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Abstract In this paper we consider the problem of

planning preventive maintenance of railway signals in

Denmark. This case is particularly interesting, as the

entire railway signalling system is currently being up-

graded to the new European Railway Traffic Manage-

ment System (ERTMS) standard. This upgrade has sig-

nificant implications for signal maintenance scheduling

in the system. We formulate the problem as a multi-

depot vehicle routing and scheduling problem with time

windows and synchronisation constraints, in a multi-

day time schedule. The requirement that some tasks

require the simultaneous presence of more than one en-

gineer means that task synchronisation must be con-

sidered. A multi-stage constructive framework is pro-

posed, which first distributes maintenance tasks using

a clustering formulation. Following this, a Constraint

Programming (CP) based approach is used to generate

feasible monthly plans for large instances of practical in-

terest. Experimental results indicate that the proposed

framework can generate feasible solutions and schedule
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a monthly plan of up to 1000 tasks for eight crew mem-

bers, in a reasonable amount of computational time.
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1 Introduction

The European Rail Traffic Management System (ERT-

MS) (Bloomfield, 2006) is the new generation of rail

communication and control signalling systems intro-

duced by the European Union. ERTMS aims to unify

the existing incompatible train signalling systems within

different European countries, creating a Europe-wide

standard for train control and command systems. As

ERTMS is still in the initial stages of operation, there is

limited research pertinent to the required maintenance

activities following implementation (Tapsall, 2003; Re-

dekker, 2008; Patra et al., 2010; Amraoui and Mes-

ghouni, 2014; Barger et al., 2014).

As the main communication component within a

railway network, the primary role of the signalling sys-

tem is to control and monitor safety, using two inter-

connected layers to process and transmit information.

This makes the sub-components of a railway system and

signalling system functionally interdependent.

The implementation of ERTMS has been prioritised

as one of the most important potential enhancements

within the railway sector in several European and non-

European countries (Abed, 2010). Upgrading to ERTMS

improves the safety of trains within and across national

borders by resolving the lack of interoperability be-

tween existing signalling systems.

Denmark has decided to implement ERTMS for its

entire signalling system, becoming the first country in
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Fig. 1: Classification of maintenance planning problems

Europe to do so. The existing signalling system is mainly

based on the national Automatic Train Protection (ATP)

system, using the Siemens ZUB100 platform, imple-

mented between 1986 and 1988. This decision has been

taken as a result of a study comparing the benefits of

piecewise renewal, based on the natural expiry of the

existing system, against total renewal of the entire sig-

nalling system (Banedanmark, 2009). This study found

that total renewal with ERTMS was the better solution

with respect to cost, risk and expected benefits.

The adoption of ERTMS influences all attributes

of the railway network, including maintenance schedul-

ing. Therefore, although the main goal of implement-

ing ERTMS is ensuring that the railway lines involved

are operational, it is necessary to take the maintenance

requirements of ERTMS into consideration during the

primary stages of implementation (Redekker, 2008). Banedan-

mark, a state-owned Danish company, is responsible for

maintenance and traffic control of most of the Dan-

ish railway network. They wish to develop a planning

system for maintenance tasks within the new ERTMS

network. This paper lays the theoretical foundation for

such a system. In particular, there is a need for a crew

scheduling system for preventive maintenance of the

new equipment. Given the large investment in the re-

newal project (approximately three billion Euros (Banedan-

mark, 2009)), effective maintenance is crucial.

According to the terminology of the European Com-

mittee for Standardization (CEN) Technical Commit-

tees (Cigolini et al., 2006), maintenance includes not

only technical functionality, but also other aspects such

as planning, monitoring and even documentation ac-

tivities. Preventive maintenance covers several of these

functional areas. Preventive maintenance refers to the

activities that are carried out across a planning horizon

to ensure that the risk of degradation and breakdowns

are minimised (European Committee for Standardiza-

tion (CEN), 2010).

Problems pertaining to railway maintenance pla-

nning and scheduling are broadly divided into three

categories by Lidén (2015), as shown in Figure 1. Based

on the definitions of this survey, strategic maintenance

problems relate mostly to dimensioning, localisation and

organisational structure, examined over a span of sev-

eral years. Timetabling and scheduling are defined as

tactical problems, relating to a medium-term time frame,

i.e. from a few weeks to a year. Finally, in the opera-

tional category, problems are related to implementa-

tion, and have short-term time frames, such as a few

hours to a few months.

This paper focuses on a crew scheduling and rout-

ing problem at the tactical level, as shown in bold in

Figure 1, arising in the planning of preventive mainte-

nance tasks to be performed on signals geographically

spread across the rail network. The number of main-

tenance tasks is large (around 1000) and must be as-

signed to crew members over a period of one month.

The route that each crew member takes must be de-

termined, with each crew member starting from and

returning to a unique depot location. Some tasks re-

quire the simultaneous presence of two crew members to

be completed, which introduces an interdependency be-

tween some routes. Problems which require exact syn-

chronisation constraints to be respected span a wide

range of application areas, including aircraft fleet rout-

ing and scheduling (Ioachim et al., 1999), homecare

staff scheduling (Bredstrom and Ronnqvist, 2008; Ras-

mussen et al., 2012), and garbage collection (De Rosa

et al., 2002) amongst others.
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The Vehicle Routing Problem with multiple syn-

chronisation constraints (VRPMS) has attracted many

researchers, not only due to its novelty, but also for

its presence in many practical application areas (Drexl,

2012). According to Drexl, the VRPMS is defined as “a

vehicle routing problem in which more than one vehicle

may or must be used to fulfill a task”. Synchronisation

constraints can occur for a number of reasons (e.g. load,

spatial, or temporal). In our problem we face a tempo-

ral synchronisation constraint, which exists due to the

interdependent nature of individual routes (Drexl and

Sebastian, 2007). As a consequence, it is difficult to

use well-known heuristic or MIP approaches directly as

the feasibility of routes cannot be guaranteed (Drexl,

2012). The temporal synchronisation constraint neces-

sitates checking the feasibility of each route, as has been

the case in previous work in the literature (Drexl, 2016).

A classification of synchronisation constraints has

been presented previously by Drexl (2012). Under this

classification we are dealing with an “Exact Operation

Synchronisation” constraint, which is defined as the re-

quirement for two vehicles to start a particular task

or operation exactly at the same time. To tackle the

interdependency problem in the presence of exact syn-

chronisation constraints several approaches have been

suggested. These include allowing infeasibility in par-

tial solutions during the search (Oertel, 2000; De Rosa

et al., 2002; Wen et al., 2009; Prescott-Gagnon et al.,

2014), intensification of the search space indirectly in

local search and large neighborhood search (Lim et al.,

2004; Li et al., 2005), and approximation of the cost

function (De Rosa et al., 2002; Wen et al., 2009). Con-

straint Programming, our chosen approach here, has

previously been used to solve the loosely-related solv-

ing Log-Truck Scheduling Problem (El Hachemi et al.,

2011).

The contribution of this paper is twofold:

1. We show that the Preventive Signalling Maintenance

Crew Scheduling Planning (PSMCSP) can be for-

mulated as a Multi Depot Vehicle Routing and Schedul-

ing Problem (MD-VRSP) with synchronisation con-

straints. The crew members homes can be consid-

ered as depots and each planning day can be con-

sidered as a vehicle route. The maintenance tasks

are represented as geographically spread nodes that

require servicing. Maintenance tasks can be divided

into two different types: tasks that can be handled

by a single crew member, and tasks which cannot

be done by one person alone, leading to synchroni-

sation requirements in the solution. To our knowl-

edge, there is no previous work undertaken to model

a VRPMS with exact synchronisation constraints

over a multiple day time horizon. Our model is in-

spired by the mathematical model of Bredstrom and

Ronnqvist (2008), which explicitly includes synchro-

nisation constraints to solve a homecare scheduling

problem with a daily time horizon, and is a general-

isation of their model for a multi-day time horizon.

2. Since the PSMCSP generalises the Travelling Sales-

man Problem (TSP) which is well-known to be NP-

hard (Garey and Johnson, 1990), we can not expect

to solve the problem efficiently in polynomial time.

Preliminary results show that a commercial MIP

solver cannot solve small instances of this problem

in a reasonable amount of time. Here, we introduce

a stage-based constructive approach to generate fea-

sible solutions to the problem for problem instances

that are large enough to be of practical interest,

containing up to 1000 maintenance tasks.

The remainder of the paper is structured as follows.

