

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 19, 2017

Towards a Formal Methods Body of Knowledge for Railway Control and Safety
Systems
FM-RAIL-BOK Workshop 2013

Gruner, Stefan; Haxthausen, Anne Elisabeth; Maibaum, Tom ; Roggenbach, Markus

Publication date:
2013

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Gruner, S., Haxthausen, A. E., Maibaum, T., & Roggenbach, M. (Eds.) (2013). Towards a Formal Methods Body
of Knowledge for Railway Control and Safety Systems: FM-RAIL-BOK Workshop 2013. Kgs. Lyngby: Technical
University of Denmark (DTU). (DTU Compute-Technical Report-2013; No. 20).

http://orbit.dtu.dk/en/publications/towards-a-formal-methods-body-of-knowledge-for-railway-control-and-safety-systems(e058a0fe-c2c1-4b67-9172-622b555a9d7d).html

Towards a Formal Methods
Body of Knowledge for Railway Control
and Safety Systems
FM-RAIL-BOK Workshop 2013
Madrid, Spain, September 2013
Proceedings

Stefan Gruner,
Anne E. Haxthausen,
Tom Maibaum,
Markus Roggenbach (Eds.)

DTU Compute Technical Report-2013-20

Technical University of Denmark
Department of Applied Mathematics and Computer Science
Matematiktorvet, building 303B,
2800 Kongens Lyngby, Denmark
Phone +45 4525 3031
compute@compute.dtu.dk
www.compute.dtu.dk

ISSN: 1601-2321
ISBN: 978-87-643-1303-1

Contents

1 Introduction 1

Towards a Formal Methods Body Knowledge for Railway Control and Safety
Systems . 2
Stefan Gruner, Anne E. Haxthausen, Tom Maibaum, and Markus Roggenbach

2 Joint FMICS/FM-RAIL-BOK Keynote 3

Twenty-five Years of Formal Methods and Railways: What Next? 3
Alessandro Fantechi

3 BoKs and Engineering Knowledge 4

What IS a BoK? . 4
Tom Maibaum

4 Ontologies 7

An Ontology for Complex Railway Systems, Application to the ERTMS/ETCS
System . 7
Olimpia Hoinaru, Georges Mariano, and Christophe Gransart

5 Verification of Data and Designs for Railway Control Systems 14

Verification of Scheme Plans using CSP‖B . 14
Philip James, Faron Moller, Hoang Nga Nguyen, Markus Roggenbach, Steve Schneider, Helen
Treharne, Matthew Trumble, and David Williams

Applied Bounded Model Checking for Interlocking System Designs 21
Anne E. Haxthausen, Jan Peleska, and Ralf Pinger

Data Formal Validation of Railway Safety-Related Systems: Implementing the
OVADO Tool . 27
Robert Abo and Laurent Voisin

6 Verification of Interlocking Programs Expressed in Ladder Logic 33

Validation of Railway Interlocking Systems by Formal Verification, a Case Study 33
Andrea Bonacchi, Alessandro Fantechi, Stefano Bacherini, Matteo Tempestini, and Leonardo
Cipriani

Verification of Solid State Interlocking Programs . 39
Phillip James, Andy Lawrence, Faron Moller, Markus Roggenbach, Monika Seisenberger, An-
ton Setzer, Karim Kanso, and Simon Chadwick

7 ERMTS/ETCS Modelling 46

Modelling Functionality of Train Control Systems using Petri Nets 46
Micheal Meyer zu Hörste, Hardi Hungar, and Eckehard Schnieder

1

Towards a formal methods body of knowledge for
railway control and safety systems

Stefan Gruner
University of Pretoria, South Africa

Anne Haxthausen
Technical University of Denmark

Tom Maibaum
McMaster University, Canada

Markus Roggenbach
Swansea University, Wales, UK

Formal methods in software science and software engi-
neering have existed at least as long as the term “software
engineering” (NATO Science Conference, Garmisch, 1968)
itself. Its various methods and techniques include algebraic
specification, process-algebraic modelling and verification,
Petri nets, fuzzy logics, etc. Especially in railway control and
safety systems, formal methods have reached a considerable
level of maturity. For example, the B-method has been used
successfully to verify the most relevant parts of the Metro
underground railway system of the city of Paris (France). Thus,
it appears timely to begin the compilation of a so-called body
of knowledge (BoK) dedicated to this specific area.

The FM-RAIL-BOK WORKSHOP 2013 (see also http:
//ssfmgroup.wordpress.com), held on 23 September 2013 in
Madrid, was a first successful step towards this aim. This in-
ternational workshop was affiliated to the SEFM 2013, the 11th
International Conference on Software Engineering and Formal
Methods, Madrid. This volume compiles two abstracts and
seven contributed papers of talks presented at the workshop.

As keynote, Alessandro Fantechi, Universita di Firenze,
presents an overview “Twenty-Five Years of Formal Methods
and Railways: What Next?”. This keynote was shared with the
18th International Workshop on Formal Methods for Industrial
Critical Systems (FMICS’13). Towards our aim of compiling
a body of knowledge, Tom Maibaum, McMaster University,
reflects upon “BoKs and Engineering Knowledge”.

All contributed papers were reviewed by the workshop
PC. They cover topics as varied as Ontologies, Verification of
Data and Designs for Railway Control Systems, Verification
of Interlocking Programs Expressed in Ladder Logic, and
ECTS/ERTMS Modelling. Not necessarily presenting new sci-
entific results, these papers compile case-based “best practice”
knowledge in the spirit of classical engineering handbooks. A
selection of these papers in improved and extended versions
will appear in a volume of the Springer LNCS series.

As FM-RAIL-BOK co-chairs we would like to thank all
authors who submitted their papers to our workshop, Alessan-
dro Fantechi for accepting our invitation to present a keynote,
the workshop participants, our Programme Committee, Manuel
Nunez, Universidad Complutense de Madrid, Spain, and Steve

Counsel, Brunel University, United Kingdom, for the smooth
cooperation with SEFM’13, Linh Vu Hong for valuable help
in preparing these proceedings, and Erwin R. Catesbeiana (Jr)
for help with workshop organization on the fly.

The FM-RAIL-BOK co-chairs
November 2013

FM-RAIL-BOK CO-CHAIRS

Stefan Gruner, University of Pretoria, South Africa
Anne Haxthausen, Technical University of Denmark
Tom Maibaum, McMaster University, Canada
Markus Roggenbach, University of Swansea, Great Britain

FM-RAIL-BOK PC

Martin Brennan, British Rail Safety Standards Board
Simon Chadwick, Invensys Rail, Great Britain
Lars-Henrik Eriksson, Uppsala University, Sweden
Alessandro Fantechi, University of Firenze, Italy
Kirsten Mark Hansen, COWI A/S, Denmark
Michaela Huhn, Technical University of Clausthal, Germany
Kirsten Mark-Hansen, Cowi A/S, Danmark
Hoang Nga Nguyen, University of Swansea, Great Britain
Jan Peleska, University of Bremen, Germany
Holger Schlingloff, Humboldt-University of Berlin, Germany
Eckehard Schnieder, TU Braunschweig, Germany
Kenji Taguchi, AIST, Japan
Helen Treharne, University of Surrey, Great Britain
Laurent Voisin, Systerel, France
Kirsten Winter, University of Queensland, Australia

FM-RAIL-BOK EXTERNAL REVIEWER

Andrea Bonacchi, University of Firence, Italy

2

Twenty-five years of formal methods and railways:
what next?

(Invited Paper)
Joint FMICS/FM-RAIL-BOK Keynote Speaker.

Reprinted from C. Pecheur and M. Dierkes (eds.), Formal Methods for Industrial Critical Systems, LNCS 8187, page ix, Springer-Verlag, 2013,

with permission of Springer-Verlag.

Alessandro Fantechi
DINFO - University of Florence

Via S. Marta 3
Firenze, Italy

Email: fantechi@dsi.unifi.it

Abstract

Railway signaling is now since more than 25 years the subject of successful industrial application of formal methods in the
development and verification of its computerized equipment.

However the evolution of the technology of railways signaling systems in this long term has had a strong influence on the way
formal methods can be applied in their design and implementation. At the same time important advances had been also achieved
in the formal methods area.

The evolution of railways signaling systems has seen railways moving from a protected market based on national railway
companies and national manufacturers to an open market based on international standards for interoperability, in which systems
of systems are providing more and more complex automated operation, but maintaining, and even improving, demanding safety
standards.

The scope of the formal methods discipline has enlarged from the methodological provably correct software construction of
the beginnings to the analysis and modelling of increasingly complex systems, always on the edge of the ever improving capacity
of the analysis tools, thanks to the technological advances in formal verification of both qualitative and quantitative properties of
such complex systems.

In spite of these advances, the verification of complex railway signalling systems is still a main challenge and an important
percentage of the cost in the development of these systems. We will discuss a few examples of such systems that witness these
difficulties.

The thesis we will put forward in this talk is that the complexity of future railway systems of systems can be addressed with
advantage only by a higher degree of distribution of functions on local interoperable computers - communicating by means of
standard protocols - and by adopting a multi-level formal modelling suitable to support the verification at design time and at
different abstraction levels of the safe interaction among the distributed functions.

3

What IS a BoK?
– extended abstract –

Tom Maibaum
McMaster Centre for Software Certification

McMaster University 1280 Main St W, Hamilton, ON, Canada L8S 4K1
Email: tom@maibaum.org

I. MAIN POINTS

Software engineering is different from traditional engineer-
ing disciplines in certain crucial ways. But software engineer-
ing is an engineering discipline. However, software engineer-
ing fails to meet the requirements of an engineering discipline,
as commonly conceived by conventional engineers. Software
Engineering Books of Knowledge (BoKs) fail spectacularly in
organising engineering knowledge as understood in classical
engineering disciplines.

“The SWEBOK Guide:

• characterizes the contents of the software engineering
discipline

• promotes a consistent view of software engineering
worldwide

• clarifies software engineering’s place with respect to
other disciplines

• provides a foundation for training materials and cur-
riculum development, and

• provides a basis for certification and licensing of
software engineers.”

We will “show” below that this is nothing like classical
engineering knowledge and, in particular, like the so called
cookbooks well known in engineering.

