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Abstract

Background: RNA folding depends on the distribution of kinetic traps in the landscape of all secondary structures.
Kinetic traps in the Nussinov energy model are precisely those secondary structures that are saturated, meaning that
no base pair can be added without introducing either a pseudoknot or base triple. In previous work, we investigated
asymptotic combinatorics of both random saturated structures and of quasi-random saturated structures, where the
latter are constructed by a natural stochastic process.

Results: We prove that for quasi-random saturated structures with the uniform distribution, the asymptotic expected
number of external loops is O(log n) and the asymptotic expected maximum stem length is O(log n), while under the
Zipf distribution, the asymptotic expected number of external loops is O(log2 n) and the asymptotic expected
maximum stem length is O(log n/ log log n).

Conclusions: Quasi-random saturated structures are generated by a stochastic greedy method, which is simple to
implement. Structural features of random saturated structures appear to resemble those of quasi-random saturated
structures, and the latter appear to constitute a class for which both the generation of sampled structures as well as a
combinatorial investigation of structural features may be simpler to undertake.
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Background
RNA is an important biomolecule, now known to play
both an information carrying role, as in retroviruses, such
as HIV, whose genome consists of RNA, as well as a
catalytic role, as in the the peptidyl transferase catalysis
by RNA, which concatenates an amino acid to a grow-
ing peptide chain in the formation of a protein on the
ribosome [1]. It has recently emerged that RNA plays a
wide range of previously unsuspected roles in many bio-
logical processes, including retranslation of the genetic
code (selenocysteine insertion [2], ribosomal frameshift
[3]), transcriptional and translational gene regulation
[4,5], temperature sensitive conformational switches [6,7],
chemical modification of specific nucleotides in the ribo-
some [8], regulation of alternative splicing [9], etc.
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The diverse and biologically important functions per-
formed by RNA molecules depend for the most part on
RNA tertiary structure, which is known to be constrained
by secondary structure, the latter acting as a scaffold for
tertiary contact formation [10]. For this reason, much
work has focused on RNA secondary structure predic-
tion [11-14] and on the kinetics of RNA folding [15-17].
In [18], Stein and Waterman pioneered work on asymp-
totic combinatorics of RNA secondary structures, where
they developed recurrence relations to count the number
of secondary structures. These recurrence relations were
later modified by Nussinov and Jacobson [19] and espe-
cially by Zuker [20] to compute the minimum free energy
secondary structure.
Formally, a secondary structure for a given RNA

nucleotide sequence a1, . . . , an is a set S of base pairs (i, j),
such that (i) if (i, j) ∈ S then ai, aj form either a Watson-
Crick (AU,UA,CG,GC) or wobble (GU) base pair, (ii) if
(i, j) ∈ S then j − i > θ = 3 (a steric constraint requir-
ing that there be at least θ = 3 unpaired bases between
any two paired bases), (iii) if (i, j) ∈ S then for all j′ �= j
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and i′ �= i, (i′, j) �∈ S and (i, j′) �∈ S (nonexistence of base
triples), (iv) if (i, j) ∈ S and (k, �) ∈ S, then it is not the case
that i < k < j < � (nonexistence of pseudoknots). For
the purposes of this paper, following Stein and Waterman
[18], we consider the homopolymer model of RNA, in
which condition (i) is dropped, thus entailing that any base
can pair with any other base, and we modify condition (ii)
so that θ = 1. With inessential additional complications
in the combinatorics, we could handle the situation where
θ is any fixed positive constant.
For a given RNA sequence, a saturated secondary struc-

ture is one such that no base pair can be added with-
out introducing either a pseudoknot or base triple; in
other words, saturated structures have a maximal num-
ber of base pairs, while the Nussinov minimum energy
structure has a maximum number of base pairs. Since
the kinetics of RNA structure formation depend on
secondary structure energy landscape, and more par-
ticularly on the distribution of kinetic traps (saturated
structures), in previous work we have designed an algo-
rithm to compute the number of saturated structures
[21], determine the asymptotic number of saturated sec-
ondary structures [22] and the expected number of base
pairs in saturated and quasi-random saturated structures
[23].
Secondary structures are conveniently displayed in