In Section 2 we explain the maintenance problem, con-

sidering the attributes of both ERTMS and the Danish

railway network and present the MIP formulation of

the problem we address in this paper as a MD-VRSP.

Section 3 explains the four phases of our solution frame-

work, and is followed by a separate section covering the

details of the routing and scheduling phase in Section

4. We present our results in Section 5 and finally we

conclude in Section 6.

2 Maintenance Planning in ERTMS

Banedanmark, a Danish state-owned enterprise under

the ministry of transport (Banedanmark, 2016), is re-

sponsible for maintenance and traffic control in the new

signalling system. The countrywide signalling replace-

ment program is formed as single plan but is in prac-

tice structured as ten projects and a number of smaller

contracts (Banedanmark, 2009). Maintenance planing

in Jutland is done in collaboration with the Western

Fjernbane, contracted by the Thales and Balfour Beatty

Rail (Thales B.B.R) consortium in January 2012 (Banedan-

mark, 2009). The contract covers both signalling in-

stallation (approximately 60% of the Danish Fjernbane

lines) and maintenance planning across the biggest re-

gion of Denmark, Jutland (Banedanmark, 2009).

Figure 2 is inspired by (Redekker, 2008) and shows

the organisational structure for ERTMS maintenance

in the Danish railway network. This figure is based on

the description and schematic view provided by the

contractors of ERTMS maintenance in Denmark and

Netherlands (Redekker, 2008). According to their de-

scription, the set of maintenance staff for ERTMS in-
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Fig. 2: ERTMS Maintenance structure

cludes both first-line and second-line maintenance teams.

The first team is composed of engineers who under-

take maintenance activities pertinent to track equip-

ment, such as point machines, axle counters, balises

and signals. The second team involves professionals, e.g.

electromechanical engineers, who manage more com-

plex tasks, such as the electronic interlocking system

and on-board equipment. Since these members are ex-

perts, they can manage issues that cannot be handled

by the first group of engineers alone. The second-line en-

gineers also have to communicate with various external

equipment suppliers, including those for GSM-R, Euro-

pean Vehicle Computers (EVCs), Radio Block Centres

(RBC-s) etc.

There are a number of cases where the presence of

two members from one or both types of maintenance

team are required to complete a task, for example due

to safety regulations or requirements for different exper-

tise. Tasks which require the simultaneous presence of

two crew members with the same or different expertise

at one location are referred to as operation synchroni-

sations (Drexl, 2012).

2.1 Requirement for clustering the maintenance region

The sub-systems within a railway network can have dif-

ferent levels of conformity according to their geographic

layout (Liden, 2014). For example, the signalling sys-

tem will not necessarily have the same layout as the

rolling stock due to the differences between their com-

ponents. Consequently, the maintenance activities un-

dertaken on a signalling component may have a differ-

ent impact on the network compared to one on the rail

track (Liden, 2014). On a similar note, in the event of

a breakdown the impact on the network can vary de-

pending on the component that has failed. The failure

of one component in the signalling system may lead

to the failure of other components or even propagate

to the whole network, whereas a failure occurring on

a track segment is usually more isolated and easier to

recover from. This difference makes the partitioning of

each sub-system highly influential, affecting the levels

of operability and the maintainability of the railway

network (Liden, 2014).

Denmark is composed of a long peninsular (Jut-

land) and several islands. Its geography has a major im-

pact on the development of the railway network across

the country. Due to these geographical features, ex-

isting maintenance planning in the biggest region of

the country has a decentralised maintenance structure,

where the crew start their duties from different loca-

tions rather than from a single depot. According to

Banedanmark, the industrial partner on the renewal

project, the maintenance plan should define the sub-

regions in which each crew member works. The work-

load across sub-regions should be balanced and the ge-

ography of the sub-regions should ensure that a crew

member can travel quickly between any two points in

the sub-region when required in the case of equipment

failure.

On this basis, after migrating from the existing sig-

nalling system to ERTMS, considering the attributes of

both the Danish railway network and the ERTMS main-

tenance structure, Figure 3 shows the abstract model

of the maintenance problem we address in this paper.

The figure shows that each crew member should service

a number of maintenance tasks on a daily-basis as part

of their plan. Each daily plan is shown as a separate

route, with a different colour for each crew member. As

the time horizon of the maintenance planning problem

is on a monthly basis, the number of independent routes

for each crew member indicates the number of working

days per month for that person. Tasks usually take less

than two hours and no task should be split over two

days.

As mentioned previously, due to the nature of the

tasks required to maintain a railway system using ERTMS,

not all tasks can be assigned to only one person. For ex-

ample in Figure 3, assume that tasks tn and tm need to

be done by two crew members. Although crew c3 and c4

are responsible for completing single tasks on their own

routes, the maintenance plan should support daily col-

laboration of different crew members on such tasks. In

this way, crew c3 and c4 should meet at the same time

and location as part of their independent daily routes

to complete this type of maintenance task as shown in

Figure 3. In the maintenance planning problem faced in

this paper, we have not taken the skill set of the crew

members into account.



Title Suppressed Due to Excessive Length 5

Fig. 3: Maintenance Problem in Jutland

2.2 MIP Formulation

Here we present the MIP formulation of the problem.

The temporal aspect is modelled by using “one vehicle-

independent time variable ti for the beginning of exe-

cution of a task or operation requiring more than one

vehicle at a vertex i” as in Drexl (2012). This way

of modelling is the most popular variant among MIP-

based approaches in the literature (Li et al., 2005; Lim

et al., 2004; Dohn et al., 2009; Cortés et al., 2010).

The synchronisation constraint is explicitly included in

the model, inspired by the straightforward model pre-

sented by (Bredstrom and Ronnqvist, 2008). Accord-

ing to their work, if a task needs to be completed by

two crew members, it will be duplicated; introducing a

second virtual task located at the exact same coordi-

nates and requiring the same service time. These pairs

of tasks are included in a set called the Psync set. If we

ensure that a single crew member is not assigned both

tasks within each pair of Psync, the actual task will be

completed by two different crew members.

Maintenance tasks are related to the geographic lo-

cations of the equipment to be serviced. Here we use a

set n ∈ N of geographical positions, referred to as task

points. The task points are modelled as vertices of a

graph G = (N,A), connected through arcs (i, j) ∈ A,

with a weight corresponding to the travel time Ti,j be-

tween them. It takes Di time to perform task i. There

is also a time-window, inside which task i should be

performed, with ai denoting the earliest start time and

bi the latest finish time, where ai ≥ 0 and bi ≥ ai. Each

crew member m ∈M has an earliest start time om and

a latest finish time dm.

There are two types of decision variables: The vari-

ables xi,j,m,k ∈ 0, 1 which are 1 if crew m travels from

task i to task j at day k, otherwise 0. The task-time

variables ti,k ≥ 0 are the arrival time at task i at day k

and are 0 if the task is not visited at day k. Hence the

arrival time for a visit task i is defined by
∑
k∈K

ti,k.

This model can be seen as a generalisation of the

classical Vehicle Routing Problem with Time Windows,

extended with multiple depots and synchronisation re-

quirements. The full model is given below in Equa-

tions (1)-(9).

The objective function (1) simply minimises the re-

quired transportation time:

Min
∑
m∈M

∑
k∈K

∑
(i,j)∈A

Ti,jxi,j,m,k (1)

Constraint (2) ensures that each signal maintenance

task i is visited exactly once:

∑
m∈M

∑
k∈K

∑
j:(i,j)∈A

xi,j,m,k = 1 ∀i ∈ A (2)

Constraints (3) and (4) represent the routing net-

work. Constraint (3) ensures that each crew member m

starts each day k from his depot and ends every day at

his depot:

∑
j:(om,j)∈A

xom,j,m,k =
∑

j:(j,dm)∈A

xj,dm,m,k = 1

∀k ∈ K,m ∈M
(3)

Constraint (4) is the flow constraint which ensures

that if a crew member arrives at a task point that crew

member also moves on to another task point:

∑
j:(i,j)∈A

xi,j,m,k −
∑

j:(j,i)∈A

xj,i,m,k = 0

∀k ∈ K,m ∈M, i ∈ N
(4)

Constraints (5), (6) and (7) represent the schedul-

ing constraints. Constraint (5) links the xi,j,m,k vari-

ables with the tj,k variables:

ti,k + (Ti,j +Di)xi,j,m,k ≤ tj,k + bi(1− xi,j,m,k)

∀k ∈ K,m ∈M, (i, j) ∈ A
(5)

Subtour constraints are satisfied by formulating the

routing constraints in a multi-commodity formulation

(constraint (4)) and having the subtour inequalities through

constraint (5).
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Constraint (6) ensures that each task i is visited

inside the time window [ai, bi]:

ai
∑

j:(i,j)∈A

xi,j,m,k ≤ ti,k ≤ bi
∑

j:(i,j)∈A

xi,j,m,k

∀k ∈ K,m ∈M, i ∈ N
(6)

Constraint (7) ensures that all maintenance tasks

are carried out during the working hours of crew person

m:

am,k ≤ ti,k ≤ bm,k ∀k ∈ K,m ∈M, i ∈ {0, d} (7)

Constraint (8) ensures that if task i and j must be

visited by two crew members then they should arrive

at the task at the same time on the same day:

∑
m∈M

ti,k =
∑
m∈M

tj,k ∀k ∈ K, (i, j) ∈ Psync (8)

Constraint (9) ensures that each crew member only

visits one node of a given pair in the Psync set on a given

day. Using this constraint, we ensure a synchronised

task will be assigned to two different crew members.

