114 research outputs found

    Multipoint-to-point data aggregation using a single receiver and frequency-multiplexed intensity-modulated ONUs

    Get PDF
    We demonstrate 2.5-GHz-spaced frequency multiplexing capable of aggregating 64 intensity-modulated end-users using low-speed electronic and optoelectronic components. All optical network units (ONUs) achieved high per-user capacity with dedicated optical bands, enabling future low latency applications

    Ultra-Dense WDM-PON 6.25 GHz spaced 8x1 Gb/s based on a simplified coherent-detection scheme

    Get PDF
    We demonstrate experimentally a novel type of coherent low cost Gigabit-to-the-User Ultra-Dense-Wavelength Division Multiplexing (UD-WDM) PON, featuring 6.25 GHz channel spacing and long reach. Polarization-independent coherent detection is achieved by exploiting a novel scheme which requires only a 3×3 coupler, three photodiodes, basic analogue processing and a common DFB as local oscillator (LO). This avoids the conventional polarization diversity approach. The DFB LO is free running, i.e. not locked in frequency, and is tuned to detect any of the eight channels by simply changing its temperature in a range of 2° C. We achieve 70 km long-reach transmission plus 30 dB attenuation, for a total of > 45 dB optical distribution network loss. This indicates that this solution could be effectively exploited to overlay existing PON infrastructures by UD-WDM

    Integrated Optical-Wireless Interface and Detection

    Get PDF
    This chapter elaborates on the beneficial aspects and hardware implementations of incorporating ultradense WDM-PONs (UDWDM-PONs) with hybrid optical-wireless fronthaul links and fiber to the home applications. Simulation results on the synthesis of a low-cost and low-energy consumption optoelectronic unit within the future 5G base stations (BS) are presented. In addition, an advanced neural network is investigated capable of compensating for the linear and nonlinear effects induced by semiconductor optical amplifiers (SOA)

    Optical frequency comb source for next generation access networks

    Get PDF
    The exponential growth of converged telecommunication services and the increasing demands for video rich multimedia applications have triggered the vast development of optical access technology to resolve the capacity bottleneck at metropolitan-access aggregations. To further enhance overall performance, next generation optical access networks will require highly efficient wavelength division multiplexing (WDM) technology beyond the capability of current standard time division multiplexed (TDM) systems. The successful implementation of future-proof WDM access networks depends on advancements in high performance transmission schemes as well as economical and practical electronic/photonic devices. This thesis focuses on an investigation of the use of optical frequency comb sources, and spectrally efficient modulation formats, in high capacity WDM based optical access networks. A novel injected gain switched comb generation technique which deliver simplicity, reliability, and cost effectiveness has been proposed and verified through experimental work. In addition, a detailed characterization of the optical comb source has been undertaken with special attention on the phase noise property of the comb lines. The potential of the injected gain switched comb source is then demonstrated in a digital coherent receiver based long reach WDM access scenario, which intends to facilitate 10 - 40 Gbit/s data delivery per channel . Furthermore, an optical scalar transmission scheme enabling the direct detection of higher order modulation format signals has been proposed and experimentally investigated

    Self-Coherent Reflective Passive Optical Networks

    Get PDF

    Quantum Dash Multi-Wavelength Lasers for Next Generation High Capacity Multi-Gb/s Millimeter-Wave Radio-over-Fiber Wireless Communication Networks