Vienna dot bracket notation, consisting of a balanced
parenthesis expression with dots, where an unpaired
nucleotide at position i is depicted by a dot at that posi-
tion, while a base pair (i, j) is depicted by the presence
of matching left and right parentheses located respec-
tively at positions i and j. The minimum free energy sec-
ondary structure of the selenocysteine insertion (SECIS)
sequence fruA, given by

CCUCGAGGGGAACCCGAAAGGGACCCGAGAGG
((((..(((...(((....))).)))..))))

is a saturated structure. In contrast, the following struc-
ture for the Gag/pro ribosomal frameshift site of mouse
mammary tumor virus [24] is not only not saturated,
but includes a pseudoknot, as shown by the square
bracket notation necessary to show the crossing base
pairs.

AAAAAACUUGUAAAGGGGCAGUCCCCUAGCCCCGCUC
AAAAGGGGGAUG
..............(((((.[[[[[[[.)))))....
....]]]]]]].

Turning to the homopolymer model considered in this
paper, there are precisely five saturated structures for
RNA of length 5

( ( • ) ), •( • • ),( • • )•,( • ) • •, • • ( • )

and there are precisely eight saturated structures for RNA
of length 6

( ( • ) )•, •( ( • ) ),( ( • ) • ),( • ( • ) ),
( ( • • ) ),( • )( • ),( • • ) • •, • • ( • • ).

Having defined saturated structure, we now define a
stochastic greedy process to generate random saturated
structures, technically denoted quasi-random saturated
structures. This notion was defined in [23], where we
showed that the expected number of base pairs in quasi-
random saturated structures is 0.340633 · n, just slightly
more than the expected number 0.337361 · n of base pairs
in all saturated structures.
Consider the following stochastic process to generate

a saturated structure. Suppose that n bases are arranged
in sequential order on a line. Select the base pair (1,u)

by choosing u, where θ + 2 ≤ u ≤ n, at random with
probability 1/(n − θ − 1). The base pair joining 1 and u
partitions the line into two parts. The left region has k
bases strictly between 1 and u, where k ≥ θ , and the right
region contains the remaining n − k − 2 bases properly
contained within endpoints k+2 and n (see Figure 1). Pro-
ceed recursively on each of the two parts. Observe that the
secondary structures produced by our stochastic process
will always base pair with the leftmost available base, and
that the resulting structure is always saturated. Note that
the probability pi,j that (i, j) is a base pair in a saturated
structure is not the same as the probability qi,j that (i, j)
is a base pair in a quasi-random saturated structure (this
was shown in [23], using a program we wrote to generate
saturated structures).

Results and discussion
With these definitions, we are now in a position to state
some results concerning structural features of (quasi) ran-
dom saturated structures. Under the uniform distribution,
we show that the asymptotic expected number of exter-
nal loops is O(log n), and the expected maximum stem
length is O(log n). In contrast, under the Zipf distribu-
tion, the asymptotic expected number of external loops
is O(log2 n), and the expected maximum stem length is
O(log n/ log log n)a.
In the literature on RNA combinatorics ([18] and sub-

sequent papers), combinatorial results have been proved
for the homopolymer as well as for the Bernouilli model,
in which latter one assumes a stickiness parameter p =
2(pApU + pGpU + pGpC) that any two positions can base-
pair. To the best of our knowledge, the current paper
appears to be one of the first combinatorial analyses of
RNA secondary structures, which involves the Zipf distri-
bution for base pairs.
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u1 n

at least θ unpaired bases

.....k

n−k−2

Figure 1 Base 1 is base-paired by selecting a random base u such there are at least θ unpaired bases enclosed between 1 and u. By
iterating this procedure, we obtain a greedy stochastic algorithm to sample quasi-random secondary structures.

