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Resumo 

 
O tema principal abordado neste trabalho é a tecnologia WDM-PON como 
próxima geração de redes de acesso. Começou por ser feita uma abordagem 
geral a este tópico, servindo esta como ponto de partida para a parte 
experimental. Foi proposta e demonstrada uma arquitectura WDM-PON 
bidirecional directamente modulada baseada em lasers sintonizáveis e 
receptores sintonizáveis no terminal do utilizador, e um divisor de potência no 
nó de acesso. Foram também apontados possíveis melhoramentos ao 
hardware desta arquitectura. 
 
Dois formatos de modulação avançados – QPSK e Duobinário – foram 
abordados, no contexto dos sistemas WDM-PON. Assim sendo, foram 
testados um sistema coerente QPSK e um sistema UDWDM-QPSK e foram 
apresentados os resultados obtidos. 
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Abstract 

 
The main topic of this work is WDM-PON as a technology for next generation 
access networks. It was first made a general approach to this topic, serving as 
starting point to the experimental part. It was proposed and demonstrated a 
bidirectional directly modulated WDM-PON architecture based on tunable 
lasers and tunable receivers at the users’ end, and a splitter at the Remote 
Node. Possible improvements to this architecture’s hardware were also pointed 
out. 
 
Two advanced modulation formats – QPSK and Duobinary – were addressed, 
in the context of WDM-PON systems. Thus, we tested a coherent QPSK and a 
UDWDM QPSK system and present the obtained results. 
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1. Introduction 

1.1. Context and Motivation 

Access networks are responsible for connecting the service providers to their customers 

(either business or residential). The bandwidth required by customers has been increasing quickly 

in the last years and is expected to keep this pace. Passive optical networks (PONs) evolved in 

order to provide much higher bandwidth than previously deployed access networks (DSL and 

CATV). 

In a PON, a single fiber between the optical line terminal (OLT) and the remote node (RN) 

is shared by all users connected to it. The network between the OLT and the optical network units 

(ONUs) is passive, which means that there is no need of any power supply in this path. 

PON developments started in the early 1990s, by the hands of the Full Service Access 

Network (FSAN) working group, and led to the creation of APON in 1995 [1]. It is based on ATM 

and provides 622 Mbps of downstream bandwidth and 155 Mbps of bandwidth for upstream traffic 

and was mostly used for serving enterprises. APON was standardized by the ITU, which then 

improved it and developed BPON in 1998, redefining it in 2005 to allow higher bit rates. This 

technology’s signals operate at ATM rates, as well as in the case of APON, but in this case the 

maximum data rates achieved are 1.2 Gbps and 622 Mbps for downstream and upstream, 

respectively [1,2]. 

In 2001, FSAN group started the development of GPON, standardized in 2003 by the ITU, 

to keep pace with the increasing demand for bandwidth and allowing ATM and Ethernet 

convergence, since by that time the last one was already the universal standard that ATM craved to 

be. This later standard supports downstream bit rates up to about 2.5 Gbps and upstream bit rates 

up to about 1.25 Gbps. [1,3] 
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Roughly simultaneously to the beginning of GPON’s development, the IEEE created a 

study group called Ethernet in the First Mile (EFM) intended to develop a PON standard 

exclusively based on Ethernet. This was called EPON and was formally ratified by the IEEE in 

June 2004. It can support a maximum 1.25 Gbps downstream and upstream traffics (1.0 Gbps of 

effective traffic). On the market are also available EPON products with 2.0 Gbps effective 

downstream bit rate. [1,3] 

All currently deployed PONs based on the standards referred before are known as 

TDM-PON architectures since they rely on TDM technology. Upstream transmission is 

accomplished by time sharing the available bandwidth between all subscribers (TDMA), while 

downstream operation is performed by sending all data to all ONUs, being these responsible to 

select the data destined to the subscriber(s) associated. [1,3] 

 

Figure 1.1.1 – Network Architecture of a TDM-PON [1]. 

These architectures use a maximum of three wavelengths: one for downstream 

transmission, other for upstream transmission and there is the possibility to add another for video 

transmission. Downstream data is transmitted in the 1480-1500 nm transmission window, upstream 

data in the 1290-1330 nm and video transmission in the 1550-1560 nm [1]. The maximum splitting 

ratio is 128 and the maximum transmission distance is about 60 km but the typical values are 32-64 

users and 20-40 km. EPON predominates in Asia while GPON predominates in the USA and 

Europe [1,3]. 
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Due to progressive massification of new types of traffic (such as 3DTV and cloud-based 

services) both the ITU and the IEEE have already ratified new standards, still TDM-based. Figure 

1.1.2 illustrates some examples of current and future applications as well as their bandwidth 

requirements. 

 

Figure 1.1.2 – Access Network Capacity by Application and Technology [4]. 

IEEE ratified 10G-EPON in 2009. This offers two bit rate options, one with 10 Gbps of 

symmetrical bandwidth, and the other with 10 Gbps for downstream transmission and 1 Gbps for 

upstream transmission. This standard is compatible with EPON, using separate transmission 

windows for 10 Gbps and 1 Gbps downstream transmissions and the same for both 10 Gbps and 1 

Gbps upstream transmissions (with TDMA). 10 Gbps downstream signals are transmitted over the 

range 1575 to 1580 nm. [1,2,3] 

Regarding the ITU, XG-PON1 was standardized in 2010. It allows 10 Gbps and 2.5 Gbps 

bit rates for downstream and upstream transmissions, respectively. XG-PON2 specification is also 

expected to be standardized soon, allowing 10 Gbps symmetrical bandwidth. Coexistence with 

GPON is possible given that this standard uses the 1260-1280 nm transmission window for 

upstream transmission and the same transmission window that the 10G-EPON standard for the 

downstream case. [1,2,3] 
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Even though the data rates offered by TDM-based standards are high, all bandwidth is 

shared by several users as referred before. Although end users do not sense the effect of this 

sharing just yet, this will happen sooner than later. So, it is hoped that future access networks to be 

WDM-based since WDM enables to achieve higher bit rates by transmitting multiple wavelengths 

on the same fiber. There is also the possibility of achieving greater transmission distances. 

Furthermore, WDM-PON technology is considered to be future-proof in terms of necessary 

bandwidth [1,5]. 

 

1.2. Structure and Objectives 

This document is divided in 6 chapters, and the main objectives are the following: 

 Identify the main benefits and drawbacks of WDM-PON technology; 

 Identify the different possible approaches for colorless ONUs; 

 Propose and demonstrate a WDM-PON architecture based on tunable components 

enabling 32 users; 

 Study the use of advanced modulation formats in a WDM-PON system. 

In this first chapter are presented the context along with the motivation, the structure and 

the objectives, as well as the contributions according to the author’s opinion. 

The second chapter presents an overview on WDM-PON, starting by its main features, 

issues and market drivers. After, are presented the different approaches already proposed in order 

to accomplish WDM-PON architectures with colorless ONUs. At the end of this chapter is 

described this technology’s market status, regarding both vendors and service providers. 

In the third chapter a brief approach regarding modulation is done, including the 

differences between direct and external modulations, as well as between direct and coherent 

detection types. Two different modulation formats are also briefly described. 

Chapter four presents the architecture proposed and all its components description. The 

last subchapter shows the configurations of the lasers and the link budgets for both downstream and 

upstream transmission scenarios. 
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In the fifth chapter are firstly presented the experimental results for the architecture 

proposed, including all procedures and conditions of measurements. After are shown some tests 

performed using an advanced modulation format. 

Ultimately, in the sixth chapter the conclusions taken from the work carried out are 

presented and some future work related to this topic is suggested. 

 

1.3. Contributions 

In the author’s opinion, the main contributions to this work may be summarized as follows: 

 Identification of the benefits and drawbacks associated with WDM-PON’s 

implementation; 

 Description of the approaches that can provide WDM-PON architectures with 

colorless ONUs; 

 Demonstration of a WDM-PON architecture based on tunable components, 

analyzing the impact of each of its elements; 

 Use of advanced modulation formats to later on improve the proposed architecture 

in terms of performance. 

Additionally to the already mentioned contributions, the following paper was published in 

the “X Symposium on Enabling Optical Networks and Sensors 2012”: 

 G. Pereira, A. Shahpari, M. Lima, and A. Teixeira, “Bidirectional Directly 

Modulated WDM-PON Architecture Based on Tunable Components”. 
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2. An Overview on WDM-PON 

2.1. Introduction 

In this chapter an overview on WDM-PON is presented, starting by its main features and 

issues. This includes what still needs to be improved and also the reasons that can make it prevail 

in the market. After this first part, different approaches will be presented in order to realize a 

WDM-PON architecture. Along with each of the approaches presented there is also an application 

example, proving its functionality. The last subchapter is regarding WDM-PON market status, 

including different solutions provided by vendors as well as already employed access networks. 

 

2.2. Key Features and Issues 

WDM allows transmitting multiple wavelengths on the same fiber simultaneously, making 

use of its huge capacity. WDM-PON is a logical P2P scheme, since there is no time sharing of 

bandwidth, with each subscriber provided with its own wavelength (and its full bandwidth, of 

course). 

The benefits of using the WDM technology in a PON are plenty, including [1,5,6]: 

 Higher bit rates and more effective use of fiber (by transmitting several 

wavelengths on a single fiber); 

 No need for bandwidth scheduling (contrary to TDM-PON technologies); 

 Ability to achieve greater transmission distance (by using AWGs, which will be 

explained later). 
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According to Analysys Mason’s report for Ofcom from 2010 [3], WDM-PON should start 

its deployment under the second phase of next-generation PONs – NGPON2. Figure 2.2.1 shows 

the expected PON deployment made by Analysys Mason contained in the document previously 

referred. 

 

Figure 2.2.1 Expected PON Deployment [3]. 

Along with this prediction, which pointed the expected start year of deployment in 2015, 

was to guess that this technology would be standardized in the meantime. However, more recent 

information tells us that this may not happen even until 2020 meaning that it will not happen under 

NGPON2 [7]. Standardization is one of the challenges to overcome in order to make the 

commercial widespread happen. This and other issues will be addressed below, followed by the 

strengths that may allow it to avenge in the market. 

 



 
 

9 

2.2.1. Challenges to Overcome 

2.2.1.1. Standardization 

Efforts leading to standardization of WDM-PON are being carried out by FSAN since 

2010. FSAN is a working group which mission is to drive applicable standards and develop new 

technical specifications for PONs with the goal of better defining the Full Service Access Network 

[8]. 

In order to keep reduced costs, manufacturers started using their proprietary equipment in 

WDM-PON development but, by now, service providers are demanding standardized equipment. 

The actions taken by manufacturers resulted in scalability issues and worked as an obstacle to the 

standardization of this technology, but they have already realized that standardization is 

fundamental for having success [9]. 

Some defend ONU standardization, after which they see no reasons to wait for WDM-PON 

deployment considering the advantages provided [5], while others defend standardization is not 

fundamental since, for example GPON’s fully standardization still did not lead to universal 

interoperability among vendors [6]. Even so, Jorge Bonifácio, from Portugal Telecom, reminds its 

importance stating that the standards are the driver for the mass market. Nevertheless, he also refers 

that Portugal Telecom will deploy this technology when it is economically viable [7]. 

 

2.2.1.2. Equipment Cost 

The equipment cost is the main obstacle regarding this technology these days. One of the 

factors contributing to this is the need to have one laser at the OLT for each wavelength. Another 

problem is regarding the ONT (the same as ONU) since WDM-PON ONT is significantly more 

expensive than TDM-PON technologies’ ONT. According to [4], ONT standardization would 

result in larger scale production which in turn would result in cost reductions for manufacturers. 

Standardization would also help to reduce deployment, maintenance and sparing costs. 

According to an article recently submitted by GigaWam regarding WDM-PON [10], the 

only available equipment in the market (by the time that paper was written) has an optics cost of 

about two times that of EPON and GPON. This means that despite being aware of the advantages, 
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services providers will hardly carry out large-scale WDM-PON deployments until its price 

becomes competitive. 