    Get PDF
    The ever-increasing proliferation of mobile users and new technologies with different applications and features, and the demand for reliable high-speed high capacity, pervasive connectivity and low latency have initiated a roadmap for the next generation wireless networks, fifth generation (5G), which is set to revolutionize the existing wireless communications. 5G will use heterogeneous higher carrier frequencies from the plentifully available spectra in the higher microwave and millimeter-wave (MMW) bands, including licensed and unlicensed spectra, for achieving multi-Gb/s wireless connectivity and overcoming the existing wireless spectrum crunch in the sub-6 GHz bands, resulting from the tremendous growth of data-intensive technologies and applications. The use of MMW when complemented by multiple-input-multiple-output (MIMO) technology can significantly increase data capacity through spatial multiplexing, and improve coverage and system reliability through spatial diversity. However, high-frequency MMW signals are prone to extreme propagation path loss and are challenging to generate and process with conventional bandwidth-limiting electronics. In addition, the existing digitized fronthaul for centralized radio access network (C-RAN) architecture is considered inefficient for 5G and beyond. Thus, to fully exploit the promising MMW 5G new radio (NR) resource and to alleviate the electronics and fronthaul bottleneck, microwave photonics with analog radio-over-fiber (A-RoF) technology becomes instrumental for optically synthesizing and processing broadband RF MMW wireless signals over optical links. The generation and distribution of high-frequency MMW signals in the optical domain over A-RoF links facilitate the seamless integration of high-capacity, reliable and transparent optical networks with flexible, mobile and pervasive wireless networks, extending the reach and coverage of high-speed broadband MMW wireless communications. Consequently, this fiber-wireless integration not only overcomes the problem of high bandwidth requirements, transmission capacity and span limitation but also significantly reduces system complexity considering the deployment of ultra-dense small cells with large numbers of 5G remote radio units (RRUs) having massive MIMO antennas with beamforming capabilities connected to the baseband units (BBU) in a C-RAN environment through an optical fiber-based fronthaul network. Nevertheless, photonic generation of spectrally pure RF MMW signals either involves complex circuitry or suffers from frequency fluctuation and phase noise due to uncorrelated optical sources, which can degrade system performance. Thus simple highly integrated and cost-efficient low-noise optical sources are required for next-generation MMW RoF wireless transmission systems. More recently, well-designed quantum confined nanostructures such as semiconductor quantum dash/dot multi-wavelength lasers (QD-MWLs) have attracted more interest in the photonic generation of RF MMW signals due to their simple compact and integrated design with highly coherent and correlated optical signals having a very low phase and intensity noise attributed to the inherent properties of QD materials. The main theme of this thesis revolves around the experimental investigation of such nanostructures on the device and system level for applications in high-speed high-capacity broadband MMW RoF-based fronthaul and wireless access networks. Several photonic-aided high-capacity long-reach MMW RoF wireless transmission systems are proposed and experimentally demonstrated based on QD-MWLs with the remote distribution and photonic generation of broadband multi-Gb/s MMW wireless signals at 5G NR (FR2) in the K-band, Ka-band and V-band in simplex, full-duplex and MIMO configurations over 10 to 50 km optical fiber and subsequent wireless transmission and detection. The QD-MWLs-based photonic MMW RoF wireless transmission systems’ designs and experimental demonstrations could usher in a new era of ultra-high-speed broadband multi-Gb/s wireless communications at the MMW frequency bands for next-generation wireless networks. The QD-MWLs investigated in this thesis include a simple monolithically integrated and highly coherent low-noise single-section semiconductor InAs/InP QD buried heterostructure passively mode-locked (PML) laser-based optical coherent frequency comb (CFC) and a novel monolithic highly correlated low-noise semiconductor InAs/InP buried heterostructure common-cavity QD dual-wavelength distributed feedback laser (QD-DW-DFBL). The performance of each device is thoroughly characterized experimentally in terms of optical phase noise, relative intensity noise (RIN), timing jitter and RF phase noise exhibiting promising results. Based on these devices, different long-reach photonic MMW RoF wireless transmission systems, including simplex single-input-single-output (SISO) and multiple-input-multiple-output (MIMO) and bidirectional configurations, are proposed and experimentally demonstrated with real-time remote electrical RF synthesizer-free all-optical frequency up-conversion, wireless transmission and successful reception of wide-bandwidth multi-level quadrature amplitude modulated (M-QAM) RF MMW wireless signals having bit rates ranging from 4 Gb/s to 36 Gb/s over different hybrid fiber-wireless links comprising of standard single mode fiber (SSMF) and indoor wireless channel. The end-to-end links are thoroughly investigated in terms of error-vector-magnitude (EVM), bit-error-rat (BER), constellations and eye diagrams, realizing successful error-free transmission. Finally, novel high-capacity spectrally efficient MIMO and optical beamforming enabled photonic MMW RoF wireless transceivers design and methods based on QD-MWLs with wavelength division multiplexing (WDM) and space division multiplexing (SDM) are proposed and discussed. A proof-of-concept implementation of the proposed photonic MMW RoF wireless transmission system is also simulated in a simple WDM-based configuration with bidirectional 4×4 MIMO MMW carrier streams