∑
i2:(j2,i)∈A

xi2,i,om,k +
∑

i2:(j2,j)∈A

xi2,j,om,k ≤ 1

∀k ∈ K, (i, j) ∈ Psync, ∀m ∈M
(9)

3 Proposed Solution Framework

Although a MIP solver might be able to solve the mod-

elled problem up to a certain size, Banedanmark require

feasible maintenance plans for around 1000 tasks over

a month long period. We propose a stage-based frame-

work using Constraint Programming (CP) on top of a

MIP model used to allocate tasks to crew members.

We divide the problem into the following stages, as il-

lustrated in Figure 4.

– For each task that requires synchronisation, a sec-

ond virtual task with the exact same coordinates is

generated.

– The tasks are split into M clusters, where M is

the number of crew members. This is done by solv-

ing a clustering MIP model with a commercial MIP

solver.

– The clusters are sorted according to a predefined

difficulty order.

– Based on the ordered clusters, for each cluster, a Ve-

hicle Routing Problem with Time-Windows (VRPTW)

is solved as a Constraint Satisfaction Problem (CSP),

considering the set of primitive constraints imposed

by the synchronised tasks that have been allocated

previously. These new constraints are defined on top

of the VRPTW and are imposed as pre-scheduling

constraints to the problem within each cluster.

– After finding a schedule for a given cluster, a look-

ahead technique is used to check if this causes any

infeasibility for as yet unscheduled clusters.

These steps are described in more detail in the fol-

lowing sub-sections.

3.1 First stage: The synchronisation set

As mentioned earlier, if a task needs to be completed

by two crew members, we apply the same technique in-

troduced by Bredstrom and Ronnqvist (2008), using a

set Psync. Assigning the actual task and its virtual pair

within each pair in the Psync set to different crew mem-

bers will ensure that the synchronisation constraints are

met.

3.2 Second stage: Clustering

Formally, the clustering problem requires finding a set

of subsets C = {C1, ..., Ck} of N tasks, such that N =⋃k
i=1 Ci and Ci ∩ Cj = 0 for i 6= j. Consequently, any

task in N belongs to exactly one and only one subset. It

is reasonable to assume that crew members should be

assigned to tasks within their geographical proximity.

In addition, each crew member needs to be given ap-

proximately the same amount of work. The clustering

problem is therefore formulated as follows:

Sets and parameters:

M = set of crew members

N = set of maintenance tasks

Tmi: travelling time between crew m and task i | m ∈
M and i ∈ N
Di: duration of task i

Psync: set of synchronised tasks represented by two nodes

for the same task.

Decision variables:

xmi: 1 if task i belongs to the cluster of crew m, 0 oth-

erwise

w: positive variable representing the maximal workload

difference between two crew members in terms of total

task duration.
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Equations:

Min λ ∗
∑
m∈M

∑
i∈N

xm,i ∗ Tm,i + (1− λ) ∗ w (10)

subject to:

∑
i∈N

xmi ∗Di −
∑
i∈N

xvi ∗Di ≤ w

∀m ∈M and ∀ v ∈M
(11)

∑
m∈M

xmi = 1 ∀ i ∈ N (12)

xm,i + xm,h ≤ 1 ∀m ∈M and ∀ (i, h) ∈ Psync

(13)

The objective function (10) is multi-criteria and aims

to find the optimal trade-off between assigning tasks to

crew members based on their proximity whilst also tak-

ing crew workload balance into account. The first term

in the objective function minimises the total travel time

for a crew member to their assigned tasks. The sec-

ond term, w, is the greatest workload balance mismatch

across different clusters as described by constraint (11).

The weights assigned to the two terms of the objective

function are given as λ and 1 − λ. Based the results

of some preliminary experimentation and consultation

with the industrial partner, for the numerical results

presented in this paper we use λ = 0.3 and subsequently

1 − λ = 0.7 for these weights. This gives a reasonable

trade-off between workload balance and the total dis-

tance covered. Constraint (12) ensures that each task

should be assigned to only one crew member and con-

straint (13) asserts that synchronised tasks and their

virtual pairs are not assigned to the same crew mem-

ber. In our experiments, the GAMS solver is used to
solve this model.

3.3 Third stage: Ordering clusters

We start by ordering the clusters to be scheduled. The

idea is to give priority to those clusters which are more

difficult to schedule. Depending on the geographic lo-

cation of a crew member, in the clustering phase some

crew members more likely to be assigned synchronised

tasks than others. For instance those clusters which are

surrounded by many clusters are likely to have more

synchronised tasks in common with other clusters than

those clusters which are located on the edge of the re-

gion. We define three different ordering strategies ac-

cording to the interdependency of the clusters based on

their synchronised tasks as follows:

– Most crew dependency (CD): orders the clusters

by decreasing number of neighbouring clusters with

synchronised tasks.
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– Largest sync dependency (SD): orders the clusters

by decreasing number of synchronised tasks assigned

to each crew member.

– Max sync with another crew dependency (SCD): or-

ders the clusters in decreasing order of the number

of synchronised tasks which one crew member shares

with a single neighbouring crew member.

Figure 5 gives an example of the proposed order-

ing strategies for five crew members, showing how the

clusters are ordered based on each ordering strategy. In

the case of a tie, crew members with the same score are

processed in an arbitrary order.

3.4 Fourth stage: Routing and scheduling

After decomposing the problem into clusters and se-

lecting a clustering ordering, the routing and schedul-

ing problem is solved for each cluster in turn. Solving

the problem in this manner is still challenging, as the

presence of tasks requiring synchronisation introduces

interdependencies between clusters. This interdepen-

dency can exist between routes of the current cluster

and the routes of previously scheduled clusters, as well

as with the potential routes of the remaining unsched-

uled clusters. We propose an approach that guarantees

feasible solutions with respect to these synchronisation

constraints, taking both situations into account. The

details of this phase are explained in the following sec-

tion.

4 Routing and Scheduling Phase

The routing and scheduling phase is run one cluster

at a time, using the different cluster orderings intro-

duced in Section 3.3. The problem for each cluster is

composed of a standard Vehicle Routing Problem with

Time Windows, plus a set of constraints required to

manage to the potential interdependencies existing be-

tween the current cluster, previously scheduled clusters

and the remaining unscheduled clusters. We define the

following terms for this phase:

– Sync task: following clustering, no actual task and

its pairwise virtual task are assigned to the same

crew member. Therefore when scheduling each clus-

ter, the algorithm does not differentiate whether

each synchronised task of the current cluster is an

actual task or a virtual task. It considers each as a

sync task.

– Pair task: following from the definition of a sync

task, the pairwise of each sync task is referred to as

a pair task.

– Abstract day ID: is a unique identifier representing

the scheduling day of a sync task. If two sync tasks

have the same abstract day ID, they are scheduled

to be completed on the same day. If two sync tasks

in a single route have been assigned to two different

abstract day IDs, the IDs can be mapped to a third

abstract day ID to make sure that the tasks are

completed on the same day. We use the abstract day

ID concept to merge days gradually during solution

construction, consequently minimising the number

of working days required in the solution. This pro-

cess is explained in detail in Section 4.2.4.