 

2.2.1.3. Investment 

WDM-PON commercially widespread implies large share of investment by service 

providers. Since large amount investments were made for TDM-PON technologies’ deployment, 

service providers want now to maximize the investments made, before migration. Governments 

also have an important role on this decision since many of them directly injected funds for building 

FTTx networks. [9] 

 

2.2.2. Market Drivers 

2.2.2.1. Bandwidth 

The increasing need for bandwidth is the most important market driver for WDM-PON. 

This is due to wide spreading of services like IPTV, VoIP, VOD, 3DTV, HDTV, file sharing, etc. 

Due to its enormous capacity, this technology can help service providers to be ahead of bandwidth 

escalation carried out by consumers. This potentially high bandwidth available is even more 

attractive for business clients. [5,6,9] 

 

2.2.2.2. Total Cost of Ownership (TCO) 

According to [9], once WDM-PON has competitive prices comparing to TDM-PON 

technologies, service providers can attain long term savings by cutting on upgrade costs. It will also 

enable TCO reduction by eliminating redundancy layers and unnecessary protocol conversions. It 

also can make possible merging service providers’ metro and access areas. According to [11], a 

widely deployed WDM-PON network is at least 20% cheaper than GPON. Details can be observed 

in Figure 2.2.2.2.1. 
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Figure 2.2.2.2.1 – TCO Comparison for Different Access Networks [11]. 

 

2.2.2.3. Scalability 

Long-term scalability is a highly important market demand. Virtually, this technology has 

infinite scalability in terms of wavelengths and bandwidth. Bandwidth upgrades can also be done in 

a simpler way since each subscriber has its own dedicated wavelength [5,6,9]. 

 

2.3. Approaches 

There are two ways to implement the data distribution at the optical distribution network 

(ODN) on a WDM-PON: using wavelength routers (usually AWGs) or using passive power 

splitters. Figure 2.3.1 summarizes the applications and technical issues for the two referred 

implementations. 
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Figure 2.3.1 – Applications and Issues for Two Types of WDM-PON [12]. 

The second alternative is better in terms of cost since currently deployed PON 

infrastructures use power splitters and there will be no need to install new equipment. It is also 

better in terms of space: if the service provider wants to provide both services (the oldest, like for 

example GPON, and the most recent, WDM-PON) there is no need to have both passive splitter 

and wavelength router at the ODN. Another issue with using wavelength routers is that changing 

from one service to another would have to be done manually by disconnecting the fiber cable from 

the splitter and connecting it to the WDM-PON AWG, which makes this approach more expensive 

also in terms of human resources. [6,12] 

On the other hand, using passive splitters has its own disadvantages: laser locking at the 

ONU is not an option, once all wavelengths reach an ONU it would not know which wavelength to 

lock; network security can be an issue, since all ONUs receive all wavelengths; and also lower link 

budget and reach for WDM-PON, since an AWG experiences significantly less attenuation than a 

1:64 splitter (around 4-6 dB against 18-21 dB) [1,3,12]. 

In order to reduce the costs it is desirable to have colorless equipment at the ONUs. 

Colorless means wavelength independent or non-wavelength-specific. This results in having the 

same equipment across all customers, which allows a lower equipment cost due to mass 

production. It also allows decreasing installation, operational and maintenance expenses for both 

the service provider, first, and the end user, ultimately. [1,10,12] 
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According to [12] there are two broad categories concerning different WDM-PON 

approaches to realize colorless ONUs: Local Emission and Wavelength Supply. The first can be 

divided into two subcategories: Wavelength Tuning (using tunable lasers) and Spectrum Slicing. 

The second can also be divided into two subgroups: Injection Locking and Loop Back (using 

RSOAs or REAMs). Figure 2.3.2 gives a general idea of their differences. 

 

Figure 2.3.2 – Approaches to Realize Colorless ONUs [12]. 

It is still possible to distinguish different kinds of seed lights according to their source: 

self-injection, external injection (BLS seed light injection and array laser injection) and wavelength 

re-use (downstream signal wavelength) [12]. 

The following subtopics will be regarding the 4 approaches discriminated previously. 

These will be addressed in greater depth and for each of them will be described a reported system, 

as so its advantages and disadvantages concerning topics like bit rate, transmission distance and 

cost (among others). Figure 2.3.3 gives a general idea of what it is expectable from each approach 

regarding, not only bit rate per channel and number of channels, but also pros and cons. 
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Figure 2.3.3 – Comparison of Colorless Light Sources [13]. 

 

2.3.1. Tunable Lasers (and Receivers) 

This approach consists on having one pair Transmitter/Receiver (Tx/Rx) per wavelength 

both at the OLT and the ONU. At each ONU a Tx/Rx pair can be tuned to the wavelengths 

assigned to that ONU with use of tunable components. 

As tunable lasers are usually used DFB/DBR lasers, VCSELs or ECLs [1]. For DFB/DBR 

lasers the tuning is achieved by varying the temperature and the current [1]. These have the 

problem of limited tuning speed, which can be improved by using multisection DFB/DBR lasers. 

Nevertheless, these multisection lasers bear other problems related to mode hopping and electronic 

control. Concerning VCSELs, the ones for the desired wavelengths are not mature in the market 

yet. Their tuning can be done by a MEMS structure which changes the cavity length by 

electrostatic control [1]. ECL devices are usually more expensive and bulky than the other types 

but they provide high single-mode suppression ration (SMSR), narrow linewidth and low relative 

intensity noise (RIN) [10]. 
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As receiver a tunable optical filter along with a broadband photodiode is usually used. 

Another approach is to use a MSM-based integrated CMOS wavelength-tunable optical receiver as 

presented in [14]. This device has the advantages of having low tuning speed (because the 

wavelength is set electronically), having the necessary channel spacing for the current standards, 

and also allowing spectral shaping. The limited scalability of its integrated interferometer is a 

disadvantage once this device gets more complex with increased number of wavelengths used. 

However, this can be softened by designing the network properly. 

Using a system based on Dense WDM (DWDM), a broad range of channels need to be 

covered and precise wavelength needs to be achieved once the channels are separated only by 0.4 

nm or 0.8 nm. The first implicates both lasers and MUXs/DEMUXs (usually AWGs) that cover a 

wide range of channels while the second implicates lasers with precise temperature control, which 

is expensive. Despite using tunable lasers solves the problem of not having specific components for 

each ONU, the cost of this equipment is still too high. 

In [15] a WDM-PON solution was demonstrated based on low-cost tunable equipment at 

the ONU side with 40 Gbps aggregate bandwidth (4 channels of 10 Gbps). Figure 2.3.1.1 and 

Figure 2.3.1.2 present the downstream and upstream transmission architectures, respectively. 

 

Figure 2.3.1.1 – Experimental Setup for Downstream Transmission Used in [15]. 

Downstream transmission was achieved by means of a chirp managed laser (CML) at the 

OLT, which was comprised of a directly modulated DFB laser chirp and a proprietary optical 

spectrum reshaper (OSR), working at 1577 nm. The pulse pattern generator (PPG) was used to 

directly drive the CML with a 2
23

-1 PRBS at 10 Gbps. The variable optical attenuator (VOA) was 

employed to simulate link loss. 
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At the ONU a tunable receiver was used, which was comprised of a tunable semiconductor 

thin film Fabry-Pérot (FP) filter, an APD and a trans-impedance amplifier (TIA). It was also used 

an electronic dispersion compensator (EDC) for bandwidth compensation since the receiver was 

only designed for 2.5 Gbps. There was also a clock/data recovery (CDR) and a bit error rate tester 

(BERT) for performance measurements. 

For downstream transmission was possible to achieve good BER results with up to 40 km 

(having a reasonable optical budget) using NRZ modulation. 

 

Figure 2.3.1.2 – Experimental Setup for Upstream Transmission Used in [15]. 

For upstream transmission was used a tunable ECL (T-ECL) at the ONU, which was 

composed of a SLD and a polymeric tunable Bragg reflector. This tunable laser was designed for 

2.5 Gbps operation but it was driven directly at 10 Gbps by the PPG with a 2
7
-1 PRBS coded in 

NRZ. The VOA was again used to simulate link loss. 

At the OLT side was used a 10 GHz bandwidth APD as receiver, assisted by an EDC. The 

CDR and the BERT had the same functions as for downstream transmission. For an acceptable 

BER was possible to support up to 20 km of fiber. 

This approach allows having high data rate at a lower cost. However, the cost may still be 

quite high since here was just demonstrated a 4-channel system. If we think of 32 or even 64 

subscribers this would mean the same amount of lasers at the OLT (one per subscriber). The short 

transmission distance is also a disadvantage. 
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2.3.2. Spectrum Slicing (with BLS) 

Having BLSs as transmitters is possible to create a WDM-PON scheme by slicing the 

spectrum of these sources. Considering downstream transmission, after each transmitter sends its 

signal, these signals need to be sliced (each on a different wavelength) and multiplexed by the 

AWG. The signal containing all the sliced parts of the original signals will travel along the fiber 

until it reaches another AWG. This will demultiplex the combined signal and distribute each of 

these sliced signals by the correspondent ONU, which has a specific receiver for the wavelength 

assigned to it. 

In [16] and [17] are demonstrated WDM-PON schemes based on spectral-sliced BLSs. The 

solution presented in [17] used 16 channels in each direction (power budget analysis proved that 

the system would work to more than 40 channels for 20 km transmission distance). These channels 

were operating in the spectral region around 1300 nm (for both upstream and downstream). A 

schematic can be seen in Figure 2.3.2.1. 

 

Figure 2.3.2.1 – Experimental Setup Used in [17]. 

Two AWGs were used (one at the CO and another at the RN) for spectrum splicing and 

wavelength routing. In this case, using AWGs for spectrum slicing enables using multiple peaks of 

the spectrum-sliced light. This improves the optical budget and allows equalization of the 

spectrum-sliced channels although having the con of inducing more dispersion. The spectral region 

was chosen in order to suppress the dispersion effect. At both OLT and ONU were used APDs and 

LEDs (directly modulated at 155 Mbps). It was also used FEC to improve the receiver sensitivity. 

622 Mbps channels using SLDs (instead of LEDs) and DPCCs were also tested. 

For the case presented, dispersion is one the biggest problems (although there are ways to 

overcome it, these can cause other problems). Other disadvantages are: limited modulation speed, 

low power and short transmission distance. The major advantages are simple implementation and 

low cost. 
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2.3.3. Injection Locking 

2.3.3.1. With BLS Seeding 

It is possible to injection lock a FP laser using a BLS as seeding. This seed will be coupled 

in the transmission fiber. In [18] an architecture based on this approach was proposed and 

demonstrated, using 12 channels with 50 GHz channel spacing. The experimental setup is shown in 

Figure 2.3.3.1.1. 

 

Figure 2.3.3.1.1 – Experimental Setup Used in [18]. 

As BLS amplified spontaneous emission (ASE) light generated by a pumped erbium doped 

fiber (EDF) was used. There were two BLSs at the CO, each of them operating in different bands 

(C and L bands), which were used as injection to lock the FP laser diodes (LDs). These were 

located both ate the CO and the ONTs and were directly modulated at 155 Mbps. C-band was used 

for upstream transmission and L-band for downstream transmission. A heater was used along with 

each FP LD in order to reduce the wavelength variation with temperature of these devices. Both at 

the CO and RN were used AWGs as MUX/DEMUX. The attenuator was used for optical budget 

tests. 

Upstream transmission will now be explained. C-band BLS was coupled into the fiber. 

When it reached AWG2, it was spectrally sliced and each slice was sent to the correspondent ONT. 

Each spectrally sliced signal would lock the mode of the FP LD which was nearest to the 

wavelength associated to the incoming light and each ONT had its upstream transmission 

wavelength assigned. The upstream signals were multiplexed by AWG2 and then transmitted 

through the fiber until they reached AWG1. Here they were demultiplexed and routed to the 

receiver which would recover the data. For downstream transmission the process was similar, with 

the BLS operating in the L-band. 
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The biggest advantage of using this approach is its low cost. Regarding cons we can notice 

limited bit rate and limited transmission distance (in the case presented above is used 155 Mbps bit 

rate and the maximum transmission distance is about 30 km including about 10 km of distribution 

fiber). Another disadvantage is the fact of being needed light seed. 