II. WHAT IS ENGINEERING?

So, what characterises classical engineering disciplines?
The following books have been immensely helpful in under-
standing engineering:

• GFC Rogers, The Nature of Engineering, The Macmil-
lan Press Ltd, 1983

• WG Vincenti, What Engineers Know and How They
Know It, The Johns Hopkins University Press, 1990

We have also been inspired by various papers of Michael
Jackson. [1] That software engineering is an engineering dis-
cipline is a simple consequence of the fact that: “engineering
refers to the practice of organising the design and construction
of any artifice which transforms the physical world around
us to meet some recognised need” [2]. Vincenti [3] argues
that engineering is different, in epistemological terms and,
consequently, as praxis, from science or even applied science:
“In this view, technology, though it may apply science, is

not the same as or entirely applied science”. Rogers argues
the same view on the basis of what he calls the teleological
distinction concerning the aims of science and technology:
“In its effort to explain phenomena, a scientific investigation
can wonder at will as unforeseen results . . . The essence of
technological investigations is that they are directed towards
serving the process of designing and constructing particular
things whose purpose has been clearly defined.” “We have seen
that in one sense science progresses by virtue of discovering
circumstances in which a hitherto acceptable hypothesis is
falsified, and that scientists actively pursue this situation. Be-
cause of the catastrophic consequences of engineering failures
- whether it be human catastrophy [sic] for the customer
or economic catastrophy [sic] for the firm - engineers and
technologists must try to avoid falsification of their theories.
Their aim is to undertake sufficient research on a laboratory
scale to extend the theories so that they cover the foreseeable
changes in the variables called for by a new conception.
The scientist seeks revolutionary change - for which he may
receive a Nobel Prize. The engineer too seeks revolutionary
conceptions by which he can make his name, but he knows
his ideas will not be taken up unless they can be realised using
a level of technology not far removed from the existing level.”
[2]

So, science is different from engineering. We can ask what
the praxis of engineering is. Vincenti [3] defines engineering
activities in terms of design, production and operation of
artefacts. Of these, design and operation are highly pertinent
to software engineering. In the context of discussing the focus
of engineers activities, he then talks about normal design as
comprising “the improvement of the accepted tradition or its
application under new or more stringent conditions”. He goes
on to say: “The engineer engaged in such design knows at
the outset how the device in question works, what are its
customary features, and that, if properly designed along such
lines, it has good likelihood of accomplishing the desired task.”
Jackson discusses this concept of normal design, although he
does not use this phrase himself: “An engineering handbook
is not a compendium of fundamental principles; but it does
contain a corpus of rules and procedures by which it has
been found that these principles can be most easily and
effectively applied to the particular design tasks established
in the field. The outline design is already given, determined
by the established needs and products.” “In this context, design
innovation is exceptional. Only once in a thousand car designs
does the designer depart from the accepted structures by an
innovation like front-wheel drive or a transversely positioned
engine. True, when a radical innovation proves successful it

4

becomes a standard design choice for later engineers. But these
design choices are then made at a higher level than that of the
working engineer: the product characteristics they imply soon
become well understood, and their selection becomes as much
a matter of marketing as of design technology. Unsuccessful
innovations - like the rotary internal combustion engine - never
become established as possible design choices.” “The methods
of value are micro-methods, closely tailored to the tasks of
developing particular well-understood parts of particular well-
understood products.”

Another important aspect of engineering design is the
organising principle of hierarchical design: “Design, apart from
being normal or radical, is also multilevel and hierarchical.
Interesting levels of design exist, depending on the nature of
the immediate design task, the identity of some component
of the device, or the engineering discipline required.” [3] It
is quite clear from the engineering literature that engineer-
ing normally involves the use of multiple technologies. The
observation that software engineering requires knowledge of
other domains and that its teaching should be application
oriented is not as perspicacious as its proponents would
have us believe. This is part of the essence of engineering,
whatever the discipline. An implied but not explicitly stated
view of engineering design is that engineers normally design
devices as opposed to systems, in the sense of Vincenti. A
device, in this sense, is an entity whose design principles are
well defined, well structured and subject to normal design
principles. (See also Michael Polanyis operational principle
of a device [4].) A system, in this sense, is an entity that lacks
some important characteristics making normal design possible.
“Systems are assemblies of devices brought together for a
collective purpose.” Examples of the former given by Vincenti
are airplanes, electric generators, turret lathes; examples of
the latter are airlines, electric-power systems and automobile
factories. The software engineering equivalent of devices may
include compilers, relational databases, PABXs, etc. Software
engineering examples of systems may include air traffic control
systems, automotive software, the internet, etc. It would appear
that systems become devices when their design attains the
status of being normal. That is, the level of creativity required
in their design becomes one of systematic choice, based on
well defined analysis, in the context of standard definitions
and criteria developed and agreed by engineers.

III. ENGINEERING KNOWLEDGE

Is the knowledge used by software engineers different in
character from that used by conventional engineers? The latter
is underpinned by mathematics and some physical science(s),
providing models of the physical universe in terms of which
artefacts must be understood. What about software engineer-
ing? I would claim that logic (in its widest sense) fulfills
these roles, although from different perspectives in computer
science and software engineering. Software engineering is dis-
tinguished from conventional engineering because the artefacts
constructed by the former are conceptual, while those built
by the latter are physical. For the latter, the “real world” is
a fixed constraint, whereas it is not clear that there are the
same limitations on the “computational world”. There is an
existing track record of working with concepts and abstractions
in mathematics and logic, particularly philosophical logic.

What distinguishes software engineering is the day to
day invention of theories (descriptions) by engineers and the
problems of size and structure induced by the nature of the
artefacts. Can we successfully apply the analogy between
conventional engineering and its use of mathematical tech-
niques and scientific analyses, on the one hand, and software
engineering and its use of ideas from the relevant mathematics
and logic based analyses, on the other?

An example that may be used in this context is program
construction. The well understood underlying mathematics was
developed over 25 years (in the sequential case), starting in
the 1960s. Thus, we might have expected the SE equivalent
of the engineering CAD tool to appear at the end of this time.
Instead, we have CASE tools with no relation to the underlying
mathematics, or formal methods, which offer a relaxation
of the exhaustiveness requirement of the scientific/theoretical
viewpoint. There is no equivalent of the conventional engi-
neering disciplines available in industrial software engineering
settings.

IV. CATEGORIES OF ENGINEERING KNOWLEDGE

Software engineering is distinct in character from con-
ventional disciplines of engineering. However, it has enough
in common with them to look for the same categories of
knowledge [3]:

1) Fundamental design concepts
2) Criteria and specifications
3) Theoretical tools
4) Quantitative data
5) Practical considerations
6) Design instrumentalities

Fundamental design concepts include the operational principle
of their device. According to Polanyi, this means knowing for
a device “how its characteristic parts . . . fulfill their special
functions in combining to an overall operation which achieves
the purpose”. [4] A second principle taken for granted is
the normal configuration for the device, i.e., the commonly
accepted arrangement of the constituent parts of the device.
These two principles (and possibly others) provide a frame-
work within which normal design takes place. Criteria and
specifications allow the engineer using a device with a given
operational principle and normal configuration to “translate
general, qualitative goals couched in[to] concrete technical
terms”. That the development of such criteria may be problem-
atic is clear. However, the development and acceptance of such
criteria is an inherent part of the development of engineering
disciplines.

Engineers require theoretical tools to underpin their work,
including intellectual concepts for thinking about design, as
well as mathematical methods and theories for making design
calculations. Both conceptual tools and mathematical tools
may be devised specifically for use by the engineer and be of
no particular value to a scientist/mathematician. “. . . the most
useful context for the precision and reliability that formality
can offer is in sharply focused micro-methods, supporting
specialised small-scale tasks of analysis and detailed design.”
[1] Engineers also use quantitative data as well as tabulations

5

of functions in mathematical models. (A good example in soft-
ware engineering of this thoroughness in providing data useful
for design is the work of Knuth on sorting and searching.)

There are also practical considerations in engineering.
These are not usually subject to systematisation in the sense
of the categories above, but reflect pragmatic concerns. For
example, a designer will use various trade-offs which are
the result of general knowledge about the device, its use,
its context, its cost, etc. Design instrumentalities include “the
procedures, ways of thinking, and judgmental skills by which
it [design] is done” [3]. This is clearly what the Capability
Maturity model has in mind when it refers to well defined and
repeatable processes in software engineering.

According to Vincenti, as noted above, the day to day
activities of engineers consist of normal design, as comprising
“the improvement of the accepted tradition or its application
under new or more stringent conditions”. This is the combi-
nation of discipline and a little bit of creativity encapsulated
in engineering cookbooks! He goes on to say: “The engineer
engaged in such design knows at the outset how the device in
question works, what are its customary features, and that, if
properly designed along such lines, it has a good likelihood of
accomplishing the desired task.”

V. IN SUMMARY

“An engineering handbook is not a compendium of fun-
damental principles; but it does contain a corpus of rules and
procedures by which it has been found that these principles can
be most easily and effectively applied to the particular design
tasks established in the field. The outline design is already
given, determined by the established needs and products.” [1]

Systems become devices when their design attains the
status of being normal, i.e., the level of creativity required in
their design becomes one of systematic choice, based on well
defined analyses, in the context of standard definitions and
criteria developed and agreed by the relevant engineers ([3],
definition of normal design). This is exactly what engineering
BoKs should be about!

REFERENCES

[1] M. Jackson, “The operational principle and problem frames,” in Reflec-
tions on the Work of CAR Hoare. Springer, 2010, pp. 143–165.

[2] G. F. C. Rogers, The nature of engineering: a philosophy of technology.
Macmillan Press, 1983.

[3] W. G. Vincenti, What engineers know and how they know it: Analytical
studies from aeronautical history. The Johns Hopkins University Press,
1990.

[4] M. Polanyi, Personal Knowledge: Towards a Post-critical Philosophy.
Routledge & Kegan Paul, London, 1958, reprinted by University of
Chicago Press (1974).

6

1

An ontology for complex railway systems,
application to the ERTMS/ETCS system

Olimpia Hoinaru†, Georges Mariano†, Christophe Gransart‡
∗ Université Lille Nord de France

French Institute of Science and Technology for Transport,
Development and Networks (IFSTTAR)

[olimpia.hoinaru|georges.mariano|christophe.gransart]@ifsttar.fr† ESTAS
Évaluation des Systèmes de Transports Automatisés et de leur Sécurité‡ LEOST

Laboratoire Électronique Ondes et Signaux pour les Transports

Abstract—We present hereafter our experimental work of
building an ontology of the European Rail Traffic Management
System (ERTMS) domain. ERTMS is a railway complex control
system defined on the basis of publicly available specification
documents, the System Requirements Specification (SRS). We
will describe the methodology that we used to define an initial
structure for an ERTMS ontology. The main goal of this work is
to supply a first formalization of the ERTMS knowledge in order
to provide the basis of a later development process i.e validating
the specifications, developing the software/hardware components
and finally validating the system.