Conclusions
Saturated secondary structures form natural kinetic traps
in the energy landscape with respect to the Nussinov
energy model [19], in that it is energetically unfavorable
to move from a saturated structure to any neighboring
structure that differs by one base pair. However, there
is currently no program to sample saturated secondary
structures with respect to the Nussinov energy (given
either a homopolymer or an RNA sequence), although
the programs we developed in [21,22] could be extended
to do so for both homopolymers and RNA sequences.
(Note that the program RNAsat, described in [25], can
sample saturated structures in the Turner energy land-
scape, and the program RNAlocopt, described in [26],
can sample locally optimal structures in the Turner energy
landscape). In contrast, it is extremely simple to imple-
ment a program to sample quasi-random saturated struc-
tures, thus permitting one to easily obtain an idea of
various structural features in the ensemble of quasi-
random structures. We expect many structural features to
be approximately shared between the random saturated
structures and quasi-random saturated structures – for
instance, as earlier mentioned, the expected number
of base pairs in quasi-random saturated structures is
0.340633 · n, while the expected number of base pairs
in saturated structures is 0.337361 · n, almost the same
value [23].
Generally, it requires substantial effort involving the

application of deep results from complex analysis, such as
the Flajolet-Odlyzko theorem [27] or the Drmota-Lalley-
Woods theorem [28-30] (see also the text by Flajolet and
Sedgewick [31]) to prove asymptotic results, such as the
fact that the asymptotic number of saturated structures
is 1.07427 · n−3/2 · 2.35467n and the asymptotic expected
number of base pairs is 0.337361 · n, and the asymp-
totic expected number of hairpins is 0.323954 · 1.69562n
[23]. In contrast, the argument given in this paper is ele-
mentary, not requiring complex analysis. Taken together
we believe that the stochastic greedy method, described
in Figure 1, performs reasonably well in sampling satu-
rated structures, that appear to be representative of the
ensemble of all saturated structures, and supports a com-
binatorial analysis that may be simpler than that required
for all saturated structures.

Methods
Structural properties of quasi-random saturated secondary
structures
Given secondary structure S, an external base pair is a
base pair (i, j) ∈ S, which is not interior to any other
base pair of S; i.e. there is no (x, y) ∈ S with the prop-
erty that x < i < j < y. A sequence of external base
pairs is a sequence (ai, bi), i = 1, 2, . . . , k such that ai <

bi < ai+1 < bi+1, for all i < k, and for which each
(ai, bi) is external. The base pairs (ai, bi) are said to close
the corresponding external loops; see Figure 2. The num-
ber of external loops of a given secondary structure S is
defined to be the total number of external base pairs in S.
We define a stem of length k to be a sequence of nested
base pairs (see Figure 3) (ai, bi), i = 1, 2, . . . , k, such that
ai < ai+1 < bi+1 < bi, for all i < k. The stem length of a
given secondary structure S is defined here to be the max-
imum length of all stems in S; i.e. the maximum number
of nested base pairs in S.
Our study of structural properties of random saturated

secondary structures is facilitated by defining a graph
that resembles the graph on page 333 of [32]; how-
ever, note that the formal definition is slightly different
than that of [32]. Given a secondary structure S on the
nucleotide sequence [1, n], define the associated graph
G(S) = (V ,E), whose vertex set V consists of base pairs
v = (i, j) in S, and whose undirected edge set E consists
of pairs {v, v′} of nested vertices, v = (i, j) and v′ = (i′, j′),
that can directly see each other; i.e. {v, v′} ∈ E exactly
when i < i′ < j′ < j and there does not exist a base pair
(x, y) ∈ S, such that i < x < i′ < j′ < y < j, or vice-versa
with the roles of v, v′ reversed. Figure 4 depicts the graph
G(S) associated with the saturated secondary structure S.
In generalG(S) is a forest; i.e., a set of trees. In the sequel

we determine the size of several structural parameters
of random saturated secondary structures, in particular,
expected stem length and expected number of external
loops. These parameters are studied both for the uniform
and Zipf distributions. Before proceeding any further, we
first define the probability distributions to be considered.

Probability distributions
Zipf ’s law is the observation first made by the deceased
Harvard linguist, George Kingsley Zipf, that the frequency
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1 n

Figure 2 A sequence of external base pairs.

pi of English words, when graphed against their rank i
(in the list of English words sorted in decreasing order
with respect to frequency), obeys the power law pi ≈ i−α .
More generally, Zipf ’s law is the statement of a power law,
when plotting frequency against rank (Zipf ’s first law) or
when plotting frequency against reverse rank (Zipf ’s sec-
ond law). In bioinformatics, Zipf ’s law has been observed
in the frequency/rank plot of differentially expressed gene
in microarray data [33], as well as in the frequency/rank
plot for protein structures [34], where there are a few
very frequent structures, and very many rare structures.
In the remainder of the paper, we consider probability
distributions related to Zipf ’s law.
A node, say 1 ≤ u ≤ n, is chosen at random with the α-