 

2.3.3.2. With Modulated Downstream Signal 

Another way of injection lock the FP LD is to use the data signal instead of an external 

seed. In [19] was presented an architecture that uses the downstream signal to injection lock the FP 

LD for upstream transmission. Figure 2.3.3.2.1 illustrates the setup used in this case. 

 

Figure 2.3.3.2.1 – Experimental Setup Used in [19]. 

As shown in the schematic, at the CO was used a DFB laser as light source, being this 

externally modulated at 10 Gbps. The fiber length from the CO until the ONU was about 50 km. At 

the ONU the downstream signal was splitted, 50% for data reception and other 50% to injection 

lock the FP LD (which was directly modulated at 1 Gbps). The optical circulator was used to 

separate the downstream signal from the injection-locked upstream signal. This upstream signal 

was transmitted over 50 km of fiber and finally received at the CO. 

This is a low cost approach and using the downstream signal as seed to injection-lock the 

FP LDs allows eliminating the complicated synchronization process since it works for both 

symmetric and asymmetric two-way traffic. It also gives us better bandwidth utilization since there 

are no blank slots in the downstream signal reserved for upstream signal. A greater transmission 

distance can also be achieved when compared with using a light seed (50 km in the case presented 

against 30 km in the other one). 
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2.3.4. Reflective 

2.3.4.1. RSOA with BLS Seeding 

It is possible to employ a WDM-PON using reflective semiconductor optical amplifiers 

(RSOAs) at the receiver, seeded by a spectral sliced BLS. Comparing the RSOAs’ approach with 

spectral sliced LEDs or FP LDs as upstream transmitters, these last ones mean low power, not very 

high speeds and potentially unstable behavior. The use of RSOAs allows three different things: 

power amplification of the incident spectral sliced signal; data modulation to the same signal; and 

increasing the noise margin of the system. In [20] was demonstrated an architecture using this 

approach and its experimental setup can be found in Figure 2.3.4.1.1. 

 

Figure 2.3.4.1.1 – Experimental Setup Used in [20]. 

Downstream transmission was achieved by using DFB lasers directly modulated at 1.25 

Gbps as light source (one per channel). These were working over L-band and were multiplexed at 

the OLT and demultiplexed at the Access Node (AN) using AWGs. The total transmission distance 

is about 20 km and the channel separation is 100 GHz. 

As we can observe in Figure 2.3.4.1.1, a single SLED was used as BLS for the RSOAs. 

This is sufficient to feed up to 40 users. This device emitted non polarized incoherent light and C-

band was used for upstream transmission. A coupler was used to aggregate the downstream signals 

and the light seed. The AWG at the AN was responsible for spectrum slicing the SLED light and 

wavelength routing. Each ONU received a 0.4 nm bandwidth slice which was modulated (at 1.25 

Gbps), amplified and reflected back at the RSOA. The AWGs were then responsible for 

multiplexing and demultiplexing the upstream signals, being these received by APDs. At the OLT 

was also used a C/L band filter to separate the downstream and upstream channels. 
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With this approach is possible to achieve relatively high bit rates (the case presented had a 

1.25 Gbps bit rate but it’s possible to achieve about 5 Gbps) but it is still a relatively expensive 

solution due to the price of RSOAs. Another con of this approach is the need of using a light seed. 

 

2.3.4.2. RSOA with Laser Array Seeding 

Another WDM-PON scheme using RSOAs was used in [21] and [22]. This time, the 

RSOAs at the receiver were seeded by an array of FP LDs. The setup presented in [22] is now 

analyzed. This had a self-protected architecture against fiber fault by means of a duplicated fiber 

between the RN and the ONUs. The following figure, Figure 2.3.4.2.1, illustrates its experimental 

setup. 

 

Figure 2.3.4.2.1 – Experimental Setup Used in [22]. 

Regarding the FP LDs, 1.38 nm channel spacing was used with C-band wavelengths while 

the data signals were carried by L-band wavelengths. As the schematic shows, PCs were used 

along with each FP LD. The fiber mirror (FM) was used to reflect light in order to seed the FP LDs. 

Each one of these corresponded to one wavelength which would be aggregated to the fiber by an 

AWG. The aggregated signal would pass through an erbium doped fiber amplifier (EDFA) in order 

to be amplified. There were 20km of fiber length between the OLT and the RN. At the RN the 

signal was splitted and at the ONUs the single-longitudinal-mode wavelengths were used to seed 
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the RSOAs. The RSOAs modulated (at 2.5 Gbps), amplified and reflected the signal back in the 

upstream direction. The AWG at the RN would aggregate the signals from each ONU and send 

them back to the OLT. Here the signals would be routed to different receivers by another AWG. 

Downstream transmission was achieved by the means of DFB LDs, which worked in the 

L-band and were externally modulated (at 10 Gbps). It worked as simple as it looks in the Figure 

2.3.4.2.1. The only thing new here was the possibility of using the protection fiber, which was 

between the RN and the ONUs, if occurred any kind of situation with the normal fiber (for example 

a fiber cut or a maintenance action). 

With this approach is possible to get even higher bit rates than with BLS seeding but in this 

case, beyond the RSOAs’ cost, we have also to consider the laser array seeding cost. Another 

problem is regarding polarization, as we can notice by the use of several PCs. 

 

2.3.4.3. RSOA with Self Seeding 

Another way of implementing a RSOA-based WDM-PON is using the ASE of the RSOAs 

as their own seed. This ASE light is emitted from each RSOA, spectrally sliced at the AWG 

present at the RN and reflected back. This approach was presented in [23] and its schematic can be 

observed in Figure 2.3.4.3.1. 

 

Figure 2.3.4.3.1 – Experimental Setup Used in [23]. 

In this particular case was used a system which enables only one spectrally sliced light to 

be reflected back per each output port making active temperature control not necessary. It is also 

noteworthy that each ONU comprised a band pass filter (BPF) and a PC, besides the RSOA. The 

ASE light from each RSOA was spectrally sliced by the AWG and reflected back at the RN. The 

RSOAs were directly modulated at 1.25 Gbps with upstream data and received at the OLT by a 

PIN photodiode. Each ONU and the OLT were separated by a total of 21 km of fiber. 
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The results of this experiment showed minimal crosstalk between the channels with 

separation of about 0.09 nm. This approach has the advantage of not being needed seed for the 

RSOAs and also active temperature control while still achieving relatively high bit rates. 

 

2.3.4.4. RSOA with Remodulation 

The last approach for WDM-PON using RSOAs uses remodulation of the downstream 

signal to transmit the upstream signal. This was presented in [24], where a 1.25 Gbps bidirectional 

system was demonstrated. The experimental setup used can be observed in Figure 2.3.4.4.1. 

 

Figure 2.3.4.4.1 – Experimental Setup Used in [24]. 

Downstream transmission was achieved by means of directly modulated DFB LDs. The 

signal traveled along the fiber until reaching an AWG at the AN, which separated the different 

wavelengths. Each wavelength was routed to a splitter which broadcasted it to different ONUs. At 

each ONU the signal was splitted in two, 20% for signal detection (by means of an APD) and 80% 

for RSOA injection. 

Regarding upstream transmission, each RSOA modulated the signal (but with higher 

extinction ratio in order to mask the downstream data), amplified it and reflected it back in the 

upstream direction. The signal would go the opposite path to the CO and reached the photo 

detectors (APDs) after passing through an optical circulator and an AWG. 
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This system does not allow so high bit rates as the first two but it has the advantage of 

being insensitive to polarization, excusing the PCs. Light seed is not needed as well. The biggest 

problem with this approach is the backscattering which can affect the upstream transmission, since 

both downstream and upstream signals are carried using the same wavelengths.  

 

2.4. Market Status 

2.4.1. Vendors 

There are some companies providing WDM-PON solutions. TE Connectivity (formerly 

ADC Telecommunications), MEL, Transmode and LG-Ericsson (formely LG-Nortel) are among 

them. This last one is the most popular, due to its binding with Korea Telecom, and will be 

addressed in the next topic. These solutions can be sold either to operators (service providers) or to 

enterprises directly. An estimation of the number of PON Ports by technology for a 5 year period is 

illustrated in Figure 2.4.1.1. 

 

Figure 2.4.1.1 – PON Ports by Technology [25]. 

TE Connectivity solution is called PONy-Express. According to [26], this solution is based 

on wavelength-locked FP-LDs (used both at the OLT and the ONU), 2 AWGs (one at the OLT and 

another at the RN) and standard optical receivers at the ONUs. Each subscriber has assigned two 

different wavelengths for downstream and upstream transmission. It is capable of serving up to 16 

ONUs simultaneously (PONy Express 16) with up to 1 Gbps of dedicated and symmetrical 

bandwidth per subscriber. Figure 2.4.1.2 shows PONy Express 16 system configuration. 
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Figure 2.4.1.2 – PONy Express 16 System Configuration [26]. 

Regarding Transmode’s solution, it is called iWDM-PON. According to [27], it is based on 

the same hardware than the one from TE Connectivity. This company enables operators to scale 

from 100 Mbps to 1 Gbps and after to 10 Gbps (and beyond, in the future). There is also a long 

reach version of this solution which enables the operators to choose to serve up to 50 clients and to 

do so over greater distances. 

 

2.4.1.1. SFPs 

Some raised the issue of WDM-PON being too large for high density applications but it 

can be radically reduced in size using SFPs. This is where MEL comes in, whereas the products of 

this company are based on this technology. MEL is spawned from a Korean government-backed 

research institute named ETRI (Electronics and Telecommunications Research Institute) and has as 

its main goal developing WDM-PON solutions. 

SFPs’ reduced size and amount of equipment both at the OLT and ONUs (once the line 

card in the OLT and the entire ONU can both be reduced to an SFP) combined with achieving 

GPON level costs while still providing dedicated, symmetrical and secure bandwidth are their main 

advantages [26]. 

MEL provides several products, including some that allow EPON/GPON integration [28]. 

One of these is an OLT transceiver (named WTG32 OLT SFP) which has an APD, able to receive 

GPON burst-mode 1.25 Gbps data rates, and an ECL, capable of transmitting data rates up to 2.5 

Gbps with wavelength selection in L-band. This wavelength selection is performed by a 
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lambda-connector which is based on a wavelength-selective reflection filter. The wavelength 

selection range covers 32 wavelengths with 100 GHz spacing in L-band (for this product). 

Another product, WTG32 X-Link, allows EPON/GPON interconnection with WDM-PON 

by converting the wavelengths between these two networks. This product comprises 2 transceivers, 

one for each link. Wavelength selection is again performed by choosing the desired wavelength at a 

lambda-connector, which in this case works in C-band. As it is possible to verify using Figure 

2.4.1.1.1, the maximum total reach is about 40 km (20 km per link). Figure 2.4.1.1.2 presents the 

functional blocks of this product. 

 

Figure 2.4.1.1.1 – GPON for Interconnecting EPON/GPON with WDM-PON [28]. 

 

Figure 2.4.1.1.2 – Functional Blocks of WTG32 X-Link [28]. 

The last product produced by this company to be described is the WTG32 optical link. This 

is a WDM-based GPON hybrid link and comprises, not only the X-Link previously referred, but 

also complete WDM-PON and GPON links. At the OLT WDM-PON transceivers are used 

working in L-band (downstream) and C-band (upstream) and wavelength selection is performed 

using the same method as for the other products (with 32 channels for each band). The maximum 

reach is, again, 40 km. 
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Remaining products include a fully WDM-PON optical link based on RSOAs (both at the 

OLT and the ONU), and also transceivers based on ECL/APD-TIA or RSOA/PIN-TIA. 