    Coherent terabit/s communications using chip-scale optical frequency comb sources

    Get PDF
    Der Visual Networking Index (VNI) der Firma Cisco weist für den weltweiten Internetverkehr eine durchschnittlichen jährlichen Wachstumsrate von 26% aus und prognostiziert 2022 einen jährliche Datenverkehr von 4,8 Zettabyte [1]. Um diesem Anstieg des Netzwerkverkehrs zu begegnen, ist die kohärente Datenübertragung in Kombination mit sogenanntem Wellenlängenmultiplex (engl. wavelength-division multiplexing, WDM) in Langstrecken-Glasfasernetzwerken zum Standard geworden. Mit der verstärkten Nutzung von Cloud-basierten Diensten, dem wachsenden Trend, Inhalte in die Nähe der Endbenutzer zu bringen, und der steigenden Anzahl angeschlossener Geräte in sog. Internet-of-Things-(IoT-)Szenarien, wird der Datenverkehr auf allen Netzebenen voraussichtlich weiter drastisch ansteigen. Daher wird erwartet, dass die WDM-Übertragung mittelfristig auch kürzere Verbindungen verwendet werden wird, die in viel größeren Stückzahlen eingesetzt werden als Langstreckenverbindungen und bei denen die Größe und die Kosten der Transceiver-Baugruppen daher wesentlich wichtiger sind. In diesem Zusammenhang werden optische Frequenzkammgeneratoren als kompakte und robuste Mehrwellenlängen-Lichtquellen eine wichtige Rolle spielen. Sie können sowohl auf der Sender- als auch auf der Empfängerseite einer kohärenten WDM-Verbindung eine große Anzahl wohldefinierter optischer Träger oder Lokaloszillator-Signale liefern. Ein besonders wichtiger Vorteil der Frequenzkämme ist die Tatsache, dass die Spektrallinien von Natur aus äquidistant sind und durch nur zwei Parameter − die Mittenfrequenz und den freien Spektralbereich − definiert werden. Dadurch kann eine auf eine individuelle Frequenzüberwachung der einzelnen Träger verzichtet werden, und etwaige spektrale Schutzbänder zwischen benachbarten Kanälen können stark reduziert werden oder komplett wegfallen. Darüber hinaus erleichtert die inhärente Phasenbeziehung zwischen den Trägern eines Frequenzkamms die gemeinsame digitale Signalverarbeitung der WDM-Kanäle, was die Empfängerkomplexität reduzieren und darüber hinaus auch die Kompensation nichtlinearer Kanalstörungen ermöglichen kann. Unter den verschiedenen Kammgeneratoren sind Bauteile im Chip-Format der Schlüssel für künftige WDM-Transceiver, die eine kompakte Bauform aufweisen und sich kosteneffizient in großen Stückzahlen herstellen lassen sollen. Gegenstand dieser Arbeit ist daher die Untersuchung von neuartigen Frequenzkammgeneratoren im Chip-Format im Hinblick auf deren Eignung für die massiv parallele WDM-Übertragung. Diese Bauteile lassen sich nicht nur als Mehrwellenlängen-Lichtquellen auf der Senderseite einsetzen, sondern bieten sich auch als Mehrwellenlängen-Lokaloszillatoren (LO) für den parallelen kohärenten Empfang mehrerer WDM-Kanäle an. Bei den untersuchten Bauteilen handelt es sich um gütegeschaltete Laserdioden (engl. Gain-Switched Laser Diodes), modengekoppelte Laserdioden auf Basis von Quantenstrich-Strukturen (Quantum-Dash Mode-Locked Laser Diodes, QD-MLLD) und sog. Kerr-Kamm-Generatoren, die optische Nichtlinearitäten dritter Ordnung in Ringresonatoren hoher Güte ausnutzen. Der Schwerpunkt liegt dabei auf Datenübertragungsexperimenten, die die Eignung der verschiedenen Kammquellen untersuchen und die in den internationalen Fachzeitschriften Nature und Optics Express veröffentlicht wurden [J1]-[J4]. Kapitel 1 gibt eine allgemeine Einführung in das Thema der optischen Datenübertragung und der zugehörigen WDM-Verfahren. In diesem Zusammenhang werden die Vorteile optischer Frequenzkämme als Lichtquellen für die WDM-Datenübertragung und den WDM-Empfang erläutert. Die einige Inhalte dieses Kapitels sind dem Buchkapitel [B1] entnommen, wobei Änderungen zur Anpassung an die Struktur und Notation der vorliegenden Arbeit vorgenommen wurden. In Kapitel 2 wird eine grundlegende Einführung in optische Kommunikations-systeme mit Schwerpunkt auf Hochleistungsverbindungen gegeben, die auf WDM und kohärenten Übertragungsverfahren