16 research outputs found

    Some natural zero one laws for ordinals below ε0

    Get PDF
    We are going to prove that every ordinal α with ε_0 > α ≥ ω^ω satisfies a natural zero one law in the following sense. For α < ε_0 let Nα be the number of occurences of ω in the Cantor normal form of α. (Nα is then the number of edges in the unordered tree which can canonically be associated with α.) We prove that for any α with ω ω  ≤ α < ε_0 and any sentence ϕ in the language of linear orders the asymptotic density of ϕ along α is an element of  {0,1}. We further show that for any such sentence ϕ the asymptotic density along ε_0 exists although this limit is in general in between 0 and 1. We also investigate corresponding asymptotic densities for ordinals below ω^ω

    Exact-size Sampling for Motzkin Trees in Linear Time via Boltzmann Samplers and Holonomic Specification

    No full text
    International audienceBoltzmann samplers are a kind of random samplers; in 2004, Duchon, Flajolet, Louchard and Schaeffer showed that given a combinatorial class and a combinatorial specification for that class, one can automatically build a Boltzmann sampler. In this paper, we introduce a Boltzmann sampler for Motzkin trees built from a holonomic specification, that is, a specification that uses the pointing operator. This sampler is inspired by Rémy's algorithm on binary trees. We show that our algorithm gives an exact size sampler with a linear time and space complexity in average

    On density of truth of the intuitionistic logic in one variable

    Get PDF
    In this paper we focus on the intuitionistic propositional logic with one propositional variable. More precisely we consider the standard fragment {→,∨,⊥}\{ \to ,\vee ,\bot \} of this logic and compute the proportion of tautologies among all formulas. It turns out that this proportion is different from the analog one in the classical logic case

    Asymptotic structural properties of quasi-random saturated structures of RNA

    Get PDF
    Background: RNA folding depends on the distribution of kinetic traps in the landscape of all secondary structures. Kinetic traps in the Nussinov energy model are precisely those secondary structures that are saturated, meaning that no base pair can be added without introducing either a pseudoknot or base triple. In previous work, we investigated asymptotic combinatorics of both random saturated structures and of quasi-random saturated structures, where the latter are constructed by a natural stochastic process.Results: We prove that for quasi-random saturated structures with the uniform distribution, the asymptotic expected number of external loops is O(logn) and the asymptotic expected maximum stem length is O(logn), while under the Zipf distribution, the asymptotic expected number of external loops is O(log2n) and the asymptotic expected maximum stem length is O(logn/log logn).Conclusions: Quasi-random saturated structures are generated by a stochastic greedy method, which is simple to implement. Structural features of random saturated structures appear to resemble those of quasi-random saturated structures, and the latter appear to constitute a class for which both the generation of sampled structures as well as a combinatorial investigation of structural features may be simpler to undertake

    The relation between tree size complexity and probability for Boolean functions generated by uniform random trees

    Full text link
    We consider a probability distribution on the set of Boolean functions in n variables which is induced by random Boolean expressions. Such an expression is a random rooted plane tree where the internal vertices are labelled with connectives And and OR and the leaves are labelled with variables or negated variables. We study limiting distribution when the tree size tends to infinity and derive a relation between the tree size complexity and the probability of a function. This is done by first expressing trees representing a particular function as expansions of minimal trees representing this function and then computing the probabilities by means of combinatorial counting arguments relying on generating functions and singularity analysis
    corecore