In [29] a WDM-PON based on wavelength-tunable DWDM-SFP transceivers was 

proposed and demonstrated. This architecture also allows integration with pre-existing PONs. In 

order to achieve this, data transmission occurs using L-band. Using 8 upstream channels with 50 

GHz channel spacing working at 1.25 Gbps, it was possible to achieve at least 36.5 dB optical 

budget (for a BER value lower than 10
-12

). For downstream transmission the results obtained were 

similar. 

 

2.4.1.2. UDWDM-PON 

Recently, Nokia Siemens Networks presented a PON solution based on ultra dense WDM 

(UDWDM) channels [30,31]. Its network concept is depicted in Figure 2.4.1.2.1. The channel 

spacing in this ultra dense system is 2.8 GHz, providing up to 1000 channels and offering 1 Gbps 

symmetrical bandwidth. The 43 dB link budget allows reaching 100 km transmission distance. 

Each ONU receives the wavelength assigned to it and the upstream signal is transmitted with a 

fixed distance to the downstream wavelength of about 1 GHz. 

 

Figure 2.4.1.2.1 – High-level UDWDM Network Concept [31]. 

Tunable lasers are used at the OLT. These generate multiple wavelengths to reduce both 

cost and complexity of the system. It was concluded that the optimal number of wavelengths is 10. 

The module that transmits and receives multiple wavelengths was named optical transceiver group 

(OTG). Each OTG generates 10 DQPSK-modulated channels at 1 Gbps, using an IQ modulator. 

The OLT is also comprised by EDFAs (for signal amplification) and circulators (for single fiber 

operation). 
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At both the OLT and the ONU are used coherent receivers to achieve the 43 dB link 

budget. These receivers’ sensitivity is about -46 dBm, which in combination with -3 dBm being 

transmitted by channel, results in 43 dB. This link budget can be used to have more subscribers or 

longer transmission distance. 

Upstream signal generation is also performed using tunable lasers. The ONU lasers sweep 

the entire band being used, detecting the downstream channel and offsets this approximately 1 GHz 

to define its upstream channel. This results in having paired downstream and upstream channels. 

It is possible to serve residential subscribers with lower bit rates by sharing the same 

channel between several users but also business subscribers with higher bit rate by aggregating 

multiple channels. This last option requires only software changes. This is a high capacity and long 

reach solution and enables coexistence with existing systems and smooth migration. 

 

2.4.2. Service Providers 

At the end of 2011 South Korea had about 58% market penetration of combined FTTH and 

FTTB subscribers, the highest in the world at that time [32]. South Korea was the first country 

deploying a WDM-PON system, in 2005. It was implemented by Korea Telecom using 

WDM-PON Ecosystem, a solution developed by LG-Ericsson. From 2008 it was also used an ONU 

structure from ETRI. [33]. In 2009 LG-Ericsson (by that time called LG-Nortel) and ETRI agreed a 

pact to promote global standardization of WDM-PON technology. 

According to OASE’s publication (from December 2010) there were [33]: 

 150k subscribers served by 100 Mbps as FTTC (shared by up to 24 users); 

 2k subscribers served by 100 Mbps as FTTH (one wavelength channel per user); 

 1k subscribers served by 1 Gbps as FTTB (shared by up to 24 users). 

The first two slices correspond to the “Commercialized” technology presented in Figure 

2.4.2.1 while the last tiny slice correspond to the two “In Pilot” technologies from the same figure. 

A TL approach was still in laboratory tests by that time. 
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Figure 2.4.2.1 – WDM-PON System Status in South Korea 

(IS – Injection Seeded; TL – Tunable Laser) [33]. 

The “Commercialized” approach is based on the same hardware than the two solutions 

presented before. Regarding “In Pilot” tests there are two different approaches being used. The first 

is also based on the same hardware than the “Commercialized” one, while the other one is a 

RSOA-based approached. In this case, RSOAs are used both at the OLT and the ONU, being used 

just one BLS. The same wavelength is used for downstream and upstream transmission, which is a 

worst option when comparing to the other approach since the downstream signal cannot be fully 

eliminated. On the other hand it means lower management cost at the ONU and fewer resources 

needed (half of the wavelengths). 

UNET is a Danish company which also has already employed a WDM-PON system. This 

company’s main target market are small and medium enterprises and it is based on a FTTP 

infrastructure [3]. According to [34] the implemented system is also based on LG-Ericsson’s 

solution. 

 

  



 
 

30 

 

  



 
 

31 

 

3. Modulation 

3.1. Introduction 

In this chapter advanced modulation formats are approached in order to later on increase 

transmission distance, and improve the bit rate or the spectral efficiency of a WDM-PON system. 

First, basic amplitude modulation, both direct and external, is presented. Then, different 

types of modulation formats were considered. Having this, the native system’s architecture may 

need to be adapted so that it can be able to work in these conditions, increasing its complexity. One 

of the problems relates to the fact that different receivers are required depending on the modulation 

format type. Therefore direct detection will be compared with coherent detection. 

The last subchapter will be regarding two advanced modulation formats. These are 

Duobinary and QPSK. Both will be described in detail, as well as the hardware used to generate 

them. 

 

3.2. Direct Modulation Vs. External 

Modulation is one of the fundamental processes of any optical system. Basic amplitude 

modulation consists in converting the ‘1’s and ‘0’s from electrical domain to optical, respectively 

to a high and low power level. This operation can be done in two different ways, presented in 

Figure 3.2.1. 
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In direct modulation, a directly modulated laser has data input and accordingly to the data 

to be transmitted the output driving current (for amplitude or pulse modulation) or its own average 

dielectric current (for frequency modulation) is changed. This has the advantages of being simpler 

and cheaper than external modulation. On the other hand it inherently implies frequency chirp due 

to refractive index changing with bias current variation [35]. However, direct modulation is quite 

effective for low bit rates (till 10 Gbps [36]). 

 

Figure 3.2.1 – Direct and External Modulation (Amplitude) [35]. 

For the external modulation case, a laser is fed with constant bias current, emitting a 

continuous wave (CW) and minimizing frequency chirp distortion (allowing higher bit rates). The 

modulator is then responsible to change the signal characteristics (amplitude, frequency, phase, 

polarization) according to the data stream (and depending on the modulation format previously 

chosen). [35] 

There are two types of modulators: EAMs and EOMs. The first is based on the 

modification of the absorption spectrum caused by an applied external electric field, which changes 

the bandgap energy. The second is based on the change of the refractive index while subjected to 

an external electric field (which occurs for certain materials). 

The main advantages associated with Electro-Absorption Modulators (EAMs) are their size 

(hence a lower cost) and compatibility for integration with lasers, since they are made using the 

same semiconductor material. These are also the ones expected to operate with higher efficiency in 

polarization-insensitive systems. Their main drawbacks are: low saturation power, large chirp, 

narrow optical bandwidth and their limitation to the amplitude modulation formats. [37] 
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The advantages pointed out for EAMs are, naturally, disadvantages of Electro-Optic 

Modulators (EOMs) when in comparison. These modulators are more polarization sensitive, 

difficult to be integrated with other components and have a higher fabrication cost in terms of large 

volume production. As advantages, EOMs count their low optical loss, high optical power handling 

capability, broad optical bandwidth, zero or tunable chirp and, finally, their ability to produce 

modulation formats both in amplitude and phase. [37] 

The Mach-Zehnder modulator (MZM) is a well known EOM. This is based on a 

Mach-Zehnder interferometer, which schematic drawing is illustrated in Figure 3.2.2. A splitter at 

the input is responsible by dividing the optical power in two. Each portion of the signal propagates 

in a different path. At least one of these paths has a phase modulator, allowing modulating the 

optical phase of the signal by applying a voltage. At the end, the two portions are combined, 

interfering constructively or destructively depending on the applied electrical voltage. [35,37] 

 

Figure 3.2.2 – Mach-Zehnder Interferometer Schematic Drawing [37]. 

 

3.3. Direct Detection Vs. Coherent 

There are two different ways of receiving the optical signal and transferring it to the 

electric domain: direct detection and coherent detection. The first consists on generating an 

electrical current proportional to the incident optical power, by using a photodiode. This generated 

electrical current is independent of the optical phase and polarization. It is easy to conclude that 

this technique is used along with amplitude modulation. It is performed using PIN photodiodes or 

APDs. 

Therefore, a modulation format that does not use only optical power as way to carry 

information demands additional demodulation components together with photodetection. In 

coherent detection, the receiver computes all properties of the signal (amplitude, frequency, phase 
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and polarization) by recovering the full electric field. This allows transferring all the process to the 

electrical domain, resulting in reduced optical complexity and making post-compensation easier. 

Coherent demodulation for a phase-modulated format is illustrated in Figure 3.3.1. In this 

case, the signal is mixed with a local oscillator (LO), which acts as phase reference. 

Polarization-modulated formats require a polarization beam splitter (PBS) and 

frequency-modulated ones require an optical filter [38]. 

 

Figure 3.3.1 – Coherent Demodulation for a Phase-Modulated Format [38]. 

There are two different types of coherent detection receivers: heterodyne and homodyne. In 

the first, the local oscillator frequency is different from the signal frequency, while in the second 

the local oscillator frequency is similar (ideally equal) to the signal frequency. This subject will not 

be discussed in more detail since it is outside scope of this thesis. 

According to [39], there are four main subsystems in a digital coherent receiver: 

 Optical front end, which is responsible for linearly mapping the optical field of the 

transmitted signal into a set of electric signals; 

 ADC, which converts the electrical signals in digital samples; 

 Digital demodulator, which applies compensation and converts the digital samples 

into a set of signals sampled at the symbol rate; 

 Outer receiver, which comprises FEC and whose functionality is to decode the 

demodulated signal in order to produce the best estimative of the data stream 

transmitted. 

Figure 3.3.2 presents the several stages of reconstruction of the received signal, by digital 

signal processing. The first three blocks are fundamentally for signal conditioning in order to have 

all channels synchronized with the number of samples per symbol. Then, there is the digital 

filtering block. This is used to compensate polarization rotations and transmission impairments, 

like chromatic dispersion (CD). The block following this one rectifies phase and frequency 

mismatches between the received signal and the local oscillator. The last block is used for data 

recovering and FEC. [40] 
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Figure 3.3.2 – Schematic of the DSP Blocks in a Digital Coherent Receiver [40]. 

 

3.4. Advanced Modulation Formats 

3.4.1. QPSK 

QPSK is a phase modulation format where two information bits are used to generate one 

symbol (‘00’, ‘01’, ‘10’ or ‘11’) using 4 different phases, usually: 45º, 135º, 225º and 315º. This 

means that, instead of sending only one bit per period (which occurs for the NRZ-OOK signal, for 

example), it sends two. This allows doubling the bit rate while maintaining signal bandwidth, 

comparing to on-off keying (OOK). The constellation diagram for QPSK using Gray encoding is 

illustrated in Figure 3.4.1.1. Increased transmission distance is achieved due to the fact of 

dispersion effects being considerably less comparing to NRZ-OOK, due to the narrower spectrum 

associated [41]. 
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The difference to DQPSK is, while for QPSK different phases represent different symbols, 

for DQPSK each symbol is encoded using a phase variation. This means that each symbol causes a 

different phase shift in the signal. For example, ‘00’ not causing any phase shift, ‘01’ causing 90º 

shift, ‘10’ causing 180º shift and ‘11’ causing 270º degree shift. 

 

Figure 3.4.1.1 – Constellation Diagram for QPSK with Gray Encoding 

(Each Adjacent Symbol Only Differs by One Bit) [42] 

To generate a QPSK signal it is usually used a nested MZM, also called quadrature 

modulator or IQ modulator, depicted in Figure 3.4.1.3. This comprises two MZMs and a phase 

shifter. Each MZM modulates two independent bit streams on each portion of the signal, generating 

binary PSK (BPSK) signals. An extra 90º phase shift is applied in one of the MZM arms. At the 

end, the two signals are combined, resulting in a four-phase signal. [38] 

 

Figure 3.4.1.2 – Nested MZM as a Modulator for QPSK Signals [38]. 
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The error vector magnitude (EVM) is usually used as performance metric for this 

modulation format (as well as for other phase modulation formats). It represents the magnitude of 

the difference between the measured signal and a signal used as reference (which represents a 

perfectly modulated signal). This is illustrated in Figure 3.4.1.3. 