beruhen. Außerdem wird die integrierte Optik als wichtiges technologisches Element zum Bau kostengünstiger und kompakter WDM-Transceiver vorgestellt. Das Kapitel gibt ferner einen Überblick über verschiedene optische Frequenzkammgeneratoren im Chip-Format, die sich als Mehrwellenlängen-Lichtquellen für solche Transceiver anbieten, und es werden grundlegende Anforderungen an optische Frequenzkammgeneratoren formuliert, die für WDM-Anwendungen relevant sind. Das Kapitel endet mit einer vergleichenden Diskussion der verschiedenen Kammgeneratoren sowie einer Zusammenfassung ausgewählter WDM-Datenübertragungsexperimente, die mit diesen Kammgeneratoren demonstriert wurden. In Kapitel 3 wird die kohärente WDM-Sendetechnik und der kohärente WDM-Empfang mit einer gütegeschalteten Laserdiode (GSLD) diskutiert. Im Mittelpunkt der Arbeit steht ein Versuchsaufbau, in dem der empfängerseitige Kammgenerator aktiv mit dem senderseitigen Generator synchronisiert wurde. Das Experiment stellt die weltweit erste Demonstration einer kohärenten WDM-Übertragung mit Datenraten von über 1 Tbit/s dar, bei dem synchronisierte Frequenzkämme als Mehrwellenlängen-Lichtquelle am Sender und als Mehrwellenlängen-LO am Empfänger verwendet werden. Kapitel 4 untersucht das Potenzial von QD-MLLD als Mehrwellenlängen-Lichtquellen für die WDM-Datenübertragung. Diese Kammgeneratoren sind aufgrund ihrer kompakten Größe und des einfachen Betriebs besonders attraktiv. Die erzeugten Kammlinien weisen jedoch ein hohes Phasenrauschen auf, das die Modulationsformate in früheren Übertragungsexperimenten auf 16QAM begrenzte. In diesem Kapitel wird gezeigt, dass QD-MLLD die WDM-Übertragung mit Modulationsformaten jenseits von 16QAM unterstützen kann, wenn eine optische Rückkopplung durch einen externen Resonator zur Reduzierung des Phasenrauschens der Kammlinien verwendet wird. In den Experimenten wird eine Reduzierung der intrinsischen Linienbreite um etwa zwei Größenordnungen demonstriert, was eine 32QAM-WDM-Übertragung ermöglicht. Die Demonstration der Datenübertragung mit einer Rate von 12 Tbit/s über eine 75 km lange Faser mit einer spektralen Netto-Effizienz von 7,5 Bit/s/Hz stellt dabei die höchste für diese Bauteile gezeigte spektrale Effizienz dar. Gegenstand von Kapitel 5 ist die WDM-Übertragung und der kohärente Empfang mit QD-MLLD vor. Die Vorteile der Skalierbarkeit von QD-MLLD für massiv parallele WDM-Verbindungen werden also nicht nur am Sender, wie in Kapitel 4 beschrieben, sondern auch am Empfänger ausgenutzt. So konnte ein Datenstrom mit einer Rohdatenrate von 4,1 Tbit/s über eine Distanz von 75 km übertragen werden, indem ein Paar von QD-MLLD mit ähnlichen freien Spektralbereichen verwendet wurde – ein Bauteil zur Erzeugung der optischen Träger am WDM-Sender und ein weiteres Bauteil zur Bereitstellung der erforderlichen LO-Töne für den kohärenten WDM-Empfang. Kapitel 6 beschreibt WDM-Datenübertragungsexperimente mit Hilfe von Kerr-Kamm-Generatoren. Dazu werden sog. dissipative Kerr-Solitonen (engl. dissipative Kerr solitons, DKS) in integriert-optischen Mikroresonatoren genutzt, die wegen zur Erzeugung einer streng periodischen Folge ultra-kurzer optischer Impulsen im Zeitbereich und damit zu einem breitbandigen, für WDM-Systeme sehr gut geeigneten Frequenzkamm führen. Mit diesen DKS-Kämmen wird ein Datenstrom mit einer Rohdatenrate von 55,0 Tbit/s über eine 75 km lange Faser übertragen. Zum Zeitpunkt der Veröffentlichung war dies die höchste Datenrate, welche mit einer chip-basierten Frequenzkammquelle erreicht wurde. Das Ergebnis zeigt das Potenzial der Kammquellen für WDM-Übertragung. Darüber hinaus wird der kohärente Empfang von 93 WDM-Kanälen mit einer Datenrate von 37,2 Tbit/s unter Verwendung eines DKS-Kamms als Multiwellenlängen-LO demonstriert; die Übertragung erfolgt über eine 75 km lange Faser. Diese Arbeiten wurde in der international renommierten wissenschaftlichen Zeitschrift Nature publiziert. Kapitel 7 fasst die Arbeit zusammen und gibt einen Ausblick auf die Anwendung der diskutierten Kammgeneratoren in zukünftigen WDM-Systemen

