429 research outputs found

    On small Mixed Pattern Ramsey numbers

    Full text link
    We call the minimum order of any complete graph so that for any coloring of the edges by kk colors it is impossible to avoid a monochromatic or rainbow triangle, a Mixed Ramsey number. For any graph HH with edges colored from the above set of kk colors, if we consider the condition of excluding HH in the above definition, we produce a \emph{Mixed Pattern Ramsey number}, denoted Mk(H)M_k(H). We determine this function in terms of kk for all colored 44-cycles and all colored 44-cliques. We also find bounds for Mk(H)M_k(H) when HH is a monochromatic odd cycles, or a star for sufficiently large kk. We state several open questions.Comment: 16 page

    Improved bounds on the multicolor Ramsey numbers of paths and even cycles

    Full text link
    We study the multicolor Ramsey numbers for paths and even cycles, Rk(Pn)R_k(P_n) and Rk(Cn)R_k(C_n), which are the smallest integers NN such that every coloring of the complete graph KNK_N has a monochromatic copy of PnP_n or CnC_n respectively. For a long time, Rk(Pn)R_k(P_n) has only been known to lie between (k1+o(1))n(k-1+o(1))n and (k+o(1))n(k + o(1))n. A recent breakthrough by S\'ark\"ozy and later improvement by Davies, Jenssen and Roberts give an upper bound of (k14+o(1))n(k - \frac{1}{4} + o(1))n. We improve the upper bound to (k12+o(1))n(k - \frac{1}{2}+ o(1))n. Our approach uses structural insights in connected graphs without a large matching. These insights may be of independent interest

    Planar graph coloring avoiding monochromatic subgraphs: trees and paths make things difficult

    Get PDF
    We consider the problem of coloring a planar graph with the minimum number of colors such that each color class avoids one or more forbidden graphs as subgraphs. We perform a detailed study of the computational complexity of this problem

    Decompositions of edge-colored infinite complete graphs into monochromatic paths

    Get PDF
    An rr-edge coloring of a graph or hypergraph G=(V,E)G=(V,E) is a map c:E{0,,r1}c:E\to \{0, \dots, r-1\}. Extending results of Rado and answering questions of Rado, Gy\'arf\'as and S\'ark\"ozy we prove that (1.) the vertex set of every rr-edge colored countably infinite complete kk-uniform hypergraph can be partitioned into rr monochromatic tight paths with distinct colors (a tight path in a kk-uniform hypergraph is a sequence of distinct vertices such that every set of kk consecutive vertices forms an edge), (2.) for all natural numbers rr and kk there is a natural number MM such that the vertex set of every rr-edge colored countably infinite complete graph can be partitioned into MM monochromatic kthk^{th} powers of paths apart from a finite set (a kthk^{th} power of a path is a sequence v0,v1,v_0, v_1, \dots of distinct vertices such that 1ijk1\le|i-j| \le k implies that vivjv_iv_j is an edge), (3.) the vertex set of every 22-edge colored countably infinite complete graph can be partitioned into 44 monochromatic squares of paths, but not necessarily into 33, (4.) the vertex set of every 22-edge colored complete graph on ω1\omega_1 can be partitioned into 22 monochromatic paths with distinct colors

    Ramsey numbers of ordered graphs

    Full text link
    An ordered graph is a pair G=(G,)\mathcal{G}=(G,\prec) where GG is a graph and \prec is a total ordering of its vertices. The ordered Ramsey number R(G)\overline{R}(\mathcal{G}) is the minimum number NN such that every ordered complete graph with NN vertices and with edges colored by two colors contains a monochromatic copy of G\mathcal{G}. In contrast with the case of unordered graphs, we show that there are arbitrarily large ordered matchings Mn\mathcal{M}_n on nn vertices for which R(Mn)\overline{R}(\mathcal{M}_n) is superpolynomial in nn. This implies that ordered Ramsey numbers of the same graph can grow superpolynomially in the size of the graph in one ordering and remain linear in another ordering. We also prove that the ordered Ramsey number R(G)\overline{R}(\mathcal{G}) is polynomial in the number of vertices of G\mathcal{G} if the bandwidth of G\mathcal{G} is constant or if G\mathcal{G} is an ordered graph of constant degeneracy and constant interval chromatic number. The first result gives a positive answer to a question of Conlon, Fox, Lee, and Sudakov. For a few special classes of ordered paths, stars or matchings, we give asymptotically tight bounds on their ordered Ramsey numbers. For so-called monotone cycles we compute their ordered Ramsey numbers exactly. This result implies exact formulas for geometric Ramsey numbers of cycles introduced by K\'arolyi, Pach, T\'oth, and Valtr.Comment: 29 pages, 13 figures, to appear in Electronic Journal of Combinatoric
    corecore