Keywords—Ontologies, ERTMS/ETCS, railway systems

I. INTRODUCTION

ERTMS stands for the European Rail Traffic Management
System. This is a European standard for the process control
system and signalling and new lines for the replacement of
existing systems for conventional lines. ERTMS contains two
basic elements:

GSM-R (Global System for Mobiles - Railway): the com-
munication component containing a voice commu-
nication network between vehicle drivers and line
controllers. It provides routing and portability for
ETCS data. It is based on the GSM public standard
with specific features for railways.

ETCS (European Train Control System): the signalling
system component that includes control movement
authorities, automatic train protection and interface
with the interlocking.

Developing such a complex structure is, of course, a real
challenge. Only by considering the development of the corre-
sponding software, we can observe on the figure 1 the general
evolution of the technologies employed.

Roughly speaking, in the past, the challenge was to define
a method to derive machine code from documentation (this
documentation coming from the informal, and sometimes
implicite “knowledge” of the system to be developed). To
answer this challenge, (countless) modelling methods were
defined and are now available. Thus we may now assert that the
code is correct because it corresponds to previously established

models (whether they are formal or not). Our problematics is
how we can provide good models, preferably formal ones.

By doing this, we completely follow the paradigm stated
in [1]: “Before software can be designed we must understand
the requirements. Before requirements can be finalised we
must have understood the domain”. But where Dines Bjorner
uses pure formal logic to tackle generic sample problems,
we will experiment the use of ontological technologies (con-
ceptualization, formalization, reasoning) to tackle a real and
complex system.

II. GENERAL GOAL(S)
The work presented in this article is situated at the intersec-

tion of several domains i.e. knowledge management and Web
semantics, knowledge representation and formalization, as well
as system modelling. The knowledge of the ERTMS domain is
considered and formalized for understanding and reuse issues.

Several methods (models) can be used to capture the dif-
ferent aspects of a railway complex system. Based on the
fact that the same concept can have different meanings in
different domains, the need for specification of these semantic
differences was felt.

The ERTMS ontology aims at modelling and formalizing the
System Requirements Specification documents of the ERTMS.
These documents are written in natural language. The aim of
this ontology is the formalization of these specifications in
order to obtain a data structure that can be reusable in the
framework of other research in the ERTMS field. A module of
this ontology is the OSI (Open Systems Interconnection) [2]
model and another one concerns the application of the OSI
model to the ERTMS/ETCS subsystem dealing with the data
transmission by means of radiocommunication.

III. ELABORATING ONTOLOGIES

Ontologies are formal representations of knowledge of a
certain domain. Several definitions of the term “ontology”
have been provided. [3] poses that “an ontology is an explicit
specification of a conceptualization”. According to the same
author “the term is borrowed from philosophy, where an
ontology is a systematic account of Existence”.

7

2

Fig. 1. Ontologies for software-based systems

There are four types of information allowing us to precise
what is that we represent in an ontology. These are the type
of ontology (domain ontologies, generic ontology, ontology
of a method of solving a problem, application ontology and
representation ontology), the properties, the “is-a” relation and
the other relations [4].

The knowledge of a domain is formalized using several nota-
tions with the aim of regrouping and creating a formal structure
of the concepts of this domain into a web of knowledge.

We chose an ontology creation tool using the Web On-
tology Language (OWL), i.e. the Protégé tool. Protégé-2000
was developed by Mark Musen’s group at Stanford Medical
Informatics. In this environment, concepts are formalized as
classes together with their several types of properties and the
relations among them. The so-called “rules” are created for the
purpose of modelling requirements and certain “behaviors” of
the system.

In the railway domain, documents describing the System
Requirements Specifications were issued with the specific
aim of explaining and clarifying the usage of a part of the
terms/concepts used in this domain, and of the system itself.

A. Approaches
This paragraph presents some of the ontology development

methodologies existing. “Methontology” is the term used to
describe one of these methodologies for creating an ontology.
It is among the more comprehensive ontology engineering
methodologies as it is one for building ontologies either from
scratch, reusing other ontologies as they are, or by a process
of re-engineering them.

But methontology is not the only methodology of creating
ontologies. Other methodologies like, for example, the corpus-
based methodology exist. In this case, the ontology is derived
from documents provided in natural language that can also
contain diagrams, flow charts, or tables. It is the case of the
ERTMS ontology whose creation we are presenting in this
study.
• [5] is a publication dealing precisely with this subject-

matter. The authors describe here the reasons that can

lead one to develop an ontology i.e. the usage of this
kind of structure, its definition, several types of method-
ologies, as well as the composition and structure of an
ontology. We found this article particularly interesting
for its explicitness and pedagogical style. The example
taken is a test ontology created by the Protege develop-
ers, a wine ontology.

IV. GLOBAL VIEW OF THE PROPOSED ERTMS ONTOLOGY

A. The chosen method
Our ontology is based on normative documentation, i.e. the

System Requirements Specification [6] documents provided
by the European Railway Agency (ERA). Other related docu-
ments are the “ERTMS Glossary” and the “ETCS Implementa-
tion Handbook” published by International Union of Railways
(UIC). This is an ontology created as a semantic model
and module extracted from the below mentioned documents.
The extraction is based on the study, the comprehension of
these documents, and on the transposition of the information
conceptualized in the same documents. All this is being carried
out manually by (some of) the authors of this article and not
performed automatically as some software can do. As the study
of these SRS within the framework of this research is at its
beginnings, we chose to start it manually for a better usage of
the comprehension of the human understanding. A perspective
of this study is the automation of the information extraction
from the SRS and other documents. This ontology is a way
of formalizing the information provided by these documents.
It is not the ultimate aim of this study, but just another more
explicit form of the SRS documents.

The railway domain is an environment where numerous
heterogeneous information sources exist. The ERTMS system
basically relies on information exchange. Ontologies provide
a number of useful features for intelligent systems, as well as
for knowledge representation generally. The ERTMS ontology
that we propose also aims at offering a solution for information
exchange, and this for a better railway transportation world.

Train control is an important part of any railway operation
management system. In the past a number of different Auto-
matic Train Control (ATC) systems have evolved in different
countries at different times. Due to the incompatibility and
lack of interoperability among these systems, as well as to
a significant increase in density of train traffic anticipated,
many railways rethink their infrastructure strategy, in order
to accommodate high levels of traffic, in which ATC systems
play an important part. This and the fact that many railway
systems would like to introduce standardized components to
reduce system costs are, among others, the reasons of the
existence of this system. In order to establish international
standardization of ATC systems, the SRS document specifies
the European Rail Traffic Management System/European Train
Control System (ERTMS/ETCS).

The ERTMS System Requirements Specification is a set of
documents written in natural language, English in this case.
It specifies the European Rail Traffic Management System/
European Train Control System (ERTMS/ETCS) which is a
control and signalisation innovative system of the railway

8

3

vehicles and tracks. Also, system safety plays an important
role in railway transport as it constitutes a challenging issue
that has engaged strong and continuous research interest.

B. Ontology building from normative documentation
As mentioned before, in this ERTMS ontology, concepts

are formalized as classes (terms). An ontology is not only
the identification and classification of concepts, but also of
their inherent characteristics that are here called “properties”.
Moreover the relations gather the concepts together. Primarily,
we used the “is-a” relation which is a subsumption relation
allowing the formal heritage of properties. The “has-a” re-
lation, also known as composition, is used as well in this
ontology, this time not for the class layer but for the instance
layer. If, at the beginning, we had conceived our primary
concept structure using the two relations for the classes, a
differentiation became crucial as work proceeded. Then, other
relations were established according to the system’s syntax.
These relations are created based on properties declaration and
domain specification (tab allowing to select the class(es)) on
which they take effect. Our ontology is structured into several
modules.
• the Entity module, i.e. the superclass containing sev-

eral entities like Driver, ERTMS, Procedure, describes
entities that are used to define the required system
behavior on a context level.

• the OSI Model is a sibling class of Entity, a module
aiming at describing the Open Systems Interconnection
(OSI) model. This is a conceptual model that char-
acterizes and standardizes the internal functions of a
communication system by partitioning it into abstraction
layers. This module will be more thoroughly explained
in section VI.

• another sibling class of the above mentioned one is
Source. It formalizes information about the SRS and
other ERTMS/ETCS documents used as corpus of these
ontology.

• TrainCategories is also a child of the Entity super-
class, containing information about the different types of
rolling stock.

V. MODELLING ERTMS PROCEDURES

In figure 2, we present an example of a procedure defined
in the SRS called “Entering SH mode”. The “Shunting” mode
is, by definition, a type of ERTMS/ETCS on-board equipment
allowing a train to move without having the update train data.

There exist several ERTMS operating modes, as well as all
operational modes and procedures necessary to ensure safe
information exchange between the driver and the embedded
subsystem. Each mode is associated with a specific configura-
tion (train, track and conditions) defining the system state.

Transitions between modes require the establishment of
different conditions required to perform the transition properly,
i.e. safely. In the SRS, the procedures associated or involving
mode transistions are defined by flowcharts linking conditions,
decisions and states. The “shunting” flowchart is presented in
figure 2.

Fig. 2. Flowchart for the ”Shunting” procedure

In order to catch the semantics of these flowcharts in our on-
tology, we transformed the state transitions in each flowcharts
into rules expressed in the SWRL language provided by the
Protégé framework. SWRL stands for “Semantic Web Rule
Language” and provides a syntax and a semantics to express
rules upon the entities available in the ontology. SWRL rules
have the form of an implication between an antecedent (body)
and consequent (head). The intended meaning can be read as:
whenever the conditions specified in the antecedent hold, then
the conditions specified in the consequent must also hold.

Considering the flowcharts as state-transition machines, we
derived a flowchart into a set of SWRL rules, each rule
corresponding to a transition. By doing this, we intended to
catch the dynamic behavior of ERTMS/ETCS control system.