 

Figure 3.4.1.3 – Error Vector Magnitude and Related Quantities [43] 

 

3.4.2. Duobinary 

Duobinary is a modulation format used for transmitting R bits/s using less than R/2 Hz of 

bandwidth [44]. It can be considered an amplitude modulation format or a phase modulation format 

[45]. To generate a duobinary signal, a phase modulation is added when compared to a NRZ signal. 

Typically, the 180º phase shift occurs between two groups of ‘1’s when the number of ‘0’s in 

between is odd [45]. The symbols are usually described as ‘-1’, ‘0’ and ‘1’. To use this modulation 

format, first the transmitter has to receive a differentially precoded version of the data stream 

(converted to a three-level signal) in order to avoid error propagation at the receiver. 

This modulation format has been considered one of the most promising cost-effective 

solutions for the deployment of high bit-rate systems [45]. Its main advantages are: higher 

tolerance to CD and narrow-band optical filtering, when compared to binary signaling formats 

(thus, allowing greater transmission distances, and improved bit rate or better spectral efficiency); 

and its reasonably easy implementation [44]. 
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The first two advantages can be understood since a “1 0 1” bit pattern is encoded as “1 0 

-1”. If due to dispersion or optical filtering the two ‘1’s spread into the ‘0’, this type of encoding 

will make them interfere destructively while, if we had a NRZ-OOK signal, the bit pattern would 

be encoded as “1 0 1” and the bits would interfere constructively. Besides, duobinary signals have 

reduced signal distortions induced by dispersion due to their narrower spectral extent (when 

properly filtered) [38]. Figure 3.4.1.1 illustrates the difference between the eye diagrams of a NRZ 

signal and a generic Duobinary signal for different transmission lengths. 

 

Figure 3.4.2.1 – NRZ and Duobinary Eye Diagram Comparison [46]. 

In [45] two different duobinary types are distinguished, referred to as standard duobinary 

and phase-shaped binary transmission (PSBT), and different transmitters are compared. The 

difference between the two will now be explained, using Figure 3.4.2.2, where are illustrated 

intensity and phase characteristics of standard duobinary and PSBT pulses, at 40 Gbps, in a 

‘1110010100111’ sequence. 
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Contrarily to duobinary format (and NRZ format as well), PSBT format presents energy 

variations for the ‘0’s. This, along with 180º phase shift, allows reducing ISI. On the other hand, 

these energy variations worsen the eye diagram opening. For the duobinary format, the 180º shift 

occurs between two groups of ‘1’s when the number of ‘0’s in between is odd. The other phase 

shifts do not allow reducing ISI since there is no energy associated to them. This means that the 

only groups of ‘1’s resistant to ISI are the ones separated by an odd number of ‘0’s. 

 

Figure 3.4.2.2 – Intensity and Phase Characteristics of Standard Duobinary and 

PSBT Pulses in a ‘1110010100111’ Sequence [45]. 

Let us turn to the study of duobinary transmitters. The two duobinary types presented can 

be generated by means of electrical and/or optical filtering. Five different transmitters will now be 

described, including two standard duobinary transmitters (“Electrical” and “Optical”) and three 

PSBT transmitters (“Electrical”, “Optical” and “Optimum”) [45]. The configuration of each of 

these five duobinary transmitters is depicted in Figure 3.4.2.3. 

 

  
Figure 3.4.2.3 – Configuration of Different Duobinary Transmitters [45]. 
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The first two are obtained by means of the delay-and-add filtering method, performed in 

the electrical or in the optical domain depending on the transmitter. To generate an “Electrical” 

PSBT, electrical fifth order Bessel low-pass filters are needed, while the “Optical” PSBT is 

obtained by assembling a DPSK transmitter and a Gaussian BPF. Regarding the “Optimum” PSBT, 

this is generated by combining the “Electrical” PSBT with a second order Gaussian BPF. The latter 

is the one which allows higher spectral compactness. 
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4. Proposed Architecture 

4.1. Introduction 

The WDM-PON scheme proposed is based on tunable devices at the users’ end and a 

power splitter at the RN (instead of an AWG). The tunable lasers suggested are low cost ECLs 

based on polymer waveguide grating. Regarding the tunable receivers, these are APD-based. At the 

OLT were used temperature controlled DFB lasers and InGaAs APDs. All lasers were directly 

modulated. A 3-channel system was tested but, as regards to attenuation, the tests were performed 

as if 32 users were considered (by using a 1:32 splitter). Figure 4.1.1 illustrates the experimental 

setup of the proposed system. 

In this chapter, first we present the characterization of each component composing the 

architecture proposed. This section is divided in 3 parts (lasers, receivers and others). RF response 

tests were performed using a network analyzer with frequency range from 30 kHz to 3 GHz. Files 

were exported and processed using Matlab®. Power and wavelength tests were performed using an 

optical spectrum analyzer (OSA). 

After these characterizations being presented, the necessary configurations and the link 

budgets for both downstream and upstream transmissions, considering different scenarios, will be 

presented. These were based on the tests performed before. 
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Figure 4.1.1 – Experimental Setup Proposed. 

 

4.2. Components 

4.2.1. Lasers 

4.2.1.1. DFB Laser (OLT) 

These temperature controlled lasers have only 2 variable parameters: temperature and bias 

current. Each package has 2 channels (representing 2 different wavelengths). Wavelength 

separation is nearly 0.8 nm. Increasing bias current leads to an increase in the output power, 

whereas the temperature is used to adjust the laser to the desired wavelength. The 6 different 

wavelengths available were tested. 2 packages are capable of reaching up to 10 mW (10 dBm) 

producing a signal with a good extinction ratio value and a good eye diagram, while the other one 

can reach up to 20 mW (about 13 dBm) with the same outcome. 
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First, bias current effect on both power and wavelength was checked. The highest value 

allowed for this parameter is 200 mA but each channel was only tested to its peak output power (10 

dBm or 13 dBm). Regarding the 10 mW channels, the channel which needed the highest bias 

current in order to reach its peak power corresponds to 1547.7 nm (about 90 mA). Figure 4.2.1.1.1 

shows the power variation with bias current for this case. 

 

Figure 4.2.1.1.1 – Power Variation with Bias Current for the 1547.7 nm Channel. 

Regarding wavelength change with bias current, all channels presented a similar behavior. 

This variation is not directly proportional to this parameter’s increment, the slope is higher for 

higher currents (see Figure 4.2.1.1.2). 

 

Figure 4.2.1.1.2 – Wavelength Variation with Bias Current for the 1549.3 nm Channel. 

Even so, these variations will not produce a significant effect once it is possible to change 

the laser temperature in order to obtain the desired wavelength with an accuracy of about 0.01 nm. 
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Then, the RF response was studied for each wavelength, testing each of them for 3 

different bias currents. As reference receiver was used a HP11982A PIN. These lasers presented a 

non-uniform RF response, as it is possible to see in Figure 4.2.1.1.3. Still, for the average bias 

current tested (corresponding to about 8 dBm CW output power), attained at least 2.5 GHz for 3 dB 

bandwidth. 

 

Figure 4.2.1.1.3 – RF Response for the 1546.9 nm Channel. 

 

4.2.1.2. Tunable Laser (ONU) 

The T-ECLs used have a RS232 to USB interface in order allow their parameters to be 

controlled via computer. The parameters are: 

 LD Bias (Bias Current) – up to about 50 mA; 

 LD Modulation (Modulation Current) – up to 62.5 mA; 

 Heater (for sweeping all wavelengths) – from 0.00 V to 2.50 V; 

 LD TEC – from 22 ºC to 55 ºC; 

 ECL TEC (Grating TEC) – from 31 ºC to 55 ºC. 

Each laser was tested for 4 different wavelengths (4 different Heater values – 0.00 V, 1.30 

V, 2.00 V and 2.50 V) in order to check the impact of each parameter in terms of output power and 

wavelength variation. What was done was fixing 3 of the remaining parameters (beyond Heater) 

while changing the one to be tested. The fixed parameters are presented in the table below. 
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Table 4.2.1.2.1 – Approximate Values of the Fixed Parameters for each TL. 

 

The maximum bias current available was not used, although it represents a higher output 

power. This was because one of the lasers presented an irregular spectrum for that current value 

(along with the other parameters presented above). 

Each laser has a tuning range of at least 17 nm (from 1525 nm to 1543 nm, approximately). 

It was verified that a higher value for the heater parameter corresponds to a lower wavelength. This 

variation is not linear, as shown below in Table 4.2.1.2.2 and Figure 4.2.1.2.1. On the other hand, 

different wavelengths also present different output powers, as can be observed in Figure 4.2.1.2.2. 

The wavelengths presenting the lowest and the highest output powers vary depending on the laser 

in question. 

Table 4.2.1.2.2 – Wavelength Variation with Heater Parameter for TL3. 

 

 

Figure 4.2.1.2.1 – Wavelength Variation with Heater Parameter for TL3. 

LD Bias (mA) 38

LD Mod (mA) 62

LD TEC (°C) 22

ECL TEC (°C) 40

Heater (V) λ (nm)

0,00 1543,2

1,30 1537,5

2,00 1531,1

2,50 1525,9
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Figure 4.2.1.2.2 – Power Variation with Wavelength for TL3. 

Next, tables and graphs are presented concerning the operation of the laser in CW mode. 

All lasers presented similar RF responses (within the tested range). As reference receiver we used 

the same receiver already used before, the HP11982A PIN. In Figure 4.2.1.2.3 is depicted one of 

these lasers’ RF response for the 4 different wavelengths tested, and with the parameters set as 

mentioned above. It is possible to observe that the RF response presents many variations which 

may cause problems in the system’s operation. It is also possible to observe that the laser present 

similar RF behavior for the different wavelengths tested. 

 

Figure 4.2.1.2.3 – RF Response for TL1. 
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All lasers presented identical behavior for all wavelengths when changing the other 

parameters. Therefore, we will only present the results obtained for one laser and one of its 

wavelengths. 

Now let us focus on the analysis of the laser parameters. First, it was concluded that 

increasing LD Bias leads to increased optical power, without causing wavelength variations. The 

same applies to LD Modulation. The results obtained for TL3 at 1531.1 nm are presented in Table 

4.2.1.2.3 and Table 4.2.1.2.4. 

Table 4.2.1.2.3 – Power Variation with LD Bias for TL3 @ 1531.1 nm. 

 

Table 4.2.1.2.4 – Power Variation with LD Modulation for TL3 @ 1531.1 nm. 

 

The following step was to observe the outcome of LD TEC variation. Increasing LD TEC 

leads to decreased output power, as shown in Table 4.2.1.2.5. Wavelength drifts of more than 1 nm 

were also observed. Table 4.2.1.2.6 presents the wavelength variation with LD TEC for TL3 

working around 1531.1 nm. 

Table 4.2.1.2.5 – Power Variation with LD TEC for TL3 @ 1531.1 nm. 

 

Table 4.2.1.2.6 – Wavelength Variation with LD TEC for TL3 @ 1531.1 nm. 

 

LD Bias (mA) Power (dBm)

14,49 6,59

26,70 7,70

37,55 8,46

50,51 8,64

LD Mod (mA) Power (dBm)

14,35 6,42

25,36 7,03

36,36 7,51

48,34 7,94

62,50 8,36

LD TEC (°C) Power (dBm)

22 8,39

40 7,42

55 6,45

LD TEC (°C) λ (nm)

22 1531,083

40 1531,071

55 1531,123
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Finally, it was concluded that ECL TEC stabilization is quite important since changing this 

parameter causes great wavelength variations, as shown in Table 4.2.1.2.8. As Table 4.2.1.2.7 

shows, output power variations were also observed when changing this parameter’s value, but these 

did not present a uniform behavior. 

Table 4.2.1.2.7 – Power Variation with ECL TEC for TL3 @ 1531.1 nm. 