4.1 Route interdependency

Although the framework solves one cluster at a time,

it takes the interdependencies with other clusters into

consideration. To do this, a set Tuplesync is defined

with the relation (Psync, Csync, z, at, d) ∈ Tuplesync,

where Csync is the pair of crew members assigned to

pair task Psync, z is a Boolean indicating whether a

sync task or its pair have been scheduled already, at is

the scheduled arrival time and d represents the schedul-

ing day. Using Tuplesync, the framework knows whether

or not a synchronised task has already been scheduled

in a previous cluster. The elements in Tuplesync change

state as follows:

– Initialisation: Prior to scheduling, one relation is

generated in Tuplesync for each pair in Psync with z

initialised to false, at to 0 and d to −1, indicating

that no sync task has been scheduled so far.

– During Scheduling: After scheduling a cluster, each

scheduled sync task can have two different states:

1. If the pair task has not been scheduled in a previ-

ous cluster, the related Tuplesync should be up-

dated by setting z to true, at to arrival time and

the d to the day that the task has been sched-

uled.

2. If the pair task has already been scheduled there

will be no change in status. In this case, when

the second sync task in a pair is scheduled, there

is only the possibility that the abstract day ID

will be updated.

The approach keeps track of the state of partial so-

lutions, checking the status of the scheduled synchro-

nised task in previous clusters, the status of the current

scheduling cluster and the impact on feasibility for the

remaining unscheduled clusters.
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crew non sync task Sync task 

C0 

C2 

C1 

C3 C4 

Crew member C0 C1 C2 C3 C4 

No of Crew-dependancy C1,C3= 2  C0,C2,C4=3 C1,C3,C4=3 C0,C2,C4=3 C1,C2,C3=3 

CD order C1, C2, C3, C4,  C0 

Crew member C0 C1 C2 C3 C4 

No of Sync tasks 4 5 3 6 6 

SD order C3, C4, C1, C0, C2 

Crew member  C0 C1 C2 C3 C4 

Maximum No of Sync tasks max(3,1)= 3 max(3,1,1)= 3 max(2,1)=2 max(4,1,1)= 4 max(4,1,1)= 4 

SCD order C3, C4, C0, C1, C2 

Fig. 5: An example of the three ordering strategies

4.2 The problem as a CSP

The VRPTW problem is modelled as a CSP as below.

The additional constraints added to the problem are

explained in detail in the subsequent subsections.

Sets:

N = {1, ..., n} : set of tasks in all clusters

M = {1, ...,m} : set of all crew members or clusters

K = {1, ..., k} : set of days or routes

N ′ = {1, ..., n′} : set of tasks for current cluster

R = K ∪ {0} : set of days, including unplanned days

S =
{
n′ + 1 ..k + 1

}
: set of start visits

E =
{
n′ + k + 1 ..n′ + 2k

}
: set of end visits

V = N ′ ∪ S ∪ E : set of all visits

V S = N ′ ∪ S : set of visits which have a successor

V E = N ′ ∪ E : set of visits which have a predecessor

Psync = pair set of synchronised tasks

Csync = pair set of crew members assigned to

the synchronised tasks

AbstractDay = {ad | ad ∈ N} set of abstract days

/routes

Tuplesync =
{

(p, c, z, ad, at) | p ∈ Psync, c ∈ Csync,

z ∈ {True, False} , ad ∈ AbstractDay, 0 ≤ at ≤ 12
}

Parameters:

cc ∈M : current crew member/cluster

ox : start of the day x is indexed as n’+ x

dx : end of the day x is indexed as n’+ k + x

ai : earliest time to start maintenance task i

bi : latest time to start maintenance task i

Di : duration of maintenance task i

Tij : travel time from task i to task j

(the task visited after task i)

Decision variables:

nexti ∈ V E

nexti =

{
0, i ∈ V S

index of the next visit , i ∈ E
previ ∈ V S

previ =

{
0, i ∈ V E

index of the previous visit, i ∈ S
dayi ∈ R : index of the day/route that visits task i

ti :∈ R+, 0 < ti < 12 arrival time at task i

activei : true if task i is visited otherwise false

Objective function:∑
i∈V S ,dayi 6=0 Ti,nexti

General constraints:

AllDifferent (nexti, N)∀i ∈ V S

ensures all nodes have only one successor

AllDifferent (previ, N)∀i ∈ V E

ensures all nodes have only one predecessor

NoCycle (next∗, active∗)

ensures no cycle exists in the routes
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Consistency Constraints:

nextprevi = i ∀ i ∈ V S

prevnexti = i ∀ i ∈ V E

dayi = daynexti ∀ i ∈ V S

task i on each day/route should be the same as

day/route of successor next task i

dayi = dayprevi ∀ i ∈ V E

task i on each day/route should be the same as

day/route of predecessor previous task i

Accumulative time constraint:

tnexti = Di + Ti,nexti ∀ i ∈ V S

Time windows constraint:

ti ≥ ai ∀ i ∈ V
ti ≤ bi ∀ i ∈ V

4.2.1 Adding constraints

When a cluster is being scheduled, the algorithm checks

whether the pair task of each sync task in that cluster

has already been scheduled in a previous cluster. This

can be identified by checking the flag z in Tuplesync to

see if it is true or false. If z is false, indicating that

the sync task has not been scheduled yet, no constraints

are imposed on the planning day for that task. In the

case that z is true, three constraints are imposed on

the cluster schedule due to the existing sync task: same

time schedule, same route constraint and different route

constraint. The first constraint implies an explicit syn-

chronisation constraint, similar to in the original MIP

model. The other two add restrictions to the cluster

schedule according to the status of the other sync tasks

in the same cluster.

– Same time schedule: This constraint explicitly forces

each sync task in the currently selected cluster to be

scheduled at the same arrival time as their pair task,

if the pair task has already been scheduled within

another cluster. The arrival time can be retrieved

from the record in Tuplesync updated by the pair

task.

ti = at if ∃ (p, c, z, ad, at) ∈ Tuplesync :

i ∈ p, z = True

– Same route constraint: If there are one or more sync

tasks in the current cluster where their pair tasks

have already been scheduled on the same day (al-

though not necessarily with the same crew member),

all of these sync tasks should be scheduled on the

same day within the current cluster. This can be

tracked by looking at the Tuplesync records which

belong to the sync tasks in the current cluster (using

Psync), where the z flag is true and have the same

abstract day ID. Accordingly, a constraint is added

to force the current sync task to be scheduled on

the same day as the other sync tasks with the same

abstract day ID in the current cluster.

dayi = ad if ∃ Tuplesync(p, c, z, ad, at)
∈ Tuplesync : i ∈ psync, z = True

– Different route constraint: If there is more than one

sync task in the current cluster with a pair task

scheduled with different crew members on different

days (i.e. they have different abstract day IDs), we

can check whether these can be reassigned to the

same day. If the plans of the previous crew mem-

bers do not conflict with one another, the abstract

day IDs could be updated to a new unique ID;

consequently providing an opportunity to schedule

their pair tasks in the current cluster on the same

day. This does not force any changes to the routes

of previously scheduled crew members.

If any of the sync tasks cannot be scheduled on the

same day due to a conflict with the pair tasks of

previously scheduled clusters, a constraint is added,

ensuring that these two sync tasks are not scheduled

in the same day. On this basis, we define a set called

CONFi for each sync task i in the current cluster,

which returns all pairs of schedules for two differ-

ent crew members (m1, m2) from previous clusters

where there is the possibility of a conflict existing

between their daily time schedules (ad1, ad2).
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∀ i ∈ Psync and i ∈ n′ :

CONFi = {(m1, ad1,m2, ad2) |
∀ tuple1, tuple2 ∈ Tuplesync,

tuple1 = (P1, C1, z1, ad1, at1) ,

tuple2 = (P2, C2, z2, ad2, at2) ,

(i ∈ P1) and (j ∈ n′) ∈ P2),

(c c ∈ C1) and (c c ∈ C2) ,

z1 = z2 = true,

ad1 6= ad2,

∃m1 ∈ C1 and m1 6= c c,

∃m2 ∈ C2 and m2 6= c c,

m1 6= m2}

After this, for each member of CONFi, for example

(m1, ad1,m2, ad2), a check is made for conflicts in

the daily plan of crew member m1 in d1 with the

daily plan of crew member m2, including possible

plans of other crew members on d1 or d2. This can

be checked in TupleSync. In the case a conflict is

found, the following Global Constraint (Beldiceanu

et al., 2005) is added to the model:

AllDifferent(dayd1, dayd2)

4.2.2 Solving the routing and scheduling problem

Solving this problem corresponds to solving a single de-

pot vehicle routing problem with time windows (VRPTW)

with the constraints imposed as defined above. To solve

the VRPTW, the Routing Library (RL) is used, em-

bedded as a layer on top of the CP solver in Google

OR-Tools (Google, 2012). OR-Tools provides a num-

ber of methods to generate the first solution for CSPs.

