still images, where the use of a separate background frame is not possible. In this approach, the author shows that the proposed algorithms are capable of detecting cast, and self shadows simultaneously. All proposed algorithms have been modelled, and tested to detect shadows in the spatial (pixel) and transform (frequency) domains and are compared against state-of-art approaches, using popular test and novel videos, covering a wide range of test conditions. It is shown that the proposed algorithms outperform most existing methods and effectively detect different types of shadows under various lighting and environmental conditions

    The asymmetries of colour constancy as determined through illumination discrimination using tuneable LED light sources

    Get PDF
    PhD ThesisThe light reflected from object surfaces changes with the spectral content of the illumination. Despite these changes, the human visual system tends to keep the colours of surfaces constant, a phenomenon known as colour constancy. Colour constancy is known to be imperfect under many conditions; however, it is unknown whether the underlying mechanisms present in the retina and the cortex are optimised for the illuminations under which they have evolved, namely, natural daylights, or for particular objects. A novel method of measuring colour constancy, by illumination discrimination, is presented and explored. This method, unlike previous methods of measuring colour constancy, allows the testing of multiple, real, illuminations with arbitrary spectral content, through the application of tuneable, multi-channel LED light sources. Data from both real scenes, under real illuminations, and computer simulations are presented which support the hypothesis that the visual system maintains higher levels of colour constancy for daylight illumination changes, and in particular in the “bluer” direction, which are also the changes most frequent in nature. The low-level cone inputs for various experimental scenes are examined which challenge all traditional theories of colour constancy supporting the conclusions that higher-level mechanisms of colour constancy are biased for particular illuminations. Furthermore, real and simulated neutral (grey) surfaces are shown to affect levels of colour constancy. Moreover, the conceptual framework for discussing colour constancy with respect to emergent LED light sources is discussed.EPSR

    Optimising Light Source Spectrum to Reduce the Energy Absorbed by Objects

    Get PDF
    Light is used to illuminate objects in the built environment. Humans can only observe light reflected from an object. Light absorbed by an object turns into heat and does not contribute to visibility. Since the spectral output of the new lighting technologies can be tuned, it is possible to imagine a lighting system that detects the colours of objects and emits customised light to minimise the absorbed energy. Previous optimisation studies investigated the use of narrowband LEDs to maximise the efficiency and colour quality of a light source. While these studies aimed to tune a white light source for general use, the lighting system proposed here minimises the energy consumed by lighting by detecting colours of objects and emitting customised light onto each coloured part of the object. This thesis investigates the feasibility of absorption-minimising light source spectra and their impact on the colour appearance of objects and energy consumption. Two computational studies were undertaken to form the theoretical basis of the absorption-minimising light source spectra. Computational simulations show that the theoretical single-peak spectra can lower the energy consumption up to around 38 % to 62 %, and double-peak test spectra can result in energy savings up to 71 %, without causing colour shifts. In these studies, standard reference illuminants, theoretical test spectra and coloured test samples were used. These studies are followed by the empirical evidence collected from two psychophysical experiments. Data from the experiments show that observers find the colour appearance of objects equally natural and attractive under spectrally optimised spectra and reference white light sources. An increased colour difference, to a certain extent, is found acceptable, which allows even higher energy savings. However, the translucent nature of some objects may negatively affect the results

    Colour Constancy: Cues, Priors and Development

    Get PDF
    Colour is crucial for detecting, recognising, and interacting with objects. However, the reflected wavelength of light ("colour") varies vastly depending on the illumination. Whilst adults can judge colours as relatively invariant under changing illuminations (colour constancy), much remains unknown, which this thesis aims to resolve. Firstly, previous studies have shown adults can use certain cues to estimate surface colour. However, one proposed cue - specular highlights - has been little researched so this is explored here. Secondly, the existing data on a daylight prior for colour constancy remain inconclusive so we aimed to further investigate this. Finally, no studies have investigated the development of colour constancy during childhood so the third aim is to determine at what age colour constancy becomes adult-like. In the introduction, existing research is discussed, including cues to the illuminant, daylight priors, and the development of perceptual constancies. The second chapter contains three experiments conducted to determine whether adults can use a specular highlight cue and/ or daylight prior to aid colour constancy. Results showed adults can use specular highlights when other cues are weakened. Evidence for a daylight prior was weak. In the third chapter the development of colour constancy during childhood was investigated by developing a novel child-friendly task. Children had higher constancy than adults, and evidence for a daylight prior was mixed. The final experimental chapter used the task developed in Chapter 3 to ask whether children can use specular highlights as a cue for colour constancy. Testing was halted early due to the coronavirus pandemic, yet the data obtained suggest that children are negatively impacted by specular highlights. Finally, in the general discussion, the results of the six experiments are brought together to draw conclusions regarding the use of cues and priors, and the development of colour constancy. Implications and future directions for research are discussed

    Image Segmentation With Detection of Highlights and Inter-Reflections Using Color

    Get PDF
    We present an approach to the construction of a computational model for color image segmentation based on the physical properties of sensors, illumination lights and surface reflectances. Using the established model, we perform color image segmentation and detect small interreflections as well as highlights

    Advances in multispectral and hyperspectral imaging for archaeology and art conservation

    Get PDF
    Multispectral imaging has been applied to the field of art conservation and art history since the early 1990s. It is attractive as a noninvasive imaging technique because it is fast and hence capable of imaging large areas of an object giving both spatial and spectral information. This paper gives an overview of the different instrumental designs, image processing techniques and various applications of multispectral and hyperspectral imaging to art conservation, art history and archaeology. Recent advances in the development of remote and versatile multispectral and hyperspectral imaging as well as techniques in pigment identification will be presented. Future prospects including combination of spectral imaging with other noninvasive imaging and analytical techniques will be discussed
    • …
    corecore