Zipf distribution, if the probability that a given base pair
(1,u) is chosen is equal to 1

(u−1)αHα(n−1) , where

Hα(n − 1) =
n−1∑
k=1

1
kα

is defined to be the α-harmonic number of n − 1. The
expected number of base pairs for arbitrary threshold θ is
denoted by Eθ

n , for random saturated secondary structures
on n bases, generated by the α-Zipf stochastic process. E0n
satisfies the following recursive formula

E0n = 1 + 1
Hα(n − 1)

n−2∑
k=0

1
(k + 1)α

(E0k + E0n−k−2), (1)

for all n ≥ 2.
Observe that when α = 0 the α-Zipf distribution is

the same as the uniform distribution, while if α = 1,
we have the (classical) Zipf distribution [35]. Moreover,
observe that as α increases, “shorter” base pairs are being
selected with higher probability by the stochastic process
described in equation (1).

The stochastic process of generating random saturated
secondary structures, according to equation (1), is of the
“divide-and-conquer” type, very common in computer
science, where well-known algorithms such as QUICK-
SORT choose a division point according to the uniform
distribution. Stochastic algorithms of this kind have been
intensively studied for the uniform distribution. Known
results suggest that the probability distribution for the
number of base pairs in random saturated structures,
generated by the earlier described stochastic process (uni-
form choice of base pairs) is asymptotically Gaussian
(see [36] and [37]). We also note that structural features
of trees have been well studied including the expected
depth and the exact distribution of the depth; see, for
instance, [36,38,39]. In the sequel, we consider a ran-
dom binary search tree with n nodes obtained by insert-
ing n i.i.d. random variables X1, . . . ,Xn. Careful analysis
of [36] and [39] implies our results in the section on
the uniform distribution. However we will use a dif-
ferent and simpler technique that enables the analysis
not only for the uniform distribution in the following
section concerning the Uniform Distribution, but also
for the Zipf distribution in the section following this
section.
An important observation concerns the threshold θ

considered above. All the results proved in this section are
“upper bounds” and therefore it is easily seen that they are
valid for any threshold θ ≥ 0. Therefore to simplify proofs
in the sequel we consider the case of threshold θ = 0.

Uniform distribution
The main theorem of this section concerns stem length
and number of external loops of random saturated struc-
tures S, generated by a natural stochastic process associ-
ated with the tree graph G(S). Throughout the remainder

1 n

Figure 3 A sequence of nested base pairs.
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Figure 4 The tree associated with the given set of base pairs.

of the paper, we state results in terms of random saturated
structures, although we intend to mean only those struc-
tures generated by the stochastic process associated with
the graph G(S); we will distinguish between the uniform
and α-Zipf variant of the stochastic process. Without this
convention, statements of lemmas and theorems would be
too cumbersome.

Theorem 1. With high probability, the number of exter-
nal loops and the maximum stem length of random sat-
urated structures generated by the uniform distribution
variant is O(log n).

Proof. Before we give the proof of the main theorem it
will be necessary to give the proof of two lemmas. In the
first lemma we consider the expected number of external
loops.

Lemma 1. With high probability, the number of external
loops is O(log n).

Proof. We define a sequence of random variables
X1,X2, . . . ,Xt by induction as follows. Let X1 be the ran-
dom variable selecting a base k chosen among 2, 3, . . . , n
randomly and independently with the uniform distri-
bution in order to form a base pair (1, k). By induc-
tion, assume that X1, . . . ,Xt have been defined. Let
Xt+1 be the random variable selecting a base k cho-
sen among Xt + 2,Xt + 3, . . . , n randomly and indepen-
dently with the uniform distribution in order to form
a base pair (Xt + 1, k). Next we estimate bounds on
E[Xt], for all t. Indeed, observe that P[X1 = k]= 1

n−1
and

E[X1] =
n∑

i=2
i · 1

n − 1

= 1
n − 1

n∑
i=2

i

= 1
n − 1

(
n(n + 1)

2
− 1

)
.