 

Table 4.2.1.2.8 – Wavelength Variation with ECL TEC for TL3 @ 1531.1 nm. 

 

Since the lasers used were low cost tunable lasers and some power and wavelength 

deviations were observed when using the same laser with the same set of parameters but in 

different moments, it was also decided to study the power and wavelength variations over time. 

Therefore, the behavior of each laser working at 4 different wavelengths over a 3 hour period was 

analyzed. In Figure 4.2.1.2.4 is illustrated the power drift for the laser which presented the lowest 

minimum power and in Table 4.2.1.2.9 it is shown the wavelength drift for the laser which 

presented the higher wavelength drift (TL2 in both cases). 

 

Figure 4.2.1.2.4 – Power Drift over Time for TL2. 

LD TEC (°C) Power (dBm)

31 8,70

40 7,96

55 8,32

LD TEC (°C) λ (nm)

31 1533,062

40 1531,009

55 1527,536
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Table 4.2.1.2.9 – Wavelength Drift over Time for TL2. 

 

As it is possible to check using Figure 4.2.1.2.4, TL2 presented the lowest power (about 4.1 

dBm) to a wavelength of about 1543.3 nm. Regarding wavelength drift, the worst case was verified 

when having the laser set to a wavelength around 1537.4 nm. Considering all lasers, none of them 

showed power variation greater than 1 dB and wavelength variation over 0.2 nm (during this 3 hour 

period). Another behavior that could be observed was the fact that not all wavelengths present the 

same power or wavelength drifts. 

 

4.2.2. Receivers 

4.2.2.1. Tunable Receiver (ONU) 

These tunable receivers (TRs) are designed to support bit rates up to 2.5 Gbps. The 

tunability of these APD-based receivers is achieved by means of thin film Fabry-Pérot bandpass 

filters, which are thermo-optically tuned. Their working range is from 1545 nm to 1550 nm and 

their sensitivity using NRZ modulation is estimated to be around -29 dBm for a BER value of 10
-9

. 

First we tested the RF response of the 3 different receivers. Two different wavelengths of 

the DFB lasers (1546.9 nm and 1547.7 nm) were used as reference, since their RF responses were 

already know and, therefore, it was possible to subtract its impact on the receivers. The tests 

performed included using 2 different bias currents for the laser (37 mA and 62 mA) and 2 different 

CW output powers measured at the receivers inputs (-10 dBm and -20 dBm). 

Globally, the receivers presented better response for the lowest bias current along with the 

highest power, what represented more than 2.5 GHz of bandwidth. The worst performance is 

observed for the highest bias current together with the lowest power. Figure 4.2.2.1.1 presents the 

RF response of one of the examined receivers at one of the wavelengths tested. 

λ Ref (nm) Min λ (nm) Max λ (nm) λ Drift (nm)

1525,7 1525,662 1525,733 0,071

1530,9 1530,920 1531,019 0,099

1537,4 1537,435 1537,613 0,178

1543,3 1543,361 1543,477 0,116
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Figure 4.2.2.1.1 – RF Response for TR1 @ 1547.7 nm. 

 

4.2.2.2. APD (OLT) 

The APD receivers used at the OLT side are prepared to support bit rates up to 10 Gbps, 

with sensitivity about -28.5 dBm at 1550 nm using NRZ modulation (with a BER value lower than 

10
-12

). The tests performed to these receivers were the same as the ones performed to the tunable 

receivers and in the same conditions. Figure 4.2.2.2.1 and Figure 4.2.2.2.2 depict the results. 

 

Figure 4.2.2.2.1 – RF Response for APD1 @ 1546.9 nm. 
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Figure 4.2.2.2.2 – RF Response for APD1 @ 1547.7 nm. 

In general, as one can notice from the figures above, RF response of these APDs is quite 

flat. This behavior was expected since the frequency sweep goes only to 3 GHz and these APDs are 

prepared to work up to 10 GHz. 

 

4.2.3. Others 

4.2.3.1. AWG (OLT) 

The AWG used was a 40 channel flat-top thermal AWG with 100 GHz channel spacing in 

C-band (starting at 1529.546 nm and ending at 1560.613 nm). To handle 32 users (thus, 64 

wavelengths) would be needed 2 of these at the OLT, but in this case this is not relevant. The 

center wavelength accuracy of each channel comparatively to the ITU grid is ±0.05 nm. Regarding 

its losses, the insertion loss for each channel is no more than 5 dB and its 0.5 dB bandwidth is 

greater than 0.4 nm. Considering that the DFB lasers are quite accurate and the TLs present 

deviations not greater than 0.2 nm, it is possible to conclude that the maximum losses on the AWG 

are 5.5 dB. 
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4.2.3.2. SMF 

The measurements performed included using 2 different single mode fiber (SMF) lengths 

beyond the 0 km scenario (considered back-to-back): 20 km and 40 km. The 20 km fiber presented 

about 4.2 dB attenuation while the 40 km fiber presented about 8.0 dB attenuation, at 1550 nm in 

both cases. 

 

4.2.3.3. Power Splitter 

Since the objective is to prove that the system enables up to 32 users, a 1:32 power splitter 

was used. Whereas there was no 1:32 physical power splitter available, we used one 1:4 splitter 

along with four 1:8 splitter, in order to achieve 32 outputs. Figure 4.2.3.3.1 shows the configuration 

idealized. 

 

Figure 4.2.3.3.1 – 1:32 Splitter Configuration Used. 
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In fact, it was only used one 1:8 splitter because the system was only tested for 3 channels. 

The 1:4 splitter implies 7.0 dB losses while the 1:8 splitter implies 11.0 dB losses (worst case 

scenarios at 1550 nm). This means a total of 18 dB. The losses of each splitter port are shown in 

Table 4.2.3.3.1 and Table 4.2.3.3.2. 

Table 4.2.3.3.1 – 1:4 Splitter Losses by Port. 

 

Table 4.2.3.3.2 – 1:8 Splitter Losses by Port. 

 

4.2.3.4. Circulator (ONU) 

An optical circulator was needed at each ONU to enable uplink and downlink traffic in the 

fiber. As Figure 4.2.3.4.1 shows, the downstream signal enters at the IN/OUT port and exits at the 

next port (OUT). The upstream signal enters at the IN port and exits at IN/OUT port. 

 

Figure 4.2.3.4.1 – Optical Circulator. 

Port Losses (dB)

1 6,9

2 7,0

3 6,2

4 6,4

Port Losses (dB)

1 10,8

2 10,9

3 10,9

4 11,0

5 10,9

6 11,0

7 11,0

8 10,9
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The circulator path which presented the greatest losses was the one between ports IN and 

IN/OUT for the circulator associated to TL1/TR1. In this case the loss was about 1.5 dB at means 

that this was the value considered as the worst case scenario. 

  

4.3. Configurations and Link Budgets 

4.3.1. Downstream Transmission 

For downstream transmission DFB lasers were set up to generate at least 7 dBm, measured 

by a power meter (PM). This means that the bias currents of the lasers were different in each case. 

It was also needed to set up their wavelengths in order to fit the chosen AWG channels. The 

wavelengths used were: 1546.121 nm, 1546.916 nm and 1549.318 nm. In Table 4.3.1.1 are 

presented the configurations for each of the 3 lasers (and the correspondent AWG port). 

Table 4.3.1.1 – Laser Configuration for Downstream Transmission. 

 

Link budgets for each of the 3 different cases tested (back-to-back and 20 or 40 km length 

fibers) are presented in Table 4.3.1.2. Although worst case scenario losses for each component 

need to be considered, it was also considered a 3 dB margin for these calculations (due to losses in 

the fibers or the connectors, for example). 

Table 4.3.1.2 – Link Budget for Downstream Transmission. 

 

Module Wavelength (nm) Temperature (°C) Bias (mA) AWG Port

10 mW (1) 1546,121 29,52 46,0 22

10 mW (2) 1546,916 27,11 51,0 23

20 mW 1549,318 32,54 50,0 26

Back-to-Back 20 KM 40 KM

Tx Power (dBm)

AWG Losses (dB)

SMF Losses (dB) 0,0 4,2 8,0

Splitter 1:4 Losses (dB)

Splitter 1:8 Losses (dB)

Circulator Losses (dB)

Margin (dB)

Output Power (dB) -21,0 -25,2 -29,0

 

Rx Sensitivity (dBm) -29,0

7,0

5,5

7,0

11,0

1,5

3,0
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Therefore, according to these calculations are not expected any problems regarding optical 

power for 0 km and 20 km, and the system may just have problems for the 40 km scenario in case 

of worst case scenarios occur. 

 

4.3.2. Upstream Transmission 

For upstream transmission it was decided to fix the lasers’ parameters instead of opting for 

a minimum power, once these lasers proved to be quite unstable. Regarding their wavelengths they 

were set up in order to be centered to an AWG channel and the wavelengths chosen in this case 

were: 1529.5 nm, 1531.1 nm and 1533.5 nm. The configurations used on the lasers are presented in 

Table 4.3.2.1.  

Table 4.3.2.1 – Laser Configuration for Upstream Transmission. 

 

With these laser configurations, the minimum power obtained was greater than 5 dBm (for 

TL2, measured by a PM) and thus this value was used as reference for link budget calculations. 

Again, a 3 dB margin was considered. The results are shown in Table 4.3.2.2. 

Table 4.3.2.2 – Link Budget for Upstream Transmission. 

 

For back-to-back and 20 km measurements there are not problems regarding optical power 

but with 40 km fiber length the system may experience some difficulties. This is due to lower 

transmitted power. 

Name Wavelength (nm) LD Bias (mA) LD Mod (mA) LD TEC (°C) ECL TEC (°C) AWG Port

TL1 1529,5 38,7 62,5 22 40 1

TL2 1531,1 38,2 62,5 22 40 3

TL3 1533,5 37,6 62,5 22 40 6

Back-to-Back 20 KM 40 KM

Tx Power (dBm)

AWG Losses (dB)

Fiber Losses (dB) 0,0 4,2 8,0

Splitter 1:4 Losses (dB)

Splitter 1:8 Losses (dB)

Circulator Losses (dB)

Margin (dB)

Output Power (dB) -23,0 -27,2 -31,0

 

Rx Sensitivity (dBm) -28,5

5,0

5,5

7,0

11,0

1,5

3,0
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The optical power issue would be easily solved by replacing the splitter by an AWG. As it 

is possible to verify (using Table 4.3.2.2), the splitter losses are about 3 times greater than the 

losses caused by the AWG (for the considered splitting ratio). Hereupon, it could also be possible 

to extend the reach of this architecture at least up to 80 km (just considering the power budget 

analysis). Of course that changing to an AWG would also have other repercussions already 

discussed. 
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5. Experimental Results 

5.1. Introduction 

In this chapter it will first be presented the experimental results for the WDM-PON 

proposed. All procedures and conditions of measurements are detailed in the first subtopic, along 

with the results obtained. 

After this first part, it will be presented the tests performed using a coherent QPSK system, 

which objective is to later on improve the architecture previously proposed in terms of transmission 

distance, and bit rate or spectral efficiency. At the end are presented the results obtained for a 

coherent UDWDM QPSK system. 

 

5.2. Proposed Architecture 

5.2.1. Conditions of Measurements 

Besides the lasers configurations referred previously, other aspects shall be noted before 

proceeding to the results obtained. The lasers were directly modulated by a pattern generator and an 

oscilloscope was used to measure the Q factor in order to obtain the BER afterwards. The 

modulation used was NRZ and its amplitude was 1.6 Vpp. The data payload was a 2
31

-1 PRBS. 

