19 research outputs found

    A new analytical approach to evaluate the critical-event probability due to wireless communication errors in train control systems

    Get PDF
    Wireless communication links tend to be employed more and more in safety-critical railway applications. Their safe use in an advanced train control system (TCS) is an issue that is addressed in this paper by characterizing the TCS service inter- ruption due to communication errors. More precisely, occurrence probabilities of single errors are first discussed. Then, we obtain probabilistic analytical expressions of several temporal conditions that lead to a TCS service interruption, here a train emergency braking (the critical event). The accuracy of this analytical ap- proach is proved when the results are compared with those given by a simulation approach with a Petri net model. Additionally, as the use case related to the “trains’ separation” is considered in this paper, an analytical evaluation process is proposed to discuss the tolerated time margins that can be fixed to limit the critical-event occurrence probability due to the wireless communication errors

    Verifizierbare Entwicklung eines satellitenbasierten Zugsicherungssystems mit Petrinetzen

    Get PDF
    Nowadays model-based techniques are widely used in system design and development, especially for safety-critical systems such as train control systems. Given a design model, executable codes could be generated automatically from the model following certain transformation rules. A high-quality model of a system provides a good understanding, a favourable structure, a reasonable scale and abstraction level as well as realistic behaviours with respect to the concurrent operation of independent subsystems. Motivated by this principle, a first Coloured Petri Net (CPN) model of a satellite-based train control system (SatZB) with the capability of continuous simulation is developed employing the BASYSNET method which adopts Petri nets as the means of description during the whole development process. After establishing the system model, the verification tasks are identified based on the hazard analysis of the train control system. To verify the identified tasks for quality assurance, verification by means of simulation, formal analysis and testing is carried out considering the four representing system properties: function, state, structure and behaviour. For structural analysis, the concept of open nets is proposed to check the reproducibility of empty markings of scenario nets, the existence of dead transitions in the scenario nets, and the terminating states of the scenario nets. The system behaviour, in which states are involved, is investigated by reachability analysis. Unlike the conventional method of reachability analysis by calculating the state space of the Petri net, techniques based on Petri net unfoldings are introduced in this thesis. As to the functional verification, two model-based test generation techniques, i.e., CPN-based and SPENAT (Safe Place Transition Nets with Attributes)-based techniques, are presented. In this thesis, the proposed methods are exemplified by the application to the on-board module of SatZB model. According to the verification results, no errors were found in the module. Therefore, the confidence in the quality of the on-board module has been significantly increased.Heutzutage werden in zahlreichen Anwendungen modellbasierte Techniken zur Systementwicklung, insbesondere für sicherheitskritische Systeme wie Eisenbahnleit- und -sicherungssysteme, verwendet. Aus einem Design Modell kann dabei ausführbarer Code automatisch nach bestimmten Transformationsregeln generiert werden. Ein hochwertiges Modell des Systems bietet für die Entwicklung ein gutes Verständnis, eine günstige Struktur, eine angemessene Größenordnung und Abstraktionsebene als auch realistische Verhaltensweisen in Bezug auf den gleichzeitigen Betrieb von unabhängigen Subsystemen. Motiviert von dieses Prinzip wird ein erstes Farbige Petri-Netz (CPN)-Modell eines satellitenbasierten Zugsicherungssystem (SatZB) unter Verwendung der BASYSNET Methode entwickelt, der Petri-Netze als Beschreibungsmittel während des gesamten Entwicklungsprozesses nutzt. Dieses Modell bietet die Möglichkeit zur kontinuierlichen Simulation des Systemverhaltens. Nach der Erstellung des Systemmodells werden die Verifikationsaufgaben auf der Grundlage der Gefährdungsanalyse des Zugsicherungssystems identifiziert. Die abgeleiteten Bedingungen werden zur Qualitätssicherung durch Simulation, formale Analysen und Tests unter Berücksichtigung der vier Systemeigenschaften (Funktion, Zustand, Struktur und Verhalten) verifiziert. Für die Strukturanalyse wird das Konzept der offenen Netzen vorgeschlagen, um die Reproduzierbarkeit der leeren Markierungen der Szenario-Netze, die Existenz der Toten Transitionen in den Szenario-Netze, und die Abschluss Zustände der Szenario-Netze zu prüfen. Das Systemverhalten wird dabei durch Zustände beschrieben und durch eine Erreichbarkeitsanalyse untersucht. Im Gegensatz zu der konventionellen Methode, welche die Erreichbarkeit durch die Berechnung des Zustandsraums des Petri-Netzes analysiert, werden in dieser Arbeit Techniken auf Basis von Petri-Netz-Entfaltung eingeführt. Für die funktionale Verifikation werden zwei modellbasierte Testgenerierungstechniken, eine CPN-basierte und eine SPENAT (Sicheres Petrinetz mit Attributen)-basierte, vorgestellt. In dieser Arbeit werden die vorgeschlagenen Methoden durch die Anwendung auf das On-Board-Modul des SatZB-Modells veranschaulicht. Dabei wurden nach dem Abschluss der Prüfungen keine Fehler im Modul gefunden, wodurch das Vertrauen in die Qualität des On-Board-Moduls deutlich erhöht wurde