As preliminary work, we tested the Saving, Sweep, Best

Insertion and Path Cheapest Arc heuristics on a small

data instance with 100 tasks located exactly on rail

tracks. Of these four heuristics, only Path Cheapest Arc

could generate a solution within a time limit of 30 min-

utes and therefore used in our experimentation. Path

Cheapest Arc is described as follows: “The heuristic

starts searching from a depot, connects it to the node

which produces the cheapest route segment, then ex-

tends the route by iterating on the last node added to

the route” (Google, 2012).

4.2.3 Feasibility check

After finding a schedule for a given cluster, a look-ahead

technique is used check if this causes any infeasibility

for the remaining clusters to be scheduled. In the case

that a synchronised task has been assigned and this is

the first crew member to be allocated that task, their

schedule is imposed on the crew member who is respon-

sible for the related pair task in a subsequent cluster.

This requires checking whether the second crew mem-

ber is available at the scheduled time.

An example is given in Figure 6. Crew member 4

(c4) is the first to be scheduled. As tasks 36 and 38 are

fixed to the same route (day 1), consequently the pair

tasks 15 (for crew member 2) and 17 (for crew member

1) are fixed to day 1 as well. After finding a sched-

ule for crew member 2 we should check whether this is

feasible for tasks 14, 15 and 17. In this example, since

tasks 35, 37 and 15 are assigned to the same route and

since task 15 is already assigned to day 1, we have then

imposed that tasks 14, 16 and 17 should be performed

on day 1 as well. Here we should check whether crew

member 1 will be able to complete tasks 14, 16 and 17

according to their fixed arrival times. If not, we reject

the schedule for crew member 2 and randomly gener-

ate a new schedule (using a different seed in Google

OR-Tools) and check for feasibility again. Likewise we

should check the feasibility of the schedule for task 23

for crew member 0 and task 42 for crew member 7. This

process continues until a feasible solution is found, then

the schedule for crew member 2 will be accepted and

the framework will move on to the next cluster.

4.2.4 Updating and merging abstract day IDs

After scheduling a cluster, the result is a multi-day plan

consisting of several separate routes, each starting from

a crew members home location, visiting several tasks

and ending back at the home location. The framework

assigns the same abstract day ID to all of the syn-

chronised tasks scheduled within the same route. Af-

ter updating Tuplesync, the framework proceeds to the

next cluster, repeating this process until all clusters are

scheduled.

To demonstrate the process of assigning unique IDs

to synchronised tasks, we give an example for an in-

stance with 24 maintenance tasks, eight crew members

and 12 tasks requiring service from two crew members

simultaneously. We introduce U = {0, ..., 43} nodes where

Om = {0, ..., 7} are crew members. The actual main-

tenance tasks are represented by nodes {8, ..., 31}. 12

maintenance tasks are randomly chosen to be sync nodes:

{8, 9, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23}. Finally,

nodes {32, .., 43} are created as virtual pair tasks for

the sync tasks. Table 1 shows how Tuplesync is updated

at each step of crew scheduling in this situation. Syn-

chronised tasks are given in P sync. For each task in
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crew New sync task  
Sync task where its pair has been scheduled earlier 

C4 

C2 

C3 

33 

20 

36 
38 

21 

C1 

C6 

17 

15 

9 

40 

41 

14 

35 

16 

37 

C7 
42 

22 

C0 23 

43 

C5 

32 
8 34 13 

39 

19 
C4 

C2 

C3 

33 
20 

36 
38 

21 

C1 

C6 

17 

15 

9 40 

41 

14 

35 

16 

37 

C7 
42 

22 

C0 23 

43 

C5 

32 

8 34 13 

39 

19 

Scheduling Crew 4 Scheduling Crew 2 

Current cluster Scheduled cluster remaning clusters 

D1 

D1 
D1 

D1 

D1 

D1 
D1 

D1 D1 

D1 

D1 

D1 

D2 
D1 

D1 

Fig. 6: This figure illustrates the order in which the entire scheduling problem is solved for several crew members

(depots) over several days (routes), with special focus on the synchronised tasks which make the problem non-

decomposable.

these pairs, the corresponding crew is given in the tu-

ple C sync. z is a Boolean indicating whether the sync

pair has been fixed (T) or not (F). The scheduled day

is denoted as d and finally at is the arrival time at the

sync node.

The abstract day ID distinguishes between each

planning day of a crew member’s schedule, enabling us

to identify the dependency between crew plans assigned

the same abstract day ID for synchronised tasks. After

scheduling the current cluster, the algorithm may en-

counter three different situations for each route (daily

plan) as shown in Figure 7. Situation (a) occurs when

the route contains only synchronised tasks where their

pair tasks have not already been scheduled (task 1 and

2). In this case, the synchronised tasks are assigned an

abstract day ID and the d value and z flag are updated

to true.

The second situation happens when the route has

one or more synchronised tasks with pair tasks that

have already been scheduled on the same day (i.e. they

have the same abstract day ID and the z flag is true).

For instance in Figure 7 (b), the pairwise tasks with IDs

3 and 5 have already been scheduled in day 1 as shown.

In this case, the algorithm only updates the records

of other existing synchronised tasks in the route where

their pair tasks have not already been scheduled (tasks

with ID 4 and 6), to the same abstract day ID of the

others (ad1).

As explained earlier regarding the different route

constraint, the algorithm checks the feasibility of the

scheduling on the same day of the sync tasks in the

current cluster with their pair task, to see if they have

already been scheduled on different days for different

crew. In the case of infeasibility due to a conflict in

crew plans, the algorithm adds the different route con-

straint. In the case of feasibility, the schedule of the

current cluster could result in a route having synchro-

nised tasks with different abstract IDs, e.g. route (c)

has sync tasks 7, 8 and 10 scheduled in day IDs 2, 3

and 1 respectively. In this case, the algorithm gives a

new unique abstract ID to all of the synchronised tasks

scheduled in the current route including the new sync

tasks (those tasks whose pairs have not been sched-

uled earlier in previous clusters) as well. For instance

in route (c), the corresponding records of tasks 7, 8, 10,

9 and 11 in Tuplesync, as well as all sync tasks sched-

uled in days 2 or 3 or 1 are updated to a new unique

ID. Moreover, the algorithm should do one more extra

step in this situation by updating all of the day IDs of

any other pair tasks in the whole Tuplesync whose IDs

are either 2, 3 or 1.

It should be noted that updating the abstract day

ID does not make any changes to the routes, only the

actual day that each route is completed by crew mem-

bers. As every unique abstract day ID is representative

of a different day, this is an effective approach to reduce

the total number of working days in the solution. How-

ever, as the generated plans use abstract day IDs, a

mapping to actual day numbers is required. For exam-

ple, a generated plan with a total of three working days
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Table 1: This table illustrates the update process for Tuplesync as the schedule for each cluster is decided.

Initialization Crew 4 Crew 2

P sync C sync z d at P sync C sync z d at P sync C sync z d at

(8,32) (3,5) F 0 0 (8,32) (3,5) F 0 0 (8,32) (3,5) F 0 0
(9,33) (3,4) F 0 0 (13,34) (3,6) F 0 0 (13,34) (3,6) F 0 0
(13,34) (3,6) F 0 0 (14,35) (1,2) F 0 0 (19,39) (0,6) F 0 0
(14,35) (1,2) F 0 0 (16,37) (1,2) F 0 0 (9,33) (3,4) T 1 370
(15,36) (2,4) F 0 0 (19,39) (0,6) F 0 0 (17,38) (1,4) T 1 281
(16,37) (1,2) F 0 0 (22,42) (2,7) F 0 0 (20,40) (4,6) T 1 97
(17,38) (1,4) F 0 0 (23,43) (0,2) F 0 0 (21,41) (4,6) T 1 24
(19,39) (0,6) F 0 0 (9,33) (3,4) T 1 370 (14,35) (1,2) T 1 446
(20,40) (4,6) F 0 0 (15,36) (2,4) T 1 194 (15,36) (2,4) T 1 194
(21,41) (4,6) F 0 0 (17,38) (1,4) T 1 281 (16,37) (1,2) T 1 369
(22,42) (2,7) F 0 0 (20,40) (4,6) T 1 97 (22,42) (2,7) T 2 63
(23,43) (0,2) F 0 0 (21,41) (4,6) T 1 24 (23,43) (0,2) T 1 274