Next we compute the conditional probability

E[Xt+1|Xt = k] =
n∑

i=k+2
i · P[Xt+1 = i|Xt = k]

=
n−1∑

i=k+2
i · 1

n − k − 1

= 1
n − k − 1

n−1∑
i=k+2

i

= 1
n − k − 1

⎛
⎝n−1∑

i=0
i −

k+1∑
i=0

i

⎞
⎠

= n + k + 1
2

− n + k + 1
2(n − k − 1)

≥ n + k + 1
4

,

where the last inequality is valid for k + 3 ≤ n.
Finally, we can estimate

E[Xt+1] = E[E[Xt+1|Xt] ]
=

∑
k

E[Xt+1|Xt = k] ·P[Xt = k]

≥
∑
k

n + k + 1
4

· P[Xt = k]

= n + 1
4

+ 1
4

∑
k

k · P[Xt = k]

= n + 1
4

+ 1
4
E[Xt]

= n + 1
4

· (
1 + 2−1 + · · · + 2−t)

= n + 1
2

· (
1 − 2−t−1) .

We are interested in determining the behavior of the
random variable, whose value is the number of external
loops in random saturated structures.
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Tn = min{t : Xt+1 ≥ (n + 1)/2}. (2)

From this we derive

P[Tn > t] = P[Xt+1 < (n + 1)/2]
= P[ (n + 1)/2 − Xt+1 > 0]
≤ E[ (n + 1)/2 − Xt+1]

= n + 1
2

− E[Xt+1]

≤ n + 1
2

− n + 1
2

· (
1 − 2−t−1)

= n + 1
2

· 2−t−1.

In particular, P[Tn > (1+ε) log n)]≤ n−ε +o(n−ε). This
completes the proof of Lemma 1.

Next we prove the following lemma.

Lemma 2. With high probability, the maximum stem
length is O(log n).

Proof. According to the recursive construction, at each
stage after a base pair is chosen at random in the subse-
quent stages, base pairs are nested within this base pair.
Therefore, the maximum stem length equals the maxi-
mum number of nested base pairs. This latter number
can also be obtained as follows. We define the follow-
ing sequence Y1,Y2, . . . ,Yt of random variables. A base
is chosen among 2, 3, . . . , n randomly and independently
with the uniform distribution. Let Y1 be the resulting
random variable. By induction, assume that Y1, . . . ,Yt
have been defined. To define the random variable Yt+1,
a base is chosen among t + 2, . . . ,Yt − 1 randomly and
independently with the uniform distribution. Clearly, this
procedure halts when Yt ≤ t + 2 and it follows that the
maximum number of nested base pairs is also the number
t of iterations before halting. Therefore we are interested
in knowing the behavior of the random variable

T ′ = min{t : Yt ≤ t + 2} (3)

(notice the dependence of the random variable T ′ on n).
Observe that since by definition Yi+1 is chosen among

i + 2, i + 3, . . . ,Yi − 1 randomly and independently with
the uniform distribution, for any integer k ≥ i + 2,
E[Yi+1|Yi = k]= k+i+1

2 . Consider the random variable
E[Yi+1|Yi] whose value at k is equal to E[Yi+1|Yi = k].
Using well-known identities on conditional probabilities,

we can derive the following equalities.

E[Yi+1] = E[E[Yi+1|Yi]]
=

∑
k

E[Yi+1|Yi = k] ·P[Yi = k]

=
∑
k

k + i + 1
2

· P[Yi = k]

= 1
2

∑
k

k · P[Yi = k]+ i + 1
2

= 1
2
E[Yi]+ i + 1

2
.

In particular, since E[Y1]= n+2
2 , we conclude that

E[Yt]≤ (1/2)t · n. Finally, we can derive P[T ′ > t]=
P[Yt > 0]≤ E[Yt]≤ (1/2)t · n. It follows that P[T ′ >

(1 + ε) log n)]≤ n−ε .
We are not yet completely done with the proof of

Lemma 2. The proof shows that with high probability,
the leftmost sequence of base pairs given by the recur-
sive construction has length at most O(log n). We would
like to prove the same for any sequence of nested base
pairs. To this effect, define random intervals Is, where s is
a finite sequence of 0s and 1s, by induction on the length
of s. Consider the interval I∅ = [ 1, n]. Assuming that
Is = [ as, bs] has already been defined, we consider a ran-
dom process that splits it at random into two subintervals,
i.e., choose an integer r ∈ Is randomly and independently
with the uniform distribution and let Is0 = [ as, r] and
Is1 = [ r + 1, bs]. Since E[|Isb|]≤ 1