    Arquitectura WDM-PON baseada em componentes sintonizáveis

    Get PDF
    Mestrado em Engenharia Electrónica e TelecomunicaçõesO tema principal abordado neste trabalho é a tecnologia WDM-PON como próxima geração de redes de acesso. Começou por ser feita uma abordagem geral a este tópico, servindo esta como ponto de partida para a parte experimental. Foi proposta e demonstrada uma arquitectura WDM-PON bidirecional directamente modulada baseada em lasers sintonizáveis e receptores sintonizáveis no terminal do utilizador, e um divisor de potência no nó de acesso. Foram também apontados possíveis melhoramentos ao hardware desta arquitectura. Dois formatos de modulação avançados – QPSK e Duobinário – foram abordados, no contexto dos sistemas WDM-PON. Assim sendo, foram testados um sistema coerente QPSK e um sistema UDWDM-QPSK e foram apresentados os resultados obtidos.The main topic of this work is WDM-PON as a technology for next generation access networks. It was first made a general approach to this topic, serving as starting point to the experimental part. It was proposed and demonstrated a bidirectional directly modulated WDM-PON architecture based on tunable lasers and tunable receivers at the users’ end, and a splitter at the Remote Node. Possible improvements to this architecture’s hardware were also pointed out. Two advanced modulation formats – QPSK and Duobinary – were addressed, in the context of WDM-PON systems. Thus, we tested a coherent QPSK and a UDWDM QPSK system and present the obtained results
    corecore