Crew 6 Crew 1 Crew 3

P sync C sync z d at P sync C sync z d at P sync C sync z d at
(8,32) (3,5) F 0 0 (8,32) (3,5) F 0 0 (14,35) (1,2) T 1 446
(9,33) (3,4) T 1 370 (9,33) (3,4) T 1 370 (15,36) (2,4) T 1 194
(14,35) (1,2) T 1 446 (13,34) (3,6) T 3 231 (16,37) (1,2) T 1 369
(15,36) (2,4) T 1 194 (15,36) (2,4) T 1 194 (17,38) (1,4) T 1 281
(16,37) (1,2) T 1 369 (19,39) (0,6) T 3 96 (19,39) (0,6) T 3 96
(17,38) (1,4) T 1 281 (20,40) (4,6) T 1 97 (20,40) (4,6) T 1 97
(22,42) (2,7) T 2 63 (21,41) (4,6) T 1 24 (21,41) (4,6) T 1 24
(23,43) (0,2) T 1 274 (22,42) (2,7) T 2 63 (22,42) (2,7) T 2 63
(13,34) (3,6) T 3 231 (23,43) (0,2) T 1 274 (23,43) (0,2) T 1 274
(19,39) (0,6) T 3 96 (14,35) (1,2) T 1 446 (8,32) (3,5) T 4 86
(20,40) (4,6) T 1 97 (16,37) (1,2) T 1 369 (9,33) (3,4) T 1 370
(21,41) (4,6) T 1 24 (17,38) (1,4) T 1 281 (13,34) (3,6) T 3 231

Crew 0 Crew 7 Crew 5

P sync C sync z d at P sync C sync z d at P sync C sync z d att
(8,32) (3,5) T 4 86 (8,32) (3,5) T 4 86 (9,33) (3,4) T 1 370
(9,33) (3,4) T 1 370 (9,33) (3,4) T 1 370 (13,34) (3,6) T 3 231
(13,34) (3,6) T 3 231 (13,34) (3,6) T 3 231 (14,35) (1,2) T 1 446
(14,35) (1,2) T 1 446 (14,35) (1,2) T 1 446 (15,36) (2,4) T 1 194
(15,36) (2,4) T 1 194 (15,36) (2,4) T 1 194 (16,37) (1,2) T 1 369
(16,37) (1,2) T 1 369 (16,37) (1,2) T 1 369 (17,38) (1,4) T 1 281
(17,38) (1,4) T 1 281 (17,38) (1,4) T 1 281 (19,39) (0,6) T 3 96
(20,40) (4,6) T 1 97 (19,39) (0,6) T 3 96 (20,40) (4,6) T 1 97
(21,41) (4,6) T 1 24 (20,40) (4,6) T 1 97 (21,41) (4,6) T 1 24
(22,42) (2,7) T 2 63 (21,41) (4,6) T 1 24 (22,42) (2,7) T 2 63
(19,39) (0,6) T 3 96 (23,43) (0,2) T 1 274 (23,43) (0,2) T 1 274
(23,43) (0,2) T 1 274 (22,42) (2,7) T 2 63 (8,32) (3,5) T 4 86

could have abstract day IDs 4, 9 and 6 which ultimately

need to be mapped to the actual day IDs 2, 3 and 1,

accordingly.

5 Experimental results

In this section we report the results of experiments us-

ing the stage-based solution approach described in Sec-

tions 3 and 4 for set of test cases covering a number

of scenarios. All experiments were run on a Core (TM)

i7-4600U CPU 2.10 GHz processor, with 8.00 GB RAM.

5.1 Test Case Description

Each test case consists of a set of geographical points

(tasks), demand (number of crew members required to

perform a task) and time window constraints for at-

tending a task. For each data instance, 10% of tasks

are syncronised tasks, requiring two crew members to

be completed. According to Banedanmark, all inspec-

tion tasks for signalling components take less than two

hours. This is in line with the description within (Liden,

2014) where all railway maintenance activities were listed

with the required completion time. There, the time re-

quired to complete a single signalling task is reported

to be up to one hour, with planning typically required
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Fig. 7: Three possible situations of the generated routes in one cluster after the scheduling step

to be completed one month in advance. Accordingly,

we define the duration of each task as one hour in our

model.

All tasks are located within the Danish peninsular of

Jutland. The coordinates representing the geographical

location of the tasks have been randomly generated by

utilizing the Google Maps API, using three different

data generation approaches:

1. Exact (E). Tasks are all located on the rail tracks

of the maintenance area.

2. Mixed (M). Tasks are located randomly on or off-

track.

3. Random (R). Tasks are scattered around the whole

area randomly.

For each of these approaches, test cases contain-

ing 100, 500 and 1000 tasks are generated, resulting

in a total of nine problem instances. The maintenance

team in each case consists of eight crew members. The

Haversine formula (Van Brummelen, 2013), often used

in navigation, is used to calculate the distance between

tasks. This formula provides the great-circle distance

(i.e. shortest distance over the earths surface) between

two pairs of latitudes and longitudes. Figure 8 provides

visualizations for each of the test cases.

5.2 Comparison with a commercial MIP solver

As preliminary work, in order to validate the need for

the proposed CSP approach, we compared our frame-

work to a commercial MIP solver, modelling the PSM-

CSP as a mixed integer programming model in GAMS.

The MIP solver used is CPLEX 12.4 given a time limit

of one hour, with default parameter settings and the

optcr parameter set to 0.001. We tested the problem

on five small data instances, with eight crew members,

with a set of mixed tasks placed randomly on or off-

track. The datasets are named M24-0, M24-3, M24-5,

M48-0 and M48-5 corresponding to instances with 24

or 48 tasks of which 0, 3 or 5 are synchronised tasks.

Table 2 compares the travelling time values and rel-

ative gaps of the solutions generated using the stage-

based CP framework, and the best solution obtained

by a commercial MIP solver. The optimality gap shown

using MIP solver is the gap obtained within the one

hour time limit. As mentioned earlier, since clusters

are scheduled sequentially in our framework, we present

the travelling distance (Cost), the lower bound, and the

optimality gap per generated cluster. Total travel time

within the solution and CPU time taken to construct

the solution are also given.

As shown, for the data instance M24-0, the MIP

solver can generate the optimal solution with travelling

time 9.58 hours, while our approach generates a first

feasible solution with travelling time 11.00 hours. For

instances M24-3 and M24-5, the MIP solver a generates

solution with objective function value and optimality

gap of 11.16, 6.35%, and 11.67, 15.52%, respectively.

For these instances, our framework generates initial so-

lutions with an objective value of function of 14.27 and

14.87 hours.

When the size of the instance is increased to 48

tasks, the limitations of using a MIP solver for this

problem become apparent. The results for data instance

M48-0 show that our framework is able to generate a

better solution (15.77) in less than half a second (420.02

milliseconds) than the MIP solver is able to after an

hour (29.28).

Finally, for data instance M48-5 the strengths of the

framework are particularly notable. For this dataset,

containing 48 tasks of which 5 are synchronised, the

MIP solver is not able to produce a solution within

the time limit. However, the proposed CP framework

generates a feasible solution for the same dataset within

less than a second (769.04 milliseconds).

5.3 Main results

For the nine problem instances introduced in Section 5.1,

the proposed framework is run once for each of the three

different cluster orderings from Section 3.3: CD, SD and
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(a) Exact100 (b) Exact500 (c) Exact1000 (d) Mix100 (e) Mix500 (f) Mix1000 (g) Random100 (h) Random500 (i) Random1000

Fig. 8: Geographical Visualization of the Dataset

SCD. The results are compared in Table 3. The val-

ues compared in the columns of this table include total

driving distance for all crew members (Distance), the

minimum number of working days (Days), total travel

time in hours (Travel Time), and CPU time in seconds.

There are a number of interesting observations that

we can make based on these results. First, note that the

overall computational time is very low, ranging from a

few seconds for the smallest instances, to a few min-

utes for the biggest instances (with 1000 tasks). This is

unusual for an NP-hard problem, especially when the

original MIP model is not able to solve the instances

with more than around 24 tasks as observed above. Us-

ing our stage-based method we are not only able to

find a feasible initial solution for monthly plans with

1000 tasks, but we are also able to find different feasi-

ble solutions. This can prove useful in future work for

improving upon initial feasible solutions.