2 · E[|Is|] it follows
that the expected length of Is is at most 2−|s|. Now con-
sider the random variable T ′′ which is defined as follows
T ′′ = min{k : ∃s(|s| = k & Is = ∅)}(notice the dependence
of the random variable T ′′ on n) and observe that T ′′ > k
if and only if ∀s(|s| = k ⇒ Is �= ∅). Therefore

P[T ′′ > k] = P[ min
k:|s|=k

|Is| > 0]≤ E[ min
k:|s|=k

|Is|]
≤ E[|Is|] , (for all sequences s such that |s| = k)
≤ 2−k .

As a consequence we conclude that P[T ′′ > (1 + ε)

log n)]≤ n−ε . This completes the proof of Lemma 2.

Finally, we can complete the proof of the main result
of Theorem 1 since this is now immediate from Lemmas
1 and 2.

Zipf distribution
It is possible to consider other probability distributions
like Zipf and generalized a-Zipf. The Zipf distribution
(first considered in [35]) is perhaps the most interesting
because it favors base pairs at a shorter distance. A base
pair (1,u), is chosen at random with the Zipf distribution.
I.e., the probability that the base pair (1,u) is selected is
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equal to 1
(u−1)H(n−1) , where

H(n − 1) =
n−1∑
k=1

1
k

is defined to be the (n−1)st harmonic number. As before,
the chord joining 1 and u partitions the ring into two
parts. One part has k bases between 1 and u, where k ≤
n−2, and the other part has the remaining n−k−2 bases
(see Figure 1).
Define Zn to be the expected number of base pairs of a

random saturated secondary structure with n bases, where
n ≥ 2. A base pair (1,u) is added as follows. Select u ≥ 2
at random among 2, 3, . . . , n with probability 1

(u−1)H(n−1) .
This gives rise to the following formula

Zn = 1 + 1
H(n − 1)

n−2∑
k=0

1
k + 1

(Zk + Zn−k−2), (4)

for all n ≥ 2. The main theorem of this section concerns
the overall structure of random secondary structures.

Theorem 2. With high probability, random saturated
secondary structures generated by the Zipf distribu-
tion have O(log2 n) external loops and stem length
O(log n/ log log n).

Proof. Before we give the proof, it will be necessary to
give the proof of two lemmas. In the first lemma we look
at the number of external loops.

Lemma 3. With high probability, the number of external
loops is O(log2 n).

Proof. We define a sequence of random variables
X1,X2, . . . ,Xt by induction as follows. Let X1 be the ran-
dom variable resulting when the base pair (1, k) is formed
by a selecting a base k among 2, 3, . . . , n randomly and
independently with the Zipf distribution. By induction,
assume that X1, . . . ,Xt have been defined. Let Xt+1 be the
random variable resulting when the base pair (Xt +1, k) is
formed by selecting a base k is chosen among Xt + 1,Xt +
2, . . . , n randomly and independently with the Zipf distri-
bution. Next we compute E[Xt], for all t. Indeed, observe
that P[X1 = k]= 1

(k−1)H(n−1) and

E[X1] =
n∑

i=2
i · 1

(i − 1)H(n − 1)

= n − 1
H(n − 1)

+ 1.

Next we compute the conditional probability

E[Xt+1|Xt = k] =
n∑

i=k+1
i · P[Xt+1 = i|Xt = k]

=
n∑

i=k+1
i · 1

(i − k − 1)H(n − k − 1)

= 1
H(n − k − 1)

n∑
i=k+1

i
i − k − 1

= 1
H(n − k − 1)

n∑
i=k+1

(
i − k − 1
i − k − 1

+ k + 1
i − k − 1

)

= n − k − 1
H(n − k − 1)

+ (k + 1).

Finally, we can calculate

E[Xt+1] = E[E[Xt+1|Xt] ]
=

∑
k

E[E[Xt+1|Xt = k] ] ·P[Xt = k]

=
∑
k

(
(k + 1) + n − k − 1

H(n − k − 1)

)
· P[Xt = k]

= 1 + E[Xt]+
∑
k

n − k − 1
H(n − k − 1)

· P[Xt = k]

≥ 1 + E[Xt]+ 1
H(n − 1)

∑
k

(n − k − 1) · P[Xt = k]

= 1 + E[Xt]+ 1
H(n − 1)

(n − 1 − E[Xt] )

≥ n − 1
H(n − 1)

+
(
1 − 1

H(n − 1)

)
E[Xt] .