    A Constructive Framework for the Preventive Signalling Maintenance Crew Scheduling Problem in the Danish Railway system

    Get PDF
    In this paper we consider the problem of planning preventive maintenance of railway signals in Denmark. This case is particularly interesting, as the entire railway signalling system is currently being upgraded to the new European Railway Traffic Management System (ERTMS) standard. This upgrade has significant implications for signal maintenance scheduling in the system. We formulate the problem as a multidepot vehicle routing and scheduling problem with time windows and synchronisation constraints, in a multiday time schedule. The requirement that some tasks require the simultaneous presence of more than one engineer means that task synchronisation must be considered. A multi-stage constructive framework is proposed, which first distributes maintenance tasks using a clustering formulation. Following this, a Constraint Programming (CP) based approach is used to generate feasible monthly plans for large instances of practical interest. Experimental results indicate that the proposed framework can generate feasible solutions and schedule a monthly plan of up to 1000 tasks for eight crew members, in a reasonable amount of computational tim

    Contribution à la Spécification et à la Vérification des Exigences Temporelles (Proposition d'une extension des SRS d'ERTMS niveau 2)

    Get PDF
    Les travaux développés dans cette thèse visent à assister le processus d ingénierie des exigences temporelles pour les systèmes complexes à contraintes de temps. Nos contributions portent sur trois volets : la spécification des exigences, la modélisation du comportement et la vérification. Pour le volet spécification, une nouvelle classification des exigences temporelles les plus communément utilisées a été proposée. Ensuite, afin de cadrer l utilisateur durant l expression des exigences, une grammaire de spécification à base de motifs prédéfinis en langage naturel est développée. Les exigences générées sont syntaxiquement précises et correctes quand elles sont prises individuellement, néanmoins cela ne garantie pas la cohérence de l ensemble des exigences exprimées. Ainsi, nous avons développé des mécanismes capables de détecter certains types d incohérences entre les exigences temporelles. Pour le volet modélisation du comportement, nous avons proposé un algorithme de transformation des state-machine avec des annotations temporelles en des automates temporisés. L idée étant de manipuler une notation assez intuitive et de générer automatiquement des modèles formels qui se prêtent à la vérification. Finalement, pour le volet vérification, nous avons adopté une technique de vérification à base d observateurs et qui repose sur le model-checking. Concrètement, nous avons élaboré une base de patterns d observation (ou observateurs) ; chacun des patterns développés est relatif à un type d exigence temporelle dans la nouvelle classification. Ainsi, la vérification est réduite à une analyse d accessibilité des états correspondants à la violation de l exigence associéeThe work developed in this thesis aims to assist the engineering process of temporal requirements for time-constrained complex systems. Our contributions concern three phases: the specification, the behaviour modelling and the verification. For the specification of temporal requirements, a new temporal properties typology taking into account all the common requirements one may meet when dealing with requirements specification, is introduced. Then, to facilitate the expression, we have proposed a structured English grammar. Nevertheless, even if each requirement taken individually is correct, we have no guarantee that a set of temporal properties one may express is consistent. Here we have proposed an algorithm based on graph theory techniques to check the consistency of temporal requirements sets. For the behaviour modelling, we have proposed an algorithm for transforming UML State Machine with time annotations into Timed Automata (TA). The idea is to allow the user manipulating a quite intuitive notation (UML SM diagramsduring the modelling phase and thereby, automatically generate formal models (TA) that could be used directly by the verification process. Finally, for the verification phase, we have adopted an observer-based technique. Actually, we have developed a repository of observation patterns where each pattern is relative to a particular temporal requirement class in our classification. Thereby, the verification process is reduced to a reachability analysis of the observers KO states relatives to the requirements violationVILLENEUVE D'ASCQ-ECLI (590092307) / SudocSudocFranceF

    DFT modeling approach for operational risk assessment of railway infrastructure

    Get PDF
    Reliability engineering of railway infrastructure aims to understand failure processes and to improve the efficiency and effectiveness of investments and maintenance planning such that a high quality of service is achieved. While formal methods are widely used to verify the design specifications of safety-critical components in train control, quantitative methods to analyze the service reliability associated with specific system designs are only starting to emerge. In this paper, we strive to advance the use of formal fault-tree modeling for providing a quantitative assessment of the railway infrastructure's service reliability in the design phase. While, individually, most subsystems required for route-setting and train control are well understood, the system's reliability to globally provide its designated service capacity is less studied. To this end, we present a framework based on dynamic fault trees that allows to analyze train routability based on train paths projected in the interlocking system. We particularly focus on the dependency of train paths on track-based assets such as switches and crossings, which are particularly prone to failures due to their being subject to weather and heavy wear. By using probabilistic model checking to analyze and verify the reliability of feasible route sets for scheduled train lines, performance metrics for reliability analysis of the system as a whole as well as criticality analysis of individual (sub-)components become available. The approach, which has been previously discussed in our paper at FMICS 2019, is further refined, and additional algorithmic approaches, analysis settings and application scenarios in infrastructure and maintenance planning are discussed