The second observation is that the order in which we

do the clustering has some impact on the performance

of the algorithm. This is due to the feasibility checks

performed at each step. For the ordering based on crew

dependency on other crew members (CD), there is a

case (E1000) where the algorithm has to run for 18

minutes to find a solution. When we use the ordering

based on the largest sync task dependencies of each

crew member (SD), however, the problem is solved within

a couple of minutes. The third ordering method (SCD)

produces poorer quality results in general compared to

the other two ordering methods.

A third observation is that by looking at total travel-

ling distance and minimum number of scheduling days,

we notice that the solutions generated by using CD or-

dering outperform the obtained results using the SD

order for the data sets M100, M500, M1000 and R100,

R500, R1000 whereas the opposite is the case for the

data sets E100, E500, E1000 - i.e. the cases where all

signals are on the rail tracks. This is likely due to the

fact that when using the SD order for clustering, many

sync tasks are fixed to the same day early on in the

process. This is reasonable because there is less trav-

elling distance between the tasks located exactly on

the tracks. Since a seemingly good structure is fixed

in the earlier phases of the scheduling process, it is eas-

ier to find good quality sub-solutions in later clusters

where there is less dependency on the sync tasks. In

contrast, for the other data sets, where the sync tasks

are geographically scattered, CD generates better re-

sults, distributing the sync tasks more widely over dif-

ferent routes in the early stages of the algorithm.

5.4 Individual cluster results

To give an idea of how the tasks are scheduled over the

individual clusters, we will show the detailed results

generated by using the SD ordering for E100, E500

and E1000, since these are the instances which most

resemble the real world problem. Table 4 shows the re-

sults within each clusters for these datasets. Results are

given for each crew member, providing the total driving

distance, number of tasks assigned, number of working

days, travelling time, and CPU time required to calcu-

late the results. The totals across all clusters for that

instance are also given.

The Mean Absolute Deviation (MAD) is calculated

for each value across the eight clusters. MAD gives

a measure of dispersion across different clusters. The

lower the MAD, the more balanced a solution is. To

make the MAD of one measurement comparable with

the MAD of other measurements, the MAD/Mean ratio

is calculated, rescaling the MAD by dividing it by the

Mean.

Looking at the MAD values, we notice a relatively

modest level of deviation from the average in terms of

the distance covered by each crew member. Likewise,

the deviation of task durations is less than 1 hour and

the deviation of the number of scheduling days is less

than 1 day for all data sets.

By ranking the MAD/Mean value for all measure-

ments in each data set and comparing the ranking in all

data sets, we can see that the clusters are more homog-

enized according to the following order: task duration

0.03, 0.01, 0.00, Days 0.00, 0.06, 0.03, Total distance

and Total travelling time 0.13, 0.24, 0.28 (as they are
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Table 2: Comparison between the proposed constructive framework and a MIP solver on small data instances

Dataset Proposed constructive framework MIP solver (time limit: 1 hour)

Depot Distance LB Gap Travel Time CPU Time Travel Time LB Relative Gap
(h) (ms) (h)

7 138564 129006 6.90% 1.75 102.01
6 41366 41366 0% 0.53 2.00
5 139979 94336 32.61% 1.73 17.00

M24-0 4 71975 58228 19.10% 0.92 3.00
3 87062 83988 3.53% 1.08 4.00
2 107530 79996 25.61% 1.35 8.00
1 98739 66428 32.72% 1.22 18.00
0 191944 121724 36.58% 2.42 18.00

Total 877159 675072 11.00 172.01 9.58 9.57 0.09%

4 113885 103546 9.08% 1.43 34.00
6 41366 41366 0% 0.53 4.00
5 139979 94336 32.61% 1.73 9.00

M24-3 2 181692 151022 16.88% 2.27 36.00
1 233157 201877 13.42% 2.90 36.00
7 180212 174921 2.94% 2.27 26.00
3 87062 83988 3.53% 1.08 3.00
0 163158 128946 20.97% 2.05 4.00

Total 1140511 980002 14.27 152.01 11.16 10.45 6.35%

4 113885 103546 9.08% 1.43 38.00
6 41366 41366 0% 0.53 6.00
5 139979 94336 32.61% 1.73 15.00

M24-5 2 181692 151022 16.88% 2.27 24.00
1 280719 96888 65.49% 3.50 61.00
7 180212 174921 2.94% 2.27 26.00
3 87062 83988 3.53% 1.08 3.00
0 163158 128946 20.97% 2.05 5.00

Total 1188073 875013 14.87 178.01 11.67 9.86 15.52%

7 217760 170095 21.89% 2.73 88.01
6 102548 80198 21.79% 1.25 52.00
5 212079 146610 30.87% 2.67 95.01

M48-0 4 97942 64512 34.13% 1.23 14.00
3 138678 112244 19.06% 1.73 17.00
2 212828 178022 16.35% 2.65 125.01
1 133370 74666 44.02% 1.67 13.00
0 146874 116542 20.65% 1.83 16.00

Total 1262079 942889 15.77 420.02 29.28 9.66 67.01%

4 107421 86978 19.03% 1.33 46.00
6 172976 120162 30.53% 2.13 93.01
2 280133 246754 11.92% 3.52 457.03

M48-5 7 217760 170095 21.89% 2.73 53.00
5 212079 146610 30.87% 2.67 81.00
3 138678 112244 19.06% 1.73 13.00
1 133370 74666 44.02% 1.67 12.00
0 146874 116542 20.65% 1.83 14.00

Total 1409291 1074051 17.62 769.04 No integer solution found

proportional), and finally CPU time 0.905, 0.81, 0.72

for dataset E100, E500 and E1000, respectively. The

only exception is the number of scheduling days for

E100 with MAD/Mean 0.00 which has a better rank

regarding time duration with MAD/Mean value 0.03.

5.5 Optimality gap

The vehicle Routing Library (RL) of Google-OR tools

can compute a lower bound on the objective function.

This is done by creating a bipartite graph on the routing

problem and accordingly solving a Linear Assignment

Problem (Google, 2012). Specifically in our problem,

since clusters are scheduled sequentially and not as a

whole problem, we could only calculate the lower bound
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Table 3: Results of solving the nine datasets based on three different cluster ordering methods.

Order : Most crew dependency degree first (CD)

Dataset Distance (km) Days Travel Time (h) CPU Time (s)
E100 3385.69 3 42.22 0.58
E500 10767.27 16 134.43 40.60
E1000 19441.38 26 242.13 1104.94
M100 3473.82 4 43.42 1.23
M500 9906.69 15 123.78 34.28
M1000 16590.22 24 206.83 89.59
R100 3166.45 4 39.63 0.13
R500 9447.19 12 118.05 3.46
R1000 15648.66 24 195.58 30.13

Order: Largest sync degree first (SD)

Dataset Distance (km) Days Travel Time (h) CPU Time (s)
E100 3147.79 3 39.22 0.03
E500 10633.49 13 132.58 8.49
E1000 18847.46 23 234.53 114.11
M100 4104.92 4 51.27 0.10
M500 9917.30 15 123.93 3.87
M1000 16786.57 24 209.42 65.31
R100 3064.10 4 38.32 0.11
R500 10109.71 14 126.30 2.47
R1000 16156.64 27 201.82 32.32

Order: Max sync to one crew degree first (SCD)

Dataset Distance (km) Days Travel Time (h) CPU Time (s)
E100 3441.53 4 42.88 0.02
E500 10633.49 13 132.58 8.46
E1000 19526.82 27 243.27 125.63
M100 3920.73 4 48.97 0.08
M500 10089.00 15 126.10 4.04
M1000 18450.14 26 230.10 104.55
R100 3166.45 4 39.63 0.09
R500 9502.10 13 118.73 2.30
R1000 16165.13 26 202.03 35.10

of each individual cluster using the RL. We present the

travelling time (T T), the total distance (D), the lower

bound (LB), and the optimality gap(Gap) per gener-

ated cluster, using all three ordering strategies on the

data instances with 100 tasks in Table 5. This gives us

an idea of how similar the solutions are from cluster to

cluster in terms of quality.

MAD values are given for the obtained gaps across

all clusters for each data instance. Examining the MAD

values, we can see that the gaps range between 4.43%

for data instance R100 using SD ordering and 12.16%

for data instance M100 using CD ordering, in the best

and the worst case respectively. As this range is rel-

atively small, it indicates that solutions with similar

quality per cluster are found for each data instance.