Elementary calculations using this last inequality show
that

E[Xt+1]≥ (n − 1)
(
1 −

(
1 − 1

H(n − 1)

)t+2
)
.

We are interested in determining the behavior of the ran-
dom variable, whose value is the number of external loops;
i.e. the size of the largest sequence of external base pairs.
Define the random variable

Tn = min{t : Xt+1 ≥ n − 1}. (5)
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From this we derive

P[Tn > t] = P[Xt+1 < n − 1]
= P[ n − 1 − Xt+1 > 0]
≤ E[ n − 1 − Xt+1]
= n − 1 − E[Xt+1]

≤ n − 1 − (n − 1)
(
1 −

(
1 − 1

H(n − 1)

)t+2
)

= (n − 1)
(
1 − 1

H(n − 1)

)t+2
.

In particular, since H(n − 1) ∼ ln n we conclude that
P[Tn > ε ln2 n)]≤ n−ε . This completes the proof of
Lemma 3.

The next result concerns the maximum stem length.We
can prove the following result.

Lemma 4. With high probability, the maximum stem
length is O(log n/ log log n).

Proof. According to the recursive construction, at each
stage after a base pair is chosen at random in the subse-
quent stages base pairs are nested within this base pair.
Therefore, the maximum stem length is equal to the max-
imum number of nested base pairs. This latter number
can also be obtained, by investigating a sequence of ran-
dom variables Y1,Y2, . . . ,Yt , defined as follows. Choose a
base among 2, 3, . . . , n − 1 randomly and independently
with the Zipf distribution. Let Y1 be the resulting ran-
dom variable. By induction, assume that Y1, . . . ,Yt have
been defined. To define the random variable Yt+1, a base
is chosen among t + 2, t + 3, . . . ,Yt − 1 randomly and
independently with the Zipf distribution. Clearly, this pro-
cedure halts when Yt = 1 and it follows that themaximum
number of nested base pairs is also the number t of itera-
tions before halting. Therefore we are interested to know
the behavior of the random variable

T ′ = min{t : Yt > 0} (6)

(notice the dependence of the random variable T ′ on n).
Observe that since by definition Yi+1 is chosen among

i + 2, i + 3, . . . ,Yi − 1 randomly and independently with
the Zipf distribution, for any integer k ≥ i + 2,

E[Yi+1|Yi = k]= k − i − 1
H(k − i − 1)

.

Consider the random variable E[Yi+1|Yi] whose value at
k is equal to E[Yi+1|Yi = k]. Using well-known identities

on conditional probabilities we can derive the following
inequalities.

E[Yi+1] = E[E[Yi+1|Yi]]
=

∑
k

E[E[Yi+1|Yi = k] ] ·P[Yi = k]

=
∑
k≥i+2

k − i − 1
H(k − i − 1)

· P[Yi = k]

≤
∑
k≥i+2

k
H(k)

· P[Yi = k]

≤ 1
H(i + 2)

E[Yi] ,

where we used the fact that the fraction n/H(n) is mono-
tone increasing in n. In particular, since E[Y1]= n−2

H(n−2) ,
we conclude that E[Yt]≤ n−2

H(t+1)·H(t)···H(2) . Finally, we can
derive

P[T ′ > t] = P[Yt > 0]
≤ E[Yt]

≤ n − 2
H(t + 1) · H(t) · · ·H(2)

≤ n − 2
H(t/2)t/2

.

In particular,

P

[
T ′ > (1 + ε)

log n
ln ln n

]
≤ n−ε .

The proof shows that the leftmost sequence of base
pairs given by the recursive construction of the random
secondary structure has length at most O(log n/ log log n)

with high probability. We would like to prove the same
for any sequence of nested base pairs. It is easily seen that
a proof similar to the one presented above works. This
completes the proof of Lemma 4.

If we now combine Lemmas 3 and 4 we derive the proof
of Theorem 2.

Endnote
aThroughout this paper all logarithms are in base 2.
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