Between the circulator and the TR it was used a VOA to simulate link loss, for downstream 

transmission scenario. For the upstream transmission case, the VOA was inserted between the 

AWG and the APD. The system was also tested for 2 different bit rates: 1.25 Gbps and 2.5 Gbps. 
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According to [47], Q factor and BER are related by the following expression: 

     
 

 
     

 

  
  

In fact, according to the same source, it is possible to find a simpler expression which 

provides an approximation of BER when having the Q factor, and this was the one used to estimate 

BER: 

      
 

    
     

  

 
  

 

5.2.2. Downstream Transmission 

Downstream transmission scenario was the first to be tested. The two bit rates previously 

referred were tested, as well as the fiber lengths mentioned. For this purpose, the results obtained 

working with the 1549.3 nm channel and TR1 are presented. The values obtained for BER versus 

optical budget are depicted in Figure 5.2.2.1, while Figure 5.2.2.2 shows the eye diagram for 40 km 

and 38.0 dB optical budget at 1.25 Gbps. The lowest power measured at the receivers input when 

using 40 km fiber was around -25 dBm (which represents 32 dB of optical budget). The optical 

budget is the difference between the lasers’ output power and the received power. 

 

Figure 5.2.2.1 – BER vs Optical Budget for Downstream Transmission @ 1.25 Gbps. 
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Figure 5.2.2.2 – Eye Diagram for 40 km and 38.0 dB Optical Budget @ 1.25 Gbps. 

As expected, for the same optical budget value, BER value is worse for a higher fiber 

length (due to more accumulated chromatic dispersion). When working at 1.25 Gbps it is possible 

to verify that, for example for the 40 km case, 1 dB difference in optical budget implies increasing 

the BER from 10
-12

 to 10
-3

. The eye diagram presents good eye opening and low jitter. 

The next two figures present the same analysis as the previous but for 2.5 Gbps. 

 

Figure 5.2.2.3 – BER vs Optical Budget for Downstream Transmission @ 2.5 Gbps. 
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Figure 5.2.2.4 – Eye Diagram for 40 km and 37.0 dB Optical Budget @ 2.5 Gbps. 

Comparing to the 1.25 Gbps case it is possible to verify that with 40 km we lose about 1.5 

dB optical budget to guarantee a BER value of at least 10
-12

 (from 37.5 dB to 36 dB) and about 1 

dB for 10
-6

. It is also possible to conclude that we have a slower variation of BER while decreasing 

the power reaching the TR. Also in this case the eye diagram presents a good eye opening and low 

jitter, but not as good as for 1.25 Gbps and comparing it for lower optical budget value (1 dB less). 

 

5.2.3. Upstream Transmission 

For testing the upstream transmission scenario the procedure was the same as the one for 

downstream transmission: 2 different bit rates and 2 different fiber lengths (besides the 

back-to-back case). For this purpose, the results obtained working with TL2 (1531.1 nm) and 

APD2 are shown. In this case it was not possible obtain results for the 2.5 Gbps scenario. The eye 

diagram obtained at this bit rate will later be analyzed. Regarding transmission at 1.25 Gbps, the 

results obtained for BER versus optical budget are illustrated in Figure 5.2.3.1. 

The lowest optical power measured at the receiver for the back-to-back setting was around 

-17 dBm (which represents about 22 dB of Optical Budget), for the 20 km scenario was -21 dBm 

and using 40 km was -25 dBm. 
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Figure 5.2.3.1 – BER vs Optical Budget for Upstream Transmission @ 1.25 Gbps. 

An acceptable 10
-6

 BER value can only be achieved for the back-to-back and the 20 km 

scenarios (with a maximum of 27 dB optical budget). This means that it is not possible to cover a 

40 km range. 

As Figure 5.2.3.1 shows, increasing transmission distance did not deteriorate significantly 

the BER results. This results from the fact that the lasers present so wide linewidth (about 25 GHz) 

that the degradation imposed by this factor dominates. Additionally, there is the fact of being 

expected BER values lower than 10
-12

 for at least -27 dBm (32 dB optical budget). The bad 

behavior of the tunable lasers can also be checked by analyzing Figure 5.2.3.2 and Figure 5.2.3.3, 

which depict the eye diagram for the two different bit rates tested. 

 

Figure 5.2.3.2 – Eye Diagram for 20 km and 26.0 dB Optical Budget @ 1.25 Gbps. 
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Figure 5.2.3.3 – Eye Diagram for 0 km and 22.0 dB Optical Budget @ 2.5 Gbps. 

As one can see, even for 1.25 Gbps the eye diagram shape is not as regular as expected 

which represents higher jitter and worst eye opening. This means that system’s capacity to recover 

the transmitted information is compromised, resulting in worse BER. Regarding the eye diagram 

obtained when working at 2.5 Gbps, this presents overlapping of non-synchronized samples, which 

means that it is impossible to recover the signal. Summarily, acquiring better TLs must be one of 

the priorities to improve this architecture’s operation. 

Since transmission at 2.5 Gbps did not work, an analysis of the eye diagram for bit rates 

greater than 1.25 Gbps was done in order to check the maximum possible bit rate that can be 

attained with these lasers. Figure 5.2.3.4 illustrates the eye diagram at 2 Gbps. This presents low 

jitter and the eye opening is good enough to distinguish the eye, which means that transmission at 

this bit rate might be achievable. 

 

Figure 5.2.3.4 – Eye Diagram for 0 km and 22.0 dB Optical Budget @ 2 Gbps. 
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5.3. QPSK Systems 

5.3.1. General Specifications 

As stated previously, EVM is usually used as performance metric for QPSK systems. 

According to [48] it is possible to relate it with SNR and consequently with BER: 

    
     

 
 
  

     
    

      

    
 

 

      
      

  

where: 

 L is the number of signal levels identical within each dimension of (quadratic) 

constellation; 

 Q[.] is the Gaussian co-error function; 

 log2M is the number of bits encoded into each symbol. 

Table 5.3.1.1 presents the relation between typical BER references and EVM values 

(presented in percentage) for a QPSK signal (L = 2 and M = 4). 

Table 5.3.1.1 – Relation between BER and EVM. 

 

The mode of operation of the coherent receiver used for the experiments will be briefly 

described. Its configuration is shown in Figure 5.3.1.1. It is a homodyne receiver employing both 

phase and polarization diversities. This receiver allows recovering two different signals being 

transmitted in different polarizations (X and Y) by means of PBSs. Phase demodulation is 

performed using a 90º optical hybrid. This device has another local oscillator, whose phase is 

shifted 90º, in order to enable the detection of both I and Q components of the signal. In the 

experiments was only used X polarization. [38] 

LOG (BER) EVM (%)

-3 32,4%

-6 21,0%

-9 16,7%

-12 14,2%
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Figure 5.3.1.1 – Configuration of a Polarization/Phase Diversity Homodyne Receiver [38]. 

The main stages used for data recovery by means of digital signal processing were: 

 Normalization and Resampling; 

 Dispersion compensation; 

 Equalization; 

 Frequency estimation and phase recovery. 

The first stage is used for signal conditioning. This block is used to normalize the samples 

and reshape the data that is being continuously processed to the oscilloscope sampling rate. The 

second stage is concerning CD compensation. A constant modulus algorithm (CMA) equalizer was 

used after. An equalizer is used to reverse the effects of the transmission channel, which enables 

reducing the ISI. The last block accomplishes frequency estimation based on [49] and phase 

recovery based on the Viterbi algorithm (adding feedback since this algorithm only works for a 

maximum phase deviation of π/4) [50]. 
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5.3.2. Coherent QPSK System 

5.3.2.1. Setup 

The experimental setup used for testing the coherent QPSK system is depicted in Figure 

5.3.2.1.1. As CW source was used a TLS. The signal was modulated by a Nested MZM, used to 

separately encode the signal components (I and Q). An adjacent channel could also be generated, in 

parallel, with its CW being generated by a DFB laser, modulation being performed by means of a 

MZM and having an EDFA managing its output power. This signal passed through a PC in order to 

maximize its power for the X component of the electrical field. 

 

Figure 5.3.2.1.1 – Coherent QPSK System Experimental Setup. 

Both channels were added by using an add-drop (A/D). These would travel through a SMF 

with a certain length, which was followed by another A/D to separate the two channels. The 

adjacent channel was directed to its dedicated receiver while the QPSK signal would pass through 

another PC before reaching its own receiver. The signal transmitted by the LO laser from the 

receiver also passed through a PC. For these tests was not focused attention to the power budget. 

 

5.3.2.2. Results 

5.3.2.2.1. Without Adjacent Channel 

In these first tests the adjacent channel was not considered. The TLS used to generate the 

CW was working at 1550.12 nm. The QPSK signal was being transmitted at 1.244 Gbps (which 

means 0.622 Gsymbol/s) with 0 dBm of output power. The data payload was a 2
15

-1 PRBS. The 

sampling frequency was 50 Gsample/s (the maximum allowed by the oscilloscope). The first step 
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was to test the system in back-to-back configuration where 248 symbols were collected. Figure 

5.3.2.2.1.1 illustrates the signal status after passing through the compensation stages. 

 
Figure 5.3.2.2.1.1 – Signal Status After Compensation for Back-to-Back (ViterbiTap = 8). 

After compensation it is possible to fully detect the signal constellation. Table 5.3.2.2.1.1 

presents EVM results for 3 different ViterbiTap values. The ViterbiTap value is the interval 

between two phase estimations. 

Table 5.3.2.2.1.1 – EVM for Different ViterbiTap Values (Back-to-Back Scenario). 

 

After back-to-back configuration tests, the system was also tested for a 20 km length fiber. 

The total attenuation between the laser and the receiver was about 5 dB. The number of collected 

samples was the same (248 symbols). The illustration of the signal after compensation is presented 

in Figure 5.3.2.2.1.2. 

Again, compensation allows fully detecting the constellation of the QPSK signal. Table 

5.3.2.2.1.2 presents EVM results for the same 3 ViterbiTap values considered in the back-to-back 

scenario. Comparing these values with the ones obtained before for the back-to-back scenario, one 

can deduce that their difference is not much (about 1% greater). 

ViterbiTap EVM (%)

8 6,43

16 6,98

64 8,58
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Figure 5.3.2.2.1.2 – Signal Status After Compensation for 20 km (ViterbiTap = 8). 

Table 5.3.2.2.1.2 – EVM for Different ViterbiTap Values (20 km Fiber Length). 

 

 

5.3.2.2.2. With Adjacent Channel 

In this case, a NRZ signal was used in the adjacent channel, and its wavelength was set at 

1550.12 nm. The QPSK signal was being transmitted in the same conditions as before. The data 

payload of the NRZ signal was a 2
31

-1 PRBS. The system was tested for a 20 km length fiber. 

What was done here was changing the CW wavelength of the QPSK signal, in order to 

examine the impact of the NRZ signal on the QPSK signal. The wavelengths used for the QPSK 

were: 1530.35 nm, 1535.07 nm, 1539.80 nm, 1545.35nm and 1548.55 nm. The adjacent channel 

was tested for 3 different values of output power (0 dBm, 8 dBm and 16 dBm), using an EDFA to 

control the power, as well as for 3 different bit rates (6 Gbps, 10 Gbps and 40 Gbps). To obtain the 

results presented below, ViterbiTap was always set at 20, and CD compensation and CMA 

equalization stages were removed. The total attenuation between the laser and the receiver was 

about 5 dB. 

 

ViterbiTap EVM (%)

8 7,25

16 8,04

64 9,84
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First, the EVM variation with QPSK signal’s wavelength is presented, while having the 

adjacent channel transmitting at 6 Gbps. This is shown in Figure 5.3.2.2.2.1. For 0 dBm and 8 

dBm, EVM values are similar to the ones obtained without having an adjacent channel, which 

means that in these 2 cases there was not interchannel interference. 

 

Figure 5.3.2.2.2.1 – EVM Vs. QPSK Signal Wavelength with a NRZ Adjacent Channel 

@ 1550.12 nm and Working @ 6 Gbps (for 3 Different Output Powers of this Channel). 

For 16 dBm of output power it is possible to verify that there was interchannel interference 

since EVM increases from about 12%, with nearly 20 nm channel spacing, to almost 24%, with a 

channel spacing of approximately 1.6 nm. This means that the BER increases from a value lower 

than 10
-12

 to a value greater than 10
-6

. 