Considering the MAD/Mean value specifically in each

ordering, CD generates a more diverse solutions in terms

of quality per cluster with values of 0.15, 0.21, and 0.12

on E100. M100, and R100, respectively. This is not

the case for both SCD and SD, which generate solu-

tions with the same deviation for E100 and M100 data

instances (0.17 by SD and 0.14 by SCD).

6 Conclusion

In this study, we have proposed a mathematical model

to address the Preventive Signalling Maintenance Crew

Scheduling problem for the Danish railway system us-

ing ERTMS. The proposed model is a generalisation

of a vehicle routing and scheduling model with syn-

chronisation constraints, adding multiple depots and a

time horizon of up to a month. A stage-based solution

approach is proposed to solve the problem for realis-

tic problem instances. The first step is a MIP-based

clustering approach to distribute tasks among the crew

members. The second step is a Constraint Program-

ming based approach to generate an initial solution by

scheduling clusters according to a specific order. We

defined three different ordering strategies, based on the

dependencies between clusters arising due to the tasks

requiring synchronisation.
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Table 4: The results for individual clusters based on SD ordering for the on track data instances.

E100

CrewId Distance (km) Task Duration (h) Days Travel Time (h) CPU Time (s)

3 426.00 14.00 3 5.32 0.002
6 446.07 14.00 3 5.57 0.010
0 395.92 14.00 3 4.93 0.001
2 411.95 13.00 3 5.15 0.002
5 453.82 14.00 3 5.63 0.004
4 276.98 14.00 3 3.43 0.000
7 305.75 13.00 3 3.82 0.010
1 431.30 14.00 3 5.37 0.000

Total 3147.79 110.00 3 39.22 0.029
MAD 51.05 0.38 0.00 0.64 0.003

MAD/Mean 0.13 0.03 0.00 0.13 0.905

E500

CrewId Distance (km) Task Duration (h) Days Travel Time (h) CPU Time (s)
6 1736.87 69.00 11 21.72 0.03
3 2024.87 69.00 13 25.22 1.43
4 1065.45 69.00 12 13.28 2.67
0 909.40 68.00 11 11.38 0.04
1 1224.66 69.00 10 15.27 0.03
7 1079.47 69.00 11 13.40 2.45
5 1487.51 69.00 12 18.50 1.13
2 1105.26 68.00 11 13.82 0.72

Total 10633.49 550.00 13 132.58 8.49
MAD 315.42 0.38 0.72 3.93 0.86

MAD/Mean 0.24 0.01 0.06 0.24 0.81

E1000

CrewId Distance (km) Task Duration (h) Days Travel Time (h) CPU Time (s)
6 3017.67 137.00 21 37.55 0.12
3 3777.11 137.00 23 47.05 19.63
5 2694.98 137.00 23 33.55 21.29
0 1593.51 138.00 21 19.77 22.16
1 2555.68 138.00 22 31.88 34.94
4 1661.89 138.00 22 20.63 8.67
2 1731.61 138.00 22 21.57 7.26
7 1815.02 137.00 21 22.53 0.05

Total 18847.46 1100.00 23 234.53 114.11
MAD 655.42 0.50 0.66 8.19 10.24

MAD/Mean 0.28 0.00 0.03 0.28 0.72

Experimental results indicate that the proposed ap-

proach can easily schedule up to 1000 tasks for a month-

ly plan for eight crew members. Comparing the total

traveling distance and the number of days for each of

the three orderings shows that SD ordering generates

the best result for data sets on the track, while CD

ordering outperforms SD ordering, with a lower total

traveling distance and a smaller minimum number of

days, for random problem instances. Scheduling clus-

ters by SCD ordering gives the worst results. To ana-

lyze the impact of the generated clusters prior to the

scheduling phase, we calculated the Mean Absolute De-

viation (MAD) value of the measurements over each

cluster and the results showed promising distribution

of the measurements among all crew members.

We see a number of directions for improving the

initial solutions which future research will focus on.

One possibility is to use metaheuristics to construct

or improve solutions to this problem. Another is the

improvement of solutions by a hyper-heuristic frame-

work, an idea which has been successfully employed for

a similar problem previously (Pour et al., 2018). This is

suggested since the current search space of the possible

solutions is limited to each ordering strategy. This can

be improved by the idea of employing a combination of

orderings to explore a larger area of the search space. A

learning mechanism can lead the framework to select an

appropriate cluster to schedule at each decision point.

Finally, using the ideas of matheuristics, which combine

metaheuristic and exact methods, could potentially im-

prove the solutions of this paper. This is a particularly
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Table 5: Solution quality statistics per clusters for problem instances with 100 tasks

Order: CD

E100 M100 R100

T T(h) D(km) LB Gap T T(h) D(km) LB Gap T T(h) D(km) LB Gap
5.83 466.7 245.456 47.41% 3.90 311.752 207.261 33.52% 4.60 368.028 168.75 54.15%
5.58 446.072 184.48 58.64% 4.51 360.487 116.482 67.69% 4.65 372.213 201.792 45.79%
4.95 395.92 203.722 48.54% 6.61 528.56 159.618 69.80% 5.53 442.19 266.512 39.73%
5.15 411.946 155.314 62.30% 6.67 533.994 316.038 40.82% 5.81 464.642 176.094 62.10%
4.27 341.709 99.686 70.83% 6.47 517.954 129.98 74.91% 3.76 300.77 145.952 51.47%
3.82 305.749 74.01 75.79% 3.03 242.36 72.744 69.99% 5.62 449.99 245.087 45.54%
5.39 431.299 78.097 81.89% 7.29 582.986 268.521 53.94% 4.46 357.006 185.79 47.96%
7.33 586.299 215.34 63.27% 4.95 395.728 154.066 61.07% 5.15 411.608 167.148 59.39%

MAD 9.44% 12.16% 6.01%
MAD/Mean 0.15 0.21 0.12

Order: SD

E100 M100 R100

T T(h) D(km) LB Gap T T(h) D(km) LB Gap T T(h) D(km) LB Gap
5.33 426.002 245.456 42.38% 5.35 427.89 207.261 51.56% 3.92 313.751 176.094 43.87%
5.58 446.072 184.48 58.64% 4.58 366.541 72.744 80.15% 5.76 460.405 266.512 42.11%
4.95 395.92 203.722 48.54% 7.54 603.276 316.038 47.61% 5.04 402.865 201.792 49.91%
5.15 411.946 155.314 62.30% 6.66 532.762 154.066 71.08% 4.60 368.028 168.75 54.15%
5.67 453.82 215.34 52.55% 8.91 713.029 159.618 77.61% 5.14 411.286 167.148 59.36%
3.46 276.978 99.686 64.01% 4.51 360.482 116.482 67.69% 4.46 357.006 185.79 47.96%
3.82 305.749 74.01 75.79% 6.47 517.954 129.98 74.91% 3.76 300.77 145.952 51.47%
5.39 431.299 78.097 81.89% 7.29 582.986 268.521 53.94% 5.62 449.99 245.087 45.54%

MAD 10.24% 10.90% 4.43%
MAD/Mean 0.17 0.17 0.09

Order: SCD

E100 M100 R100

T T(h) D(km) LB Gap T T(h) D(km) LB Gap T T(h) D(km) LB Gap
5.74 459.433 215.34 53.13% 2.87 229.601 72.744 68.32% 4.65 372.213 201.792 45.79%
6.82 545.98 184.48 66.21% 7.54 603.276 316.038 47.61% 5.53 442.19 266.512 39.73%
6.83 546.079 245.456 55.05% 5.60 447.73 154.066 65.59% 4.60 368.028 168.75 54.15%
5.37 429.279 78.097 81.81% 5.82 465.673 207.261 55.49% 5.15 411.608 167.148 59.39%
4.95 395.92 203.722 48.54% 8.91 713.029 159.618 77.61% 5.81 464.642 176.094 62.10%
5.60 448.293 155.314 65.35% 4.51 360.482 116.482 67.69% 4.46 357.006 185.79 47.96%
3.88 310.793 99.686 67.93% 6.47 517.954 129.98 74.91% 3.76 300.77 145.952 51.47%
3.82 305.749 74.01 75.79% 7.29 582.986 268.521 53.94% 5.62 449.99 245.087 45.54%

MAD 8.99% 8.66% 6.01%
MAD/Mean 0.14 0.14 0.12

interesting option since here we have presented a frame-

work that generates several different initial solutions to

use as a starting point.
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