VI. FOCUS ON THE RADIO-COMMUNICATION PART

As mentioned in the sections before, this ontology is
constructed by modules. One of these modules formalizes
the OSI (Open Systems Interconnection) model and another
sub-module deals with the application of the generic OSI
model to the ERTMS system. This section presents the generic
telecommunication model, followed by its instanciation with
the OSI model and finally with the ERTMS telecommunication
subsystem.

A. The radio telecommunication model
First, we defined a generic radio telecommunication model.

This model/module is composed of several concepts1:

1concepts defined in our ontology will be typesetted like this
ConceptName

9

4

Fig. 3. Generic radio telecommunication concepts

Fig. 4. Hierarchy and instances for the OSI model

• the NetworkStack is the telecommunication stack
which is composed of several Layers.

• the Layer is a part of the NetworkStack which is
able to marshall and unmarshall some Messages. Each
layer is linked to two other Layers: an upper layer
and a down layer. The combination of this set of
layers is a NetworkStack. A layer manipulates some
Messages.

• the Message defines the data that will be sent and
received on the network by the Layers.

• The Telecommunication concept references the con-
cepts defined above.

Figure 3 presents graphically this set of concepts.

B. Feeding the ontology with the OSI model
Next, we populated the ontology with the concepts that

describe the OSI model composed of 7 layers. This part of
the work was usefull to see if the concepts defined into the
radio telecommunication model were enough and to be sure
that nothing was forgotten.

Figure 4 presents the hierarchy as defined previously and all
the instances which represent the different layers of a classical
OSI network stack. There is one important relation between

Fig. 5. Hierarchy and instances for the ERTMS radio subsystems

the layers. That relation describes the link between two con-
secutive layers. Its is notated hasUpperLayer between layer
N and N+1 and its opposite hasDownLayer between N and
N-1. The uppest layer does not have an hasUpperLayer, nor
does the lowest layer have a hasDownLayer. These relations
are not shown on the figure 4 to keep a clear schema.

C. Feeding the ontology with the ERTMS radio subsystem

We applied the same reasoning to represent the concepts of
the ERTMS/ETCS radio subsystem. This radio subsystem is
composed of three layers (from down layer to upper layer):
• the GSM_RLayer is based on the GSM specification with

some modifications to fit the railway industry needs. The
goal of this layer is to transport data packets through a
celullar network between the train and the Radio Block
Center (RBC).

• the EuroradioLayer deals with the end to end com-
munication between an embedded application into the
train and an application on ground. This layer is also
responsible for non functional properties like authenti-
cation and crytptography of the messages.

• the ETCSLayer manages the messages at the application
level of ETCS. This layer permits the communication
between the onboard EVC and the ground system RBC
that gives the movement authority grant(s) to the train.

• AirGap, EurobaliseLayer and EuroloopLayer rep-
resent equipements put on the track. These equipements
communicate with the train when it goes over the
equipments.

Figure 5 shows the ERTMS Network layer stack with three
instances that correspond to the layers described just before.

10

5

D. Current state
This ERTMS ontology is structured into several layers.

The Thing superclass contains several classes like Entity,
Source, OSIModel, etc which, in their turn, have several sub-
classes. For example, the Entity class reunites the subclasses
Driver, ERTMS and Procedure. The ERTMS subsubclass con-
tains ApplicationLevel, ERTMSNetworkLayer and ETCS.
These are just a few examples of terms that we enterred in the
surface levels of the class structure of this ontology.

Currently, the ERTMS ontology that we have been creating
contains 112 classes, 193 instances, and 104 properties includ-
ing object, datatype and annotation properties.

VII. RELATED WORKS

Due to the lack of space, we won’t provide a huge panel
of related works. With a few references, we will show that
the main aspects of our work have already been studied and
that there exist a solid background to tackle now with com-
plex railway systems (like ERTMS/ETCS is) while involving
several concerns like formalisation, requirements engineering,
traceability, . . .

A. Ontologies and software engineering
• In [7], an ontology called OntoTest is presented. This

ontology is developed in order to promote organization,
reuse and sharing of software testing knowledge. The
main concepts and artefacts of testing are described
(Process, phases, resources, procedures). The ontology
itself is figured with UML class diagrams, W3C for-
malisms are not used in the paper but the ontology is
now available in OWL format.

• The work presented in [8] is very close to the goals
of our work. Starting from an industrial-use case (the
Onboard Unit of ERTMS) a methodology to improve the
testing process is provided. This methodology involves
the analysis of the SRS specifications, the rewriting of
the requirements into a “formal” language. The defini-
tion of this language is based on a previously established
ontology classicaly defining the concepts, relations and
axioms of the domain.

B. Ontologies and requirements engineering
[9] describes the expected benefits but also the challenges of

using ontologies in requirements engineering (RE) activities.
This is exactly the basis of our approach. The main statement is
that such approach needs the definition of three ontologies: (1)
an application domain ontology, (2) a requirements ontol-
ogy and (3) a requirements specification document ontology.
The application domain ontology calls itself a double-utility
ontology i.e. a domain ontology that defines the necessary
concepts for all training in the domain, and an application
ontology which is one defining the concepts specific to a given
application or méthod. The requirements ontology is used for
representing requirements and their various relationships, as
well as the relationships between requirements and systems.
Whereas the requirements specification document ontology

is a documentary ontology. The present paper deals with the
creation of an ontology the first type presented above.

C. Ontologies and railway systems / applications

In [10], the authors present an ontology creation work
conducted during the FP6 InteGRail project [11]. They used
the same tools as us (OWL, Protege) to modelize an ontology
that permits to check network statement for infrastructure oper-
ators. Using the ontology, they combine the network statements
of different countries in different formats and analyse them in
a transparent way. They modelized the network using concepts
like network node, network line, track section, track node. All
these concepts permit to the authors to represent the railway
network as an object graph. In our work we could reuse such
concepts.

VIII. CONCLUSIONS AND PERSPECTIVES

In the present paper, we presented an experimental approach
aiming at establishing an ontology of a complex domain like
the ERTMS/ETCS railway control system. This development
is mainly based on the study of a set of referential texts. As
an example of the benefits we expect to obtain, we presented
the enrichment of the ontology with the consideration of OSI
standard levels to define precisely the concepts regarding the
radio communication aspects of ERTMS.

SRS coverage: Since we focused on a first feasibility of the
approach, the current coverage of the available texts by our
ontology is obviously reduced. This work shall be improved
in order to make our “ontological product” actually usable.
It would be a painstaking work that could possibly take
advantages on techniques (and related tools) such as automatic
language processing. For example, the following step of our
experiment may be the use of the GATE framework [12], since
it provides ontological and also machine learning facilities.

Ontology quality: The quality of the ontology, viewed as
a product, can be twofold: first, the quality of the embedded
knowledge (as a semantic object); and second, the quality of
the ontology itself (as a syntactic object).

The second point can be treated by the use of experi-
ence feedback from the elaboration of other ontologies and,
particularly by taking into account the best practices of the
domain sometimes identified and integrated into dedicated
static analysis tools (like OOPS! [13]).

Table I gives the results of the evaluation of the ERTMS on-
tology by the tool OOPS!, in its current state. These results are
barely correct because this “syntactic” aspect of the assessment
has not been taken into account yet. For example, the pitfall
with the worst score should be easily corrected simply by using
the correct “annotation property” attribute for the definitions.

It is also possible to improve the overall quality (structure) of
the current ontology by studying aspects like modularity ([14]),
thus improving the decomposition and the potential reuse of
the knowledge. A better modularity should also make easier
the reuse of other related ontologies like testing ontologies,
RE ontologies (as stated in section VII-B).

11

6

TABLE I. ONTOLOGY PITFALLS SCANNER OOPS!

Pitfall Cases
P04 Creating unconnected ontology elements 7
P05 Defining wrong inverse relationship 2
P08 Missing annotations 244
P11 Missing domain or range in properties 35
P13 Missing inverse relationships 33
P19 Swaping intersection and union 38
P21 Using a miscellaneous class 2
P22 Using different naming criteria in the ontology ontology* (?)
P24 Using recursive definition 4

Fig. 6. Ontologies in the formalized developpement of safety critical systems

Usage of reasoners: The first point (knowledge quality)
is essentially a matter of specific expertise to the considered
field, but it can also be enhanced by the power of inference
mechanisms used especially to detect semantic inconsistencies,
incompleteness of relations, . . .

All these criteria are not assessable by previous techniques
(syntactic/structure level). As we study complex specification
documents, it is even more important to implement these
mechanisms earlier in the development process, so as to
achieve a real “debugging” of the ontology before effective
implementation of the system.

Linking ontology and external (formal) models: As a next
step, when the ERTMS ontology will be rich enough to
be usable, we will start to tackle the problem of deriving
more concrete models (mainly formal ones). As described in
figure 6, the current work (number one circled) deals with the
analysis of available documentation and expert knowledge to
derive one ontology (and probably several others in the future)
which can be taken as a first step for an abstract formalization.

Formal methods are highly recommended for the develop-
ment of safety-critical (railway) systems (cf. CENELEC 50128
Norm [15]). The ERTMS/ETCS is a system of this kind and,
thus, a formalizable domain.

Indeed, in the openETCS project [16], a european large
project involving the main actors of railway research,
ERTMS/ETCS (semi-)formal models will be delivered (as

well as the corresponding tool-chains). More than ten for-
malisms/approaches are studied. They range from ADA (the
robust programming language), UML and/or sysML, to formal
methods like SCADE, B or eventB, Petri nets, . . .

The next step (number two circled) will be the derivation of
more concrete models using available and well-known (semi-
)formalisms like those used in the openETCS initiative. We
intend to show that an initial formalization derived from an
ontological conceptualisation will be helpful to define the
architecture and the main properties for derived formal models.

Since the ontological support languages (OWL, SWRL, . . .)
used while elaborating our ontology are not too far from
classical first order logic and set theory, one path to explore
may be a model transformation from our ontology into formal
specifications expressed within a ”classical” formalism such as
the B formal method [17].

Clearly, connecting our approach to the artefacts (formal
models!) of the openETCS will be a real achievement.

A. Acknowledgements
The present research work is supported by the ICSIT (Inter-

national Campus on Safety and Intermodality in Transporta-
tion) program and funded by the Nord Pas de Calais French
Region and the ERDF (European Research and Development
Funds). The authors gratefully acknowledge the support pro-
vided by these institutions.

REFERENCES

[1] D. Bjørner, “Rôle of domain engineering in software
development—why current requirements engineering is flawed!”
in Perspectives of Systems Informatics, ser. Lecture Notes in Computer
Science, A. Pnueli, I. Virbitskaite, and A. Voronkov, Eds. Springer
Berlin Heidelberg, 2010, vol. 5947, pp. 2–34. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-11486-1 2

[2] A. S. Tanenbaum, Computer Networks. Prentice Hall, 1996.
[3] G. Thomas R., “A translation approach to portable ontology specifica-

tions,” Knowledge acquisition, vol. 5, pp. 199–220, 1993.
[4] J. Charlet, B. Bachimont, and R. Troncy, “Ontologies pour le web

sémantique,” Action spécifique, vol. 32, pp. 43–63, 2003.
[5] N. F. Noy and D. L. Mcguinness, “Ontology development 101:

A guide to creating your first ontology,” Online, 2001. [Online].
Available: http://www.ksl.stanford.edu/people/dlm/papers/ontology101/
ontology101-noy-mcguinness.html

[6] E. U. G. UNISIG, System Requirements Specification (SRS) version
3.2.0, E. R. Agency, Ed., 2012. [Online]. Available: http://www.era.
europa.eu

[7] E. F. Barbosa, E. Y. Nakagawa, A. C. Riekstin, and J. Madonado,
“Ontology-based Development of Testing Related Tools,” 2008.
[Online]. Available: http://www.labes.icmc.usp.br/moduloeducacional/
publicacoes/SK06Ellen.pdf

[8] G. Bonifacio, P. Marmo, A. Orazzo, I. Petrone, L. Velardi, and A. Ven-
ticinque, “Improvement of processes and methods in testing activities
for safety-critical embedded systems,” in Computer Safety, Reliability,
and Security, ser. Lecture Notes in Computer Science, F. Flammini,
S. Bologna, and V. Vittorini, Eds. Springer Berlin Heidelberg, 2011,
vol. 6894, pp. 369–382.

[9] V. Castaneda, L. Ballejos, M. L. Caliusco, and M. R. Galli, “The use of
ontologies in requirements engineering,” Global journal of researches
in engineering, vol. 10, no. Issue 6, Nov. 2010. [Online]. Available:
http://www.engineeringresearch.org/index.php/GJRE/article/view/76/71

12

7

[10] S. Verstichel, F. Ongenae, L. Loeve, F. Vermeulen, P. Dings, B. Dhoedt,
T. Dhaene, and F. D. Turck, “Efficient data integration in the railway
domain through an ontology-based methodology,” Transportation Re-
search Part C: Emerging Technologies, vol. 19, no. 4, pp. 617–643,
2011.

[11] InteGRail Consortium, “Integrail, intelligent integration of railway
systems.” InteGRail Consortium, 2009. [Online]. Available: http:
//www.integrail.info

[12] H. Cunningham, D. Maynard, K. Bontcheva, V. Tablan, N. Aswani,
I. Roberts, G. Gorrell, A. Funk, A. Roberts, D. Damljanovic, T. Heitz,
M. A. Greenwood, H. Saggion, J. Petrak, Y. Li, and W. Peters,
Text Processing with GATE (Version 6), 2011. [Online]. Available:
http://tinyurl.com/gatebook

[13] M. Poveda-Villalón, M. Suárez-Figueroa, and A. Gómez-Pérez, “Vali-
dating ontologies with oops!” in Knowledge Engineering and Knowl-
edge Management, ser. Lecture Notes in Computer Science, A. Teije,
J. Völker, S. Handschuh, H. Stuckenschmidt, M. d’Acquin, A. Nikolov,
N. Aussenac-Gilles, and N. Hernandez, Eds. Springer Berlin Heidel-
berg, 2012, vol. 7603, pp. 267–281.

[14] C. Bezerra, F. Freitas, J. Euzenat, and A. Zimmermann, “ModOnto:
A tool for modularizing ontologies,” in Proc. 3rd workshop on
ontologies and their applications (Wonto), Salvador de Bahia, Brésil,
Oct. 2008, p. No pagination., bezerra2008a INRIA-CNPq-OntoCompo;
IST-NeOn. [Online]. Available: http://hal.inria.fr/hal-00793533

[15] CENELEC, “Railway applications - communications, signalling and
processing systems - software for railway control and protection sys-
tems,” 2011.

[16] openETCS, ITEA2 openETCS consortium, 2012. [Online]. Available:
http://openetcs.org

[17] J.-R. Abrial, The B Book - Assigning Programs to Meanings. Cam-
bridge University Press, Aug. 1996.

13

Verification of Scheme Plans using CSP||B
Philip James∗, Faron Moller∗, Hoang Nga Nguyen∗, Markus Roggenbach∗,

Steve Schneider†, Helen Treharne†, Matthew Trumble†, and David Williams‡
∗Swansea University, Wales

†Department of Computing, University of Surrey
‡VU University, Amsterdam

Abstract—The paper presents a tool-supported approach to
graphically editing scheme plans and their safety verification.
The graphical tool is based on a Domain Specific Language
which is used as the basis for transformation to a CSP‖B
formal model of a scheme plan. The models produced utilise
a variety of abstraction techniques that make the analysis of
large scale plans feasible. The techniques are applicable to other
modelling languages besides CSP‖B. We use the ProB tool to
ensure the safety properties of collision, derailment and run-
through freedom.

I. INTRODUCTION

In a series of papers [11], [10], [12], [9], [14] we have
been developing a new modelling approach for railway in-
terlockings. This work has been carried out in conjunction
with railway engineers drawn from our industrial partner. By
involving the railway engineers from Invensys, we benefit
twofold: they provide realistic case studies, and they guide the
modelling approach, ensuring that it is natural to the working
engineer.

We base our approach on CSP||B [16], which combines
event-based with state-based modelling. This reflects the dou-
ble nature of railway systems, which involves events such
as train movements and – in the interlocking – state based
reasoning. The formal models are by design close to the
domain models. To the domain expert, this provides trace-
ability and ease of understanding. The validity of this claim
was demonstrated in particular in [11] where a non-trivial
case study – a complex double junction – was provided, a
formal model of which was understandable and usable by our
industrial partners.

In [10], [14] we addressed how to effectively and efficiently
verify safety properties within our CSP||B models. The prop-
erties of interest are collision, derailment and run-through
freedom. To this end we developed a set of abstraction tech-
niques for railway verification that allow the transformation of
complex CSP||B models into less involved ones; we proved
that these transformations are sound; and we demonstrated that
they allow one to verify a variety of railway systems via model
checking. The first set of abstractions reduces the number of
trains that need to be considered in order to prove safety for an
unbounded number of trains. Their correctness proof involves
slicing of event traces. Essentially, these abstractions provide
us with finite state models. The second set of abstractions
simplifies the underlying track topology. Here, the correctness
proof utilizes event abstraction specific to our application

domain similar to the ones suggested by Winter in [18]. These
abstractions make model checking faster.

Still present in our approach from the aforementioned
papers was the need to write the formal models by hand. In [8]
we described our OnTrack toolset1, an open tool environment
allowing graphical descriptions to be captured and supported
by formal verification. This enables an engineer to visually
represent the tracks and signals etc., within a railway network.

In this paper we continue the dissemination of our modelling
approach which now also incorporates multi-directional tracks.
We demonstrate that when changes are made to the models
they are systematic and traceable; again this addition will be
incorporated within our OnTrack tools.

The paper is organised as follows. In Section II we introduce
our modelling language CSP||B so that we have the basis for
discussing our workflow and provide examples. In Section III
we describe the workflow for our CSP||B modelling approach
and summarise where the different abstraction techniques fit
into the workflow. In Section IV we introduce the modelling
concepts of multi-directional travel and provide two illustrative
examples. In Section V we put our work in the context of
related approaches and finally conclude with future plans for
the approach.

II. BACKGROUND TO CSP||B
The CSP||B approach [16] allows us to specify commu-

nicating systems using a combination of the B-Method [1]
and the process algebra CSP (Communicating Sequential
Processes) [6]. The overall specification of a combined com-
municating system comprises two separate specifications: one
given by a number of CSP process descriptions and the other
by a collection of B machines. Our aim when using B and
CSP is to factor out as much of the “data-rich” aspects of
a system as possible into B machines. The B machines in
our CSP||B approach are classical B machines, which are
components containing state and operations on that state. The
CSP||B theory [16] allows us to combine a number of CSP
processes Ps in parallel with machines Ms to produce Ps ‖ Ms
which is the parallel combination of all the controllers and
all the underlying machines. Such a parallel composition is
meaningful because a B machine is itself interpretable as a
CSP process whose event-traces are the possible execution
sequences of its operations. The invoking of an operation of

1OnTrack available for download from http://www.csp-b.org.

14

a B machine outside its precondition within such a trace is
defined as divergence [13]. Therefore, our notion of consis-
tency is that a combined communicating system Ps ‖ Ms is
divergence-free. We do not consider deadlock-freedom in this
paper as it is concerned with liveness, and the focus of the
paper is on safety.

A B MACHINE clause declares a machine and gives it a
name. The VARIABLES of a B machine define its state. The
INVARIANT of a B machine gives the type of the variables,
and more generally it also contains any other constraints on
the allowable machine states. There is an INITIALISATION
which determines the initial state of the machine. The machine
consists of a collection of OPERATIONS that query and modify
the state. Besides this kind of machine we also define static B
machines that provide only sets, constants and properties that
do not change during the execution of the system.

The language we use to describe the CSP processes for B
machines is as follows:

P ::= e?x!y→ P(x) | P1 2 P2 | P1 u P2 |
if b then P1 else P2 end | N(exp) |
P1 ‖ P2 | P1 A‖B P2 | P1 ||| P2

The process e?x!y→ P(x) defines a channel communication
where x represents all data variables on a channel, and y
represents values being passed along a channel. Channel e is
referred to as a machine channel as there is a corresponding
operation in the controlled B machine with the signature
x←− e(y). Therefore the input of the operation y corresponds
to the output from the CSP, and the output x of the operation
to the CSP input. Here we have simplified the communication
to have one output and one input but in general there can be
any number of inputs and outputs. The other CSP operators
have the usual CSP semantics.

In this paper we omit a detail discussion of the semantic
models used for reasoning of CSP||B models. In [14] we
discuss that the traces models is enough to deal with the safety
properties of railway interlockings.

III. VERIFICATION WORKFLOW

Figure 1 shows the workflow that we employ in our
methodology. It makes use of two tools: OnTrack and the
ProB model checker [15]. Initially, a user draws a Track Plan
using the graphical front end in the OnTrack tool. Then the
first transformation, Generate Tables leads to a Scheme Plan,
which is a track plan and its associated control and release
tables. Control tables contain information about when routes
can be granted and release tables contain information about
when points can be released, see [11] for details. Note in the
paper we typically refer to tracks as being both linear tracks
or points. Track plans and scheme plans are models formu-
lated relative to our railway domain-specific language (DSL)
meta-model [8]. A scheme plan is the basis for subsequent
workflows that support its verification. Scheme plans can be
captured as formal specifications. The simplest transformation,
indicated by the Transformation dashed arrow, is to produce

one Formal specification that is a faithful representation of
the scheme plan. This transformation is a mapping from
the railway DSL meta-model to the CSP||B meta-model and
its subsequent representation as CSP||B script files that can
be inputted into ProB. This automated transformation makes
use of the finitisation theory in order to be able to perform
bounded model checking of the formal specification [10],
[7]. The finitisation theory allows us to reduce the problem
of verifying of scheme plans for safety (i.e., freedom from
collision, derailment, and run-through) for any number of
trains to that of a two-train scenario.

Nonetheless, even with the examining a reduced number of
trains the formal specifications of realistic examples will in-
evitably contain too many states for safety analysis. Thus, our
methodology enables us to carry out two forms of abstraction
on a scheme plan:

(1) Covering Abstraction supports the decomposition of
a scheme plan with a set of smaller sub-scheme plans. Any
particular track in a scheme plan has a ‘zone of influence’:
the other tracks which need to be considered to see what
will happens on that track (e.g., when routes including it are
enabled, when trains are approaching it, etc.). In particular,
we only need to look at the zone of influence in order to
see if a collision is possible on that track. To analyse if a
collision, derailment or run-through is possible on that track,
it is enough just to analyse the behaviour of trains within the
zone of influence. We can do this for all the tracks, in each case
just analysing for collisions, derailment or run-through within
its zone of influence. This is called a covering. In general each
zone of influence is much smaller than the overall track plan,
so the analyses will be much quicker, and in practice can be
done efficiently.

(2) Topological Abstraction supports the collapsing of
tracks of a scheme plan to minimise the number of superfluous
tracks in a plan, i.e., ones which do not impact on safety. Thus,
for a particular track plan we take a sequence of tracks, and
think of them as one single track. We do this for a number
of sequences of tracks along the way. It is a topological
abstraction if we can match moves around the original track
plan with moves around the smaller one, so changes such as
routes being enabled, points being released, trains being on
particular routes, points being set, trains being at lights must
still match for this collapsing to be a topological abstraction.
If this is true then it means that we can analyse the behaviour
of trains on the smaller scheme plan (which is easier because
there are fewer positions to consider) and the results that we
get will still be true for the original larger scheme plan.

We have proved the soundness of these abstractions in [10],
[7]. In our methodology we first apply covering abstraction to
generate sub-scheme plans and then apply topological abstrac-
tion to each of them. Using these abstractions we follow the
Abstraction vertical workflow from the scheme plan to produce
one or more Minimised abstract sub-scheme plan(s). One or
more such plans may be produced because as we shall see in
our examples, in Section IV, it may not always be possible to
perform covering, and in which case the only abstraction that

15

Minimised
abstract sub-

scheme plan(s)

Scheme plan Track plan

Verification in
ProB

Generate
Tables

Formal
specification

Tr
a

n
sf

o
rm

a
ti

o
n

Minimised
sub-formal

specification(s)

Tr
a

n
sf

o
rm

a
ti

o
n

Review and Correct (by hand)

Safety
Properties

Failed

Safety
Properties

OK

Abstraction Implies

Fig. 1. CSP||B modelling and verification workflow.

may yield a reduction in the number of tracks in the plan will
be topological abstraction. Applying these abstractions is done
at the DSL level and is independent of the formalism being
used to represent the abstract CSP||B specification. Currently,
the covering abstraction is not fully automated but is ongoing
development work within the OnTrack tool.

Following abstraction (top left box on the diagram) the
Transformation workflow, described earlier, can be applied to
the minimised abstract sub-scheme plans to produce corre-
sponding sub-formal specifications. All of the transformations
that are performed by the OnTrack tool are validated via
manual review. The verification of all of these sub-formal
specifications implies the safety of the formal specification,
as illustrated by the Implies arrow workflow; this result has
been formally proved [10], [7].

Once OnTrack produces the sub-formal specifications they
are all systematically verified using the ProB model checker
to ensure that the models are collision- and derailment-free
and contain no run-throughs. Successful checks verify that
the safety properties hold for the particular scheme-plan. The
workflow has the potential for round-trip engineering where
the counter examples produced from unsuccessful model
checking are automatically fed back into the OnTrack tool.
This has not, as yet, been incorporated into the tool but it
would provide an improved tool-supported workflow; this is
illustrated using the dotted Review and Correct arrow on the
workflow.

IV. MODELLING OF MULTI-DIRECTIONAL EXAMPLES OF
CSP||B RAILWAY MODELS

In this section we provide details of the architecture of
the formal specifications that are produced by the OnTrack
tool. The architecture of a CSP||B specification presented
in [11] is restated in Figure 2. The centralised control logic
is represented in the Interlocking machine, whereas the train

Fig. 2. CSP||B Architecture.

behaviour is controlled by CSP processes defined in the CTRL
script. These process and machine synchronise on common
events. Their definitions are independent of any particular
scheme plan but contain the state of the railway interlocking
model which changes as these events occur. The definitions
are supported by generic domain definitions contained in
the following stateless machines: Topology, ControlTable, Re-
leaseTable and Context. The sets, relations and functions in
these stateless machines are automatically instantiated for a
particular scheme plan. The definitions of the types in the
CTRL script are also automatically instantiated to match the
B instantiations. In the next sections we illustrate some aspects
of the CSP processes and machines via examples 2 and focus
on how multi-directional travel of trains on tracks is modelled.

2Examples available for download from http://www.csp-b.org.

16

Entry1 AA

ABExit2 AC AD AE AF BA

Exit1

Entry2

S1

S2

P1 P2

Fig. 3. Track plan for the tunnel example

1 TRAIN CTRL(t, pos) = . . .
2 2 pos /∈ EXIT ∧ pos /∈ SIGNALHOMES &
3 move!t.pos?newp→ TRAIN CTRL(t, newp)
4 2 . . .

Fig. 4. Fragment of the CSP control process for trains.

A. Tunnel Example

Consider the track plan in Figure 3 where tracks AB, AC
and AD are bi-directional tracks. For route R1 associated
with signal S1 their direction is left to right, whereas for
route R2 associated with signal S2 their direction is right
to left. The CSP process that controls the movement of
trains is TRAIN CTRL. Figure 4 illustrates the fragment of it
controlling the movement of a train from a track that is neither
an exit one or one which has a signal on it. The move event is
parameterised with the train identifier t and its current position
p. This event is a synchronisation with a move B operation
which returns its new position newp. Therefore, moving from
track AC to AD corresponds to the event move.t.AC.AD for a
particular train t.

Note, there is no information in the CSP event that cor-
responds to the direction of travel. All this information is
contained in the Topology machine and used in the move
operation within the Interlocking machine. In the Topology
machine there are three relations which define the direction of
tracks. For example, the relation direction shown in Figure 5
shows that the model needs to contain details of the way
tracks are connected together, and this is explicitly done via
the notion of identified connectors — the glue between tracks
and points.

1 direction ∈ TRACK ↔ CONNECTOR ∗ CONNECTOR ∧
2 direction = {. . . ,
3 AA 7→ (C1,C2), . . . ,
4 AC 7→ (C3,C4),AC 7→ (C4,C3),
5 AD 7→ (C4,C5), . . .}

Fig. 5. Fragment of the direction relation from Topology.

As we saw above the notion of a train’s position in the CSP
was captured using two parameters (t, pos). In the INVARIANT
of the Interlocking machine a similarly named function pos
also includes information about the connectors, as shown in

Figure 6. In its INITIALISATION pos := ∅ since there are no
trains on the tracks. The move operation updates the track and
connectors related to train t in pos each time the train moves.
(In earlier papers, e.g., [11], pos was simply a partial function
between trains and tracks and direction was not required.)

1 pos ∈ TRAIN 7→ ALLTRACK∗
2 (ALLCONNECTOR ∗ ALLCONNECTOR)

Fig. 6. pos function from Interlocking.

In addition to B operations which define the behaviour
of movement, granting and releasing of route requests the
OnTrack tool automatically produces B operations to support
the verification of safety properties. Three B operations are
produced, collision, derailment and run-through. Collision is
encoded as follows:

1 collision =
2 SELECT
3 ∃ t1, t2 ∈ TRAIN ∧ t1 6= t2∧
4 t1 ∈ dom(pos) ∧ t2 ∈ dom(pos)
5 (dom(pos(t1))− (EXIT ∪ ENTRY)) ∩
6 (dom(pos(t2))− (EXIT ∪ ENTRY)) = ∅
7 THEN skip
8 END;

Here collision is detected when two different trains t1 and
t2 occupy the same track segment (different from the EXIT
and ENTRY tracks). The collision condition will be enabled
when the two trains are at the same position.

Collision freedom can then be established by model check-
ing the validity of the following CTL formula:

AG(not(e(collision)))

This formula is false if collision is enabled. In the CTL variant
of PROB AG, stands for “on all paths it is globally true that”,
and e(a) stands for “event a is enabled”. To achieve this
the engineer would take the formal specification produced by
OnTrack load it into the ProB tool and perform this check.
A total of 1,516 distinct states were examined in order to
determine that no collision was possible. Our methodology
currently requires us to do this loading by hand but automating
this as a batch process for all the safety properties could easily
be done.

17

EntryAA AB AC AD

BB BC BD Exit

S2

S3

BA BE

S1

AE

P1 P3

P3 P4

Fig. 7. Track plan for the buffer example

B. Buffer Example
Our next example is also multi-directional as shown in

Figure 7. Interestingly, track BC has three directions, i.e.,
{BC} C direction = {(C12,C11), (C11,C12), (C7,C12)},
where C7 is the connector between tracks AC and BC, C11
is between BB and BC, and C12 is between BC and BD,
respectively.

It also serves to illustrate how additional complexity can
easily be traced within a formal specification. We model the
behaviour of buffers, i.e., tracks where trains can turn around;
in our example the buffers are AA and BA. Two routes are
associated with signal S1, i.e., route R1A is associated with
AE, AD, AC, AB and AA and R1B is associated with AE, AD,
BD, BC, BB and BA. Thus, when a train is on route R1A and
is on track AA it can change direction and then follow route
R2 which is associated with signal S2. Similarly, for route R3
associated with signal S3.

This additional behaviour requires three additions to the
CSP processes and B machines:

• The additional definition of BUFFER = {AA,BA} in the
Context machine and similarly in the CSP types.

• A new changeDirection operation as shown in Figure 8.
The purpose of this operation is to simply modify the
direction of the connectors for the particular buffer track
on which the train t currently resides. Hence, changing
the direction of train t on track AA means changing the
maplet (t 7→ AA, (C1,C0)) to (t 7→ AA, (C0,C1)) within
the pos function. This means that we can leave the move
operation unchanged.

• Within the CSP, rather than disturb the existing processes,
we define a new process, BUFFERP(b, t) in Figure 9
which defines that after a train moves onto the buffer
track b it must change direction before it can move off
it. In the model there will be a separate buffer process
for each buffer and they are independent of each other.
These new processes are combined to reformulate the
overall CSP processes contained in the CTRL script.

The state space required by ProB to model check the
safety properties for the formal specification of the Buffer
example was 18,510 states, significantly more than in the
tunnel example. In Section III we noted that it may not
always be feasible to model check a complex scenario but
our methodology supports the systematic generation of all the

1 changeDirection(t, currp) =
2 PRE t ∈ TRAIN ∧ t ∈ dom(pos)∧
3 {currp} = dom({pos(t)}) ∧ currp ∈ BUFFER
4 THEN
5 movedPoints := {} ||
6 LET(track, d) BE (track, d) = pos(t) IN
7 LET(d1, d2) BE (d1, d2) = d IN
8 pos(t) := (track, (d2, d1))
9 END

10 END
11 END;

Fig. 8. changeDirection method from Interlocking.

1 BUFFERP(b, t) = move!t?p!b→ changeDirection.t.b
2 → move.t.b?newp→ BUFFERP(b, t)

Fig. 9. BUFFERP process in CTRL.

sub-scheme plans for a particular scheme plan. The track plan
for one of the sub-scheme plans of the buffer example is shown
in Figure 10. It illustrates the plan for the track AC constructed
using the covering abstraction. The highlights from this plan
are as follows:

• The point BC in the overall buffer example can now be
considered as an exit track and after which we do not
need to consider the behaviour of subsequent linear tracks
and points. The reason being is that all that needs to be
captured is what happens to the state when a train moves
off the point AC and that this can be represented using a
simple linear track rather than a point.

• The point BD is similarly converted to an exit track.
• The current version of our covering technique has not

considered the impact of buffers on the abstraction of
the scheme plans. Therefore, we must include them in
the zone of influence. Therefore, both tracks AA and AB
retain their bi-directional properties in the sub-scheme
plan. We shall of course examine in future work whether
such tracks can be further reduced.

• Notice also that we need not consider the path along
Entry, AE, AD, BD, BC, BB, BA because it does not
belong to the zone of influence as it does not contain the
track AC, but of course Entry, AE and AD are included
because they are on the normal route R1A and BD is

18

EntryAA AB AC AD

BC BD

S2 S1

AE

P1 P3

Fig. 10. Sub-track plan for track AC of the buffer example

included for the above reason.
Running the formal specification of the sub-scheme plan

for AC through ProB gives a state space of 3,995 compared to
18,510 states for the full specification. We have also verified
that the three important safety properties hold for this sub-
scheme plan. Methodologically, we would then be required to
run all the sub-scheme plans through ProB and by appealing
to our theoretical results we would conclude that the overall
buffer example from Figure 7 preserves the safety properties.

V. RELATED WORK

To put our work into context we must first clarify that
railway verification falls into two categories: the verification
of railway designs prior to their implementation and the
verification of the implementation descriptions themselves.
Our work is in the first area. A comparison using different
model checkers in the analysis of control tables has been
conducted by Ferrari et al. [3] and falls into the first category.
Winter in a recent paper [17] considers different optimising
strategies for model checking using NuSMV and demonstrates
the efficiency of their approach on very large models. These
analyses also fall into the first category but the models are
flat in structure compared to our models as they are defined
in terms of boolean equations and do not focus on providing
behavioural models. The analysis of interlocking tables (cf.
control tables) by Haxthausen [4] also falls into the first
category and is supported by automated tools that generate
the models. Cimatti et al. [2] also have had considerable
success using NuSMV but their analysis is focussed on the
implementation descriptions.

VI. CONCLUSION

In this paper we provided an overview of our methodology
that uses the OnTrack tool to provide a graphical front-end
for the automatic generation of formal specifications. The
formal specifications are then separately model checked using
the ProB tool. We described the architecture of a CSP||B
formal specification of a scheme plan giving details of the new
aspects that allow the modelling of multi-directional travel. We
appreciate the absolute necessity to include these aspects in our
CSP||B formal specifications and recognise that the majority
of the related work includes such detail, for example [4].

Our aim by demonstrating its inclusion incrementally was to
show the robustness of the CSP||B architecture and the ease
by which new modelling aspects can be included. Similarly,
additional development of the OnTrack tool-support can also
be achieved incrementally. We are currently completing the
implementation of the covering abstractions and the integration
of the output from ProB model checking with OnTrack in
order to provide round-trip engineering to the graphical editor.
This will mean that the engineer is not required to manipulate
the formal specifications when safety properties are violated.
Instead, the engineer will be able to change a graphical
scheme plan, re-generate the formal specifications and re-run
the model checking in order to verify that the amended scheme
plan preserves safety (i.e., freedom from collision derailment
and run-through).

Heitmeyer in [5] discusses the importance of complete
abstractions. Our abstractions are sound. It is future theoretical
work to investigate if completeness can be established.

ACKNOWLEDGMENT

Thanks to S. Chadwick and D. Taylor from the company
Invensys Rail for their support and encouraging feedback.

REFERENCES

[1] J-R. Abrial. The B-Book: Assigning Programs to Meanings. CUP, 1996.
[2] A. Cimatti, R. Corvino, A. Lazzaro, I. Narasamdya, T. Rizzo, M. Roveri,

A. Sanseviero, and A. Tchaltsev. Formal verification and validation of
ERTMS industrial railway train spacing system. In CAV, pages 378–393.
Springer, 2012.

[3] A. Ferrari, G. Magnani, D. Grasso, and A. Fantechi. Model checking
interlocking control tables. In FORMS/FORMAT, pages 107–115, 2010.

[4] A. Haxthausen. Automated generation of safety requirements from
railway interlocking tables. In ISoLA (2), volume 7610 of Lecture Notes
in Computer Science, pages 261–275, 2012.

[5] C. L. Heitmeyer, J. Kirby, B. G. Labaw, M. Archer, and R. Bharadwaj.
Using abstraction and model checking to detect safety violations in
requirements specifications. IEEE Trans. Software Eng., 24(11):927–
948, 1998.

[6] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall,
1985.

[7] P. James, F. Moller, H. N. Nguyen, M. Roggenbach, S. Schneider, and
H. Treharne. Techniques for modelling and verifying large scale railway
interlockings (under consideration), 2013.

[8] P. James, M. Trumble, H. Treharne, M. Roggenbach, and S. Schneider.
OnTrack: An open tooling environment for railway verification. In
Proceedings of NFM’13: Fifth NASA Formal Methods Symposium, 2013.

[9] F. Moller, H. N. Nguyen, M. Roggenbach, S. Schneider, and H. Tre-
harne. Combining event-based and state-based modelling for railway
verification. Technical Report CS-12-02, University of Surrey, 2012.

19

[10] F. Moller, H. N. Nguyen, M. Roggenbach, S. Schneider, and H. Treharne.
Defining and model checking abstractions of complex railway models
using CSP‖B. In Proceedings of HVC’12: Eighth Haifa Verification
Conference (to appear in Springer Lecture Notes in Computer Science),
page 16 pages, 2012.

[11] F. Moller, H. N. Nguyen, M. Roggenbach, S. Schneider, and H Tre-
harne. Railway modelling in CSP‖B: The double junction case study.
Electronic Communications of the EASST, 53:15 pages, 2012.

[12] F. Moller, H. N. Nguyen, M. Roggenbach, S. Schneider, and H. Treharne.
Using ProB and CSP‖B for railway modelling. In Proceedings of
IFM’12 and ABZ 2012 Posters and Tool demos session, pages 31–35,
2012.

[13] C. Morgan. Of wp and CSP. Beauty is our business: a birthday salute
to E. W. Dijkstra, pages 319–326, 1990.

[14] F. Moller P. James, H. N. Nguyen, M. Roggenbach, S. Schneider, and
H. Treharne. On modelling and verifying railway interlockings: Tracking
train lengths. Technical Report CS-13-03, University of Surrey, 2012.

[15] The ProB animator and model checker (ProB 1.3.6-final).
http://www.stups.uni-duesseldorf.de/ProB. Accessed:
01/05/2013.

[16] S. Schneider and H. Treharne. CSP theorems for communicating B
machines. Formal Asp. Comput., 17(4):390–422, 2005.

[17] K. Winter. Optimising ordering strategies for symbolic model checking
of railway interlockings. In ISoLA (2), volume 7610 of Lecture Notes
in Computer Science, pages 246–260, 2012.

[18] K. Winter and N.J. Robinson. Modelling large railway interlockings and
model checking small ones. In Proceedings of the 26th Australasian
computer science conference-Volume 16, pages 309–316. Australian
Computer Society, Inc., 2003.

20

Applied Bounded Model Checking for Interlocking
System Designs

Anne E. Haxthausen
DTU Compute

Technical University of Denmark
Email: aeha@dtu.dk

Jan Peleska
Department of Mathematics and Computer Science

Universität Bremen, Germany
Email:jp@informatik.uni-bremen.de

Ralf Pinger
Siemens AG, Braunschweig, Germany

Email:Ralf.pinger@siemens.com

Abstract—In this article the verification and validation of
interlocking systems is investigated. Reviewing both geographical
and route-related interlocking, the verification objectives can
be structured from a perspective of computer science into (1)
verification of static semantics, and (2) verification of behavioural
(operational) semantics. The former checks that the plant model
– that is, the software components reflecting the physical compo-
nents of the interlocking system – has been set up in an adequate
way. The latter investigates trains moving through the network,
with the objective to uncover potential safety violations. From
a formal methods perspective, these verification objectives can
be approached by theorem proving, global, or bounded model
checking. This article explains the techniques for application
of bounded model checking techniques, and discusses their
advantages in comparison to the alternative approaches.

Index Terms—railway control systems, interlocking systems,
formal methods, bounded model checking, temporal logic

I. INTRODUCTION

Formal methods have been applied for years in the railway
domain and reached a level that enables the compilation of the
body of knowledge in the form of an engineering handbook (in
the style of [1]), recording case-based “best practices”. To this
end, this paper contributes knowledge concerning verification
and validation (V&V) of interlocking system designs. First we
outline the state-of-the-art of V&V tasks and formal methods
for performing them. Then techniques for applying one of
these methods (bounded model checking) are explained in
more detail.

A. Interlocking V&V – State-of-the-art

Software controlling interlocking systems has to be verified
on two levels. The first level focuses on the correctness
of configuration data specifying how the topology of the
railway network controlled by the interlocking system is
reflected by re-usable software objects, their interfaces, and
their instantiation data. Correctness of the configuration data
ensures that the software has adequate control over the electro-
mechanical components of the physical interlocking system. In
terms of computer science, this is a check of static semantics.
The second verification level investigates the safety of trains
passing through the controlled network area. The verification
objective is to prove the absence of hazardous situations in
the network, provided that all trains follow the restrictions

(signals, speed limitations) imposed by the interlocking sys-
tem. This corresponds to a property check of the interlocking
systems’ behavioural semantics.

Interlocking systems are designed according to different
paradigms [2, Chapter 4]. Two of the most widely used ones
are (a) geographical interlocking systems and (b) route-based
interlocking systems using interlocking tables. For design type
(a), routes through the railway network can be allocated
dynamically by indicating the starting and destination points
of trains intending to traverse the railway network portion
controlled by the interlocking system under consideration. In
the original technology, electrical relay-based circuits were
applied, whose elements and interconnections where designed
in one-to-one correspondence with those of the physical track
layout. The electric circuit design ensured dynamic identifi-
cation of free routes from starting point to destination, the
locking of points and setting of signals along the route, as well
as on neighbouring track segments for the purpose of flank
protection. In today’s software-controlled electronic interlock-
ing systems, instances of software components “mimic” the
elements of the electric circuit. Typically following the object-
oriented paradigm, different components are developed, each
corresponding to a specific type of physical track element,
such as points, track sections associated with signals, and
others with axle counters or similar devices detecting trains
passing along the track. Similar to connections between elec-
tric circuit elements, instances of these software components
are connected by communication channels reflecting the track
network. The messages passed along these channels carry
requests for route allocation, point switching and locking,
signal settings, and the associated responses acknowledging
or rejecting these requests. The software components are de-
veloped for re-use, so that novel interlocking software designs
can be realised by means of configuration data, specifying
which instances of software components are required, their at-
tribute values, and how their communication channels shall be
connected. The geographical approach to interlocking system
design induces a separate verification and validation (V&V)
step which is called data validation. Its objective is to check
whether the instantiation of software components is complete,
each component is equipped with the correct attribute values,
and whether the channel interconnections are adequate. The
data validation objectives are specified by means of rules,

21

and the rules collection is usually quite extensive (several
hundred), so that manual data validation is a cumbersome,
costly, and error-prone task. Moreover, the addition of new
rules often required expensive extensions of manually pro-
grammed checking software. Data validation investigates only
the static semantics of the network of software components.
A second V&V step is required to check whether the design
will ensure the safety properties required, so that – at least
under certain boundary conditions stating that train engine
drivers have to respect signals and speed restrictions, as far
as not automatically enforced by the underlying technology –
trains moving concurrently through the railway network are
protected against derailing and collisions.

Route-based interlocking (system type (b)) is less flexible
than geographical interlocking, since it fixes all train routes
through the railway network a priori, using route tables
specifying the sequences of track segments to be allocated
for each route. This loss of flexibility is compensated by the
advantage that configuration data is considerably simpler. The
route table is complemented by interlocking tables specifying
the point positions and signal states to be enforced when
allocating routes. The interlocking tables fix these positions
both for the track elements which are part of the actual route,
and the elements which are outside the route, but contribute
to its safety by guaranteeing flank protection. Finally, a route
conflict table identifies the routes which may never be simul-
taneously allocated, due to utilisation of common track ele-
ments [3]. Route-related interlocking offers simpler means for
data validation, since the control software does not need to to
be based on communicating software instances related to each
track element. Instead, a control algorithm monitors a dynamic
plant model (each track element with its free/occupied status,
and the locked/unlocked states of points). Route allocation
decisions can made by means of these element states and
their compatibility with the interlocking table restrictions. Data
validation is only concerned with choosing the proper software
components (e.g., the correct types of signals and points),
and their consistency with the physical network. V&V of the
dynamic behaviour now has the objective to verify both the
correctness of the control algorithm and the correctness of the
interlocking tables. Even in presence of a completely correct
algorithm, a safety violation may occur if these tables are not
adequately specified; e.g., if a conflict between two routes has
not been properly documented in the tables. As a consequence,
the data validation activities concerning static semantics of the
software components is simpler and less critical than in the
case of geographical interlocking systems, but only V&V of
the dynamic behaviour can verify the crucial safety properties
of the interlocking tables.

B. State-of-the-art Formal Methods for Interlocking V&V

The European CENELEC standards applicable for the de-
velopment of software in railway control systems require
the application of formal specification and design models
and formalised, justified V&V activities to be performed for
software of the highest criticality, as applicable for interlocking

systems [4]. The objective of such formalizations is to ensure
that potential safety breaches caused by invalid configuration
data or erroneous control algorithms can be identified in a
systematic way. If formal methods application can also be
“mechanised” by means of suitable tools, it contributes to
the efficiency of V&V for interlocking system designs in a
considerable way. As of today, three methods are applied for
formal interlocking V&V: formal verification by theorem prov-
ing, by global model checking, or by bounded model checking
(BMC). Each of these methods depends on the existence of
models describing the static semantics of the interlocking
systems, and their dynamic behaviour in combination with
trains traversing the railway network.

While – just like theorem proving – global model checking
may result in complete correctness proofs of data correctness
and safety properties, experience (see for instance [5]) has
shown that complex interlocking systems cannot be verified
by means of global model checking, since this would lead to
state explosions for all but the simplest interlocking systems.
In contrast to this, bounded model checking investigates model
properties in the vicinity of a given state only, and can
therefore be applied to models of considerable size. In this
contribution we describe first how BMC is applied to data
validation. This is performed by checking the compliance of
the data with correctness rules that may be expressed formally
by some temporal logic. Next, for the verification of safety
properties, BMC can be combined with inductive reasoning,
and again, this results in a global proof of the desired safety
properties. The bounded model checking techniques to be
applied are sufficiently mature today to be applied in an
industrial context.

C. BMC as Best Practice for Interlocking V&V

The bounded model checking solution to data validation is
explained for geographical interlocking systems, since there
the requirements for this validation are far more complex than
for route-related interlocking. We describe how the software
components instantiated according to the given configuration
data can be formalised by means of a Kripke Structure whose
state space is given by the software component instances,
where the transition relation is induced by the communication
channels connecting neighbouring objects, and the labelling
function specifies the attributes associated with each instance.
It is explained how typical pattern of data validation rules
can be expressed by means of Linear Temporal Logic (LTL)
including existential quantification of specific variable values.
A trace of states fulfilling such a formula identifies a witness
for a violation of the validation rule. Application of LTL model
checking allows for easy extendability of the rule base, by
simply adding new LTL formulas representing violations of
the new rules. No further software extensions are required,
as long as a sufficiently powerful bounded model checker
for LTL exists. We further describe how the BMC approach
can be rightfully applied, because each data validation rule
only applies to a finite trace through the Kripke structure
(while LTL property checking in general refers to infinite

22

computations). A bounded LTL property checking algorithm
is sketched which can be efficiently applied for performing the
data validation activities.

In [6] we have described a formal, model-driven method for
efficient development and verification of product lines of re-
configurable route-related interlocking systems. This method
is based on many years of research of which the most recent
publications include [3] and [7], [8]. According to this method
the development and verification of an interlocking system
should be made in a number of steps including the following
ones: (1) Specify application-specific parameters in a domain-
specific railway language, and (2) from the domain-specific
specification, generate a formal, behavioural model of the
interlocking system and formal specification of the required
safety properties. This generation should be fully automated
by tools developed for the purpose. For this setting we describe
how BMC may be applied in combination with inductive
reasoning, in order to verify global safety properties of the
interlocking system software and configuration data generated
from these models. This combination of BMC and induction
is well-established today in many domains, and it is known to
scale up for complex “real-world” applications.

D. Related Work

An overview of trends in formal methods applications to
railway signalling can be found in [9], [10]. Many other
research groups have been using model-checking for the ver-
ification of interlocking systems. In [5] a systematic study of
applicability bounds of the symbolic model-checker NuSMV
and the explicit model checker SPIN showed that these popular
model checkers could only verify small railway yards. Several
domain-specific techniques to push the applicability bounds
for model checking interlocking systems have been suggested.
Here we will just mention some of the most recent ones. In
[11] Winter pushes the applicability bounds of symbolic model
checking (NUSMV) by optimizing the ordering strategies for
variables and transitions using domain knowledge about the
track layout. Fantechi suggests in [12] to exploit a distributed
modelling of geographical interlocking systems and break the
verification task into smaller tasks that can be distributed
to multiple processors such that they can be verified in
parallel. In [13], it is suggested to reduce the state space using
abstraction techniques reducing the number of track sections
and the number of trains.

For the alternative approach to interlocking V&V based on
theorem proving, the B-Method and its variants, such as Event-
B, seem to be the formal methods most strongly favoured for
railway control applications in Europe. The formal verifica-
tion of behavioural properties is described, and