Figure 5.3.2.2.2.2 and Figure 5.3.2.2.2.3 depict the same analysis as the one before but for 

the NRZ signal on the adjacent channel working at 10 Gbps and 40 Gbps, respectively. For a 10 

Gbps NRZ signal on the adjacent channel, having approximately 1.6 nm spacing, EVM is about 

17.5%, which represents a BER value not much greater than 10
-9

.  
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Figure 5.3.2.2.2.2 – EVM Vs. QPSK Signal Wavelength with a NRZ Adjacent Channel 

@ 1550.12 nm and Working @ 10 Gbps (for 3 Different Output Powers of this Channel). 

 

Figure 5.3.2.2.2.3 – EVM Vs. QPSK Signal Wavelength with a NRZ Adjacent Channel 

@ 1550.12 nm and Working @ 40 Gbps (for 3 Different Output Powers of this Channel). 

For the 40 Gbps scenario, shown in Figure 5.3.2.2.2.3, it is possible to verify that, for the 

16 dBm case, EVM values are not far from the ones obtained for 0 dBm and 8 dBm (which are, in 

fact, similar to the ones obtained without having an adjacent channel transmitting). The highest 

EVM value obtained for this case was 9.3%, representing a BER value much lower than 10
-12

. 

The figures presented before allow concluding that increasing the bit rate of the adjacent 

channel reduces the interference caused by this channel on the QPSK channel. This is proved by 

Figure 5.3.2.2.2.4, where the comparison for different bit rates at the same output power is 

presented. The output power selected was, logically, 16 dBm (since interchannel interference was 

only verified for this output power value). Lower bit rates channels are more susceptible to 
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interchannel effects (like cross-phase modulation and four-wave mixing) while higher bit rate 

channels are more susceptible to intrachannel effects (like self-phase modulation). 

 

Figure 5.3.2.2.2.4 – EVM Vs. QPSK Signal Wavelength with a NRZ Adjacent Channel 

@ 1550.12 nm and for 16 dBm Output Power (for 3 Different Bit Rates of this Channel). 

This allows concluding that using a WDM-PON system with QPSK signals at 1.25 Gbps 

enables coexistence with systems based on the already ratified 10 Gbps PON standards, XG-PON 

and 10G-EPON, as well as with future higher bit-rate systems. It also allows concluding that for an 

average output power value of 8 dBm there is no interchannel interference, at least for bit rates 

equal or greater than 6 Gbps. 

 

5.3.3. Coherent UDWDM QPSK System 

5.3.3.1. Setup 

The experimental setup used for this part is depicted in Figure 5.3.3.1.1. The CW was 

generated by a TLS and a PC was used to maximize its output power. The MZM was responsible 

for creating the WDM channels the same way as demonstrated in [51]. In this case, 16 channels 

were generated, with 3.125 GHz spacing between them. For this purpose, the phase shifter was set 

to 190º and the RF signal’s frequency was set to 3.125 GHz. Not all the 16 channels were obtained 

since their quality was not as good as expected, and it was decided to filter only 13 channels using 

a BFP. 
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Figure 5.3.3.1.1 – Coherent UDWDM QPSK System Experimental Setup. 

The EDFA was used for amplification before the BPF. Another PC was used with the same 

purpose as the one before. After, the Nested MZM would perform QPSK modulation in each of the 

channels, before transmission in a SMF with a determined length. 

The channels would pass through another PC before reaching the coherent receiver. The 

signal transmitted by the LO laser from the receiver also passed through a PC. For these tests was 

also not focused attention to the power budget. Comparing to the coherent QPSK system, it was 

added a recovery stage responsible for filtering one of the channels for further analysis. 

 

5.3.3.2. Results 

The QPSK signals were being transmitted at 1.244 Gbps (which means 0.622 Gsymbol/s). 

Their output power was 0 dBm. The data payload was a 2
15

-1 PRBS. The sampling frequency was 

50 Gsample/s (the maximum allowed by the oscilloscope). Figure 5.3.3.2.1 depicts the spectrum of 

the carrier (containing the 13 channels) and the spectrum of a chosen channel.  

 
Figure 5.3.3.2.1 – Carrier’s Spectrum; One of the Channel’s Spectrum After 

Filtering (Cutoff Frequency = 0.75 x 622 MHz) 

 

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

x 10
10

-70

-60

-50

-40

-30

-20

-10
Spectrum of Multichannel QPSK Carrier

Frequency

P
o
w

e
r 

S
p
e
c
tr

a
l 
D

e
n
s
it
y
 (

d
B

)

-1 -0.5 0 0.5 1

x 10
9

-60

-55

-50

-45

-40

-35

-30

-25

After Low-pass filter

Frequency

P
o
w

e
r 

S
p
e
c
tr

a
l 
D

e
n
s
it
y
 (

d
B

)



 
 

72 

It makes no sense to compare these results to those obtained for the coherent QPSK system 

since this system presented signal degradation at the output of the Nested MZM. This is due to the 

fact that, while in the system presented before the data payload was driven by an electrical drive, in 

this case the electrical drive was used to generate the WDM channels, meaning lower quality of the 

PRBS. 

The system was first tested in back-to-back configuration where 621 symbols were 

collected. The best results were obtained for a cutoff frequency of 1.8 times the symbol bit rate 

(622 MHz). Figure 5.3.3.2.2 illustrates the signal status after passing through all compensation 

stages. It is possible to verify that the system presents more distortion when compared to the 

coherent QPSK system. The cause was already explained, being related to the electrical drive. 

 
Figure 5.3.3.2.2 – Signal Signal Status After Compensation for Back-to-Back (ViterbiTap = 8). 

Once it was not possible to compare this system’s results with the ones obtained for the 

coherent QPSK system, this system was also tested in a single channel configuration in order to 

measure the penalty caused by having multi channels. Table 5.3.3.2.1 presents EVM results for 3 

different ViterbiTap values in both cases (single channel and multi channel). 

Table 5.3.3.2.1 – Single Channel and Multi Channel EVM Results for 

Different ViterbiTap Values (Back-to-Back Scenario). 

 

Single Channel Multi Channel

8 7,80 10,47

16 7,92 10,50

64 9,30 11,19

ViterbiTap
EVM (%)
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This system was also tested for a 20 km length fiber. Again, 621 symbols were collected. 

The best cutoff frequency was the same as before, 1.8 times 622 MHz. Figure 5.3.3.2.3 illustrates 

the status of the chosen channel after compensation. Table 5.3.3.2.2 presents EVM results for both 

single channel and multi channel cases, using 3 different ViterbiTap values. 

 
Figure 5.3.3.2.3 – Signal Signal Status After Compensation for 20 km (ViterbiTap = 8). 

Table 5.3.3.2.2 – Single Channel and Multi Channel EVM Results for 

Different ViterbiTap Values (20 km Fiber Length). 

 

In both cases (back-to-back and 20 km fiber), the EVM results obtained for the multi 

channel scenario were about 2% greater than for the single channel scenario. It is not possible to 

draw major conclusions for the multi channel scenario comparing the back-to-back configuration 

with the 20 km length fiber configuration because the system is too noisy, not being possible to 

distinguish the effects of interchannel interference. This noise is also responsible for the penalty 

obtained for the single channel scenario because it complicates the compensation processes. 

 

  

Single Channel Multi Channel

8 9,67 11,38

16 9,52 11,52

64 10,43 12,42

ViterbiTap
EVM (%)
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6. Conclusions and Future Work 

6.1. Conclusions 

This work has been presented in a set of  6 chapters. The first chapter included context, 

motivation, structure, objectives and the main contributions. 

Chapter 2 presented an overview on WDM-PON, starting by its main advantages, namely, 

higher bit rates and more effective use of fiber, no need for bandwidth scheduling and capability of 

achieving greater transmission distances by allowing greater optical budgets. The obstacles to 

overcome were also discussed, including, standardization, equipment cost and investment. After, a 

set of guidelines that can make this technology dominate the market in the future was addressed. 

The possible approaches for WDM-PON architectures were described, along with the pros and 

cons for each case, and reported examples were presented. This technology’s market status was 

included in the last subchapter, regarding both vendors – with particular emphasis on the use of 

SFPs and implementation of a UDWDM system – and service providers. 

The main purpose of the third chapter was to conclude on the benefits of using advanced 

modulation formats in an optical network, and their impact in terms of complexity and hardware. It 

starts by differentiating direct modulation and external modulation, also naming the benefits and 

drawbacks associated to each of them. Two different types of external modulators – EAMs and 

EOMs – were also described. After, direct detection and coherent detection were discussed. 

Finally, QPSK and Duobinary modulation formats were addressed. 
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In chapter 4 was proposed an architecture based on tunable devices at the ONUs and a 

splitter at the RN, enabling up to 32 users. Each component constituting the proposed network was 

described and tested. After realizing the impact of each component, their settings were defined and 

calculations allowing obtaining an estimate in terms of optical budget were carried out. 

Finally, the fifth chapter presented the experimental results obtained in the lab. The 

proposed architecture was tested, allowing a minimum transmission distance of 20 km. This was 

limited by the upstream transmission scenario, which presented a BER value of approximately 10
-6

 

for an optical budget of 28 dB at 1.25 Gbps. It was possible to conclude that upstream transmission 

at 2.0 Gbps would also be achievable by analyzing the eye diagram at this bit rate. The results 

obtained for downstream transmission were much more satisfactory, leading to conclude that error 

free operation (BER lower than 10
-9

) is possible to be performed at 2.5 Gbps for a 20 km length 

fiber (implying an optical budget of 37 dB). 

The fifth chapter also included tests with coherent QPSK systems. In the first case the main 

goal was to investigate the possibility of using QPSK modulation, taking into account the recovery 

of the transmitted signal. A single QPSK channel at 1.25 Gbps was tested in two scenarios: 

back-to-back and 20 km fiber. The results obtained after the compensation stages were identical in 

both cases and the EVM values obtained were around 8% (which means a BER value much lower 

than 10
-12

). After, the QPSK signal was coupled to a NRZ signal to measure the interchannel 

interference caused by the second on the first. The NRZ signal was tested at three different bit rates 

– 6 Gbps, 10 Gbps and 40 Gbps – and for 3 different output power values – 0 dBm, 8 dBm and 16 

dBm. The main objective of this part was to evaluate the possibility of joining a QPSK system with 

10 Gbps systems (like 10G-EPON and XG-PON) and future 40 Gbps systems. The coexistence 

was proved possible since increasing the bit rate resulted in less interference in the QPSK signal. 

Besides, it was observed that the interchannel interference only happened for the greatest output 

power value of the adjacent channel (16 dBm), independently of its bit rate. 

In the last section of the fifth chapter were presented experimental results for a coherent 

UDWDM system with QPSK channels. This system was proved as a viable solution for NGPON2. 

The EVM results obtained for a 20 km fiber length were around 12%, meaning a BER value lower 

than 10
-12

. 
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6.2. Future Work 

The first proposal is testing the proposed WDM-PON architecture for an AWG, instead of 

a power splitter, at the RN. It was proved that for 1:32 splitting ratio, splitter losses are about 3 

times greater than the losses caused by an AWG. This means that using an AWG at the RN would 

significantly reduce the total attenuation of the system (meaning an increased power budget), 

allowing to increase the transmission distance. 

Another proposal related to the proposed architecture is changing the TLs used for better 

ones, in order to be possible attaining greater power budget, as well as higher bit rates, for upstream 

transmission. 

The WDM-PON architecture demonstrated allows integration with GPON/EPON and 

video transmission, since the wavelengths can be chosen so as not to occupy the transmission 

windows used by these standards. Still, the coexistence with GPON/EPON systems shall be tested. 

Regarding the use of advanced modulation formats, it is proposed testing the NRZ channels 

used in the proposed architecture (at 1.25 Gbps and 2.5 Gbps) along with the 1.25 Gbps QPSK 

channels (and for higher bit rates as well). Another proposal related to this topic is to perform tests 

using the duobinary modulation format. Testing a coherent UDWDM QPSK system that allows 

drawing conclusions on the interchannel interference might also be important. The last proposal is 

testing all these systems in a PON environment, where the impact of all the elements of an access 

network would be considered. 
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