    Entwicklung und Analyse eines Zug-zentrischen Entfernungsmesssystems mittels Colored Petri Nets

    Get PDF
    Based on the technology trends, the train control system should weaken the proportion of ground facilities, and give trains more individual initiative than in the past. As a result, the safety and flexibility of the train control system can be further improved. In this thesis, an enhanced movement authority system is proposed, which combines advantages of the train-centric communication with current movement authority mechanisms. To obtain the necessary train distance interval data, the onboard equipment and a new train-to-train distance measurement system (TTDMS) are applied as normal and backup strategies, respectively. While different location technologies have been used to collect data for trains, the development and validation of new systems remain challenges. In this thesis, formal approaches are presented for developing and verifying TTDMS. To assist the system development, the Colored Petri nets (CPNs) are used to formalize and evaluate the system structure and its behavior. Based on the CPN model, the system structure is validated. Additionally, a procedure is proposed to generate a Code Architecture from the formal model. The system performance is assessed in detection range and accuracy. Therefore both mathematical simulation and practical measurements validation are implemented. The results indicate that the system is feasible to carry out distance measurements both in metropolitan and railway lines, and the formal approaches are reusable to develop and verify other systems. As the target object, TTDMS is based on a spread-spectrum technology to accomplish distance measurement. The measurement is carried out by applying Time of Arrival (TOA) to calculate the distance between two trains, and requires no synchronized time source of transmission. It can calculate the time difference by using the autocorrelation of Pseudo Random Noise (PRN) code. Different from existing systems in air and maritime transport, this system does not require any other localization unit, except for communication architecture. To guarantee a system can operate as designed, it needs to be validated before its application. Only when system behaviors have been validated other relative performances' evaluations make sense. Based on the unambiguous definition of formal methods, TTDMS can be described much clearer by using formal methods instead of executable codes.Basierend auf technologischen Trends sollte das Zugbeeinflussungssystem den Anteil der Bodenanlagen reduzieren und den Zügen mehr Eigeninitiative geben als in der Vergangenheit, da so die funktionale Sicherheit und die Flexibilität des Zugbeeinflussungssystems erhöht werden können. In dieser Arbeit wird ein verbessertes System vorgeschlagen, das die Vorteile der zugbezogenen Kommunikation mit den aktuellen Fahrbefehlsmechanismen kombiniert. Um die notwendigen Daten des Zugabstandsintervalls zu erhalten, werden die Bordausrüstung und ein neues Zug-zu-Zug-Entfernungsmesssystem (TTDMS) als normale bzw. Backup-Strategien angewendet. Während verschiedene Ortungstechnolgien zur Zugdatenerfassung genutzt wurden, bleibt die Entwicklung und Validierung neuer Systeme eine Herausforderung. In dieser Arbeit werden formale Ansätze zur Entwicklung und Verifikation von TTDMS vorgestellt. Zur Unterstützung der Systementwicklung werden CPNs zur Formalisierung und Bewertung der Systemstruktur und ihres Verhaltens eingesetzt. Basierend auf dem CPN-Modell wird die Systemstruktur validiert. Zusätzlich wird eine Methode vorgeschlagen, mit der eine Code-Architektur aus dem formalen Modell generiert werden kann. Die Systemleistung wird im Erfassungsbereich und in der Genauigkeit beurteilt. Daher werden sowohl eine mathematische Simulation als auch eine praktische Validierung der Messungen implementiert. Die Ergebnisse zeigen, dass das System in der Lage ist, Entfernungsmessungen in Metro- und Eisenbahnlinien durchzuführen. Zudem sind die formalen Ansätze bei der Entwicklung und Verifikation anderer Systeme wiederverwendbar. Die Abstandsmessung mit TTDMS basiert auf einem Frequenzspreizungsverfahren. Die Messung wird durchgeführt, indem die Ankunftszeit angewendet wird, um den Abstand zwischen zwei Zügen zu berechnen. Dieses Verfahren erfordert keine Synchronisierung der Zeitquellen der Übertragung. Der Zeitunterschied kann damit berechnet werden, indem die Autokorrelation des Pseudo-Random-Noise-Codes verwendet wird. Im Unterschied zu Systemen im Luft- und Seeverkehr benötigt dieses System keine andere Lokalisierungseinheit als die Kommunikationsarchitektur. Um zu gewährleisten, dass ein System wie vorgesehen funktioniert, muss es validiert werden. Nur wenn das Systemverhalten validiert wurde, sind Bewertungen anderer relativer Leistungen sinnvoll. Aufgrund ihrer eindeutigen Definition kann das TTDMS mit formalen Methoden klarer beschrieben werden als mit ausführbaren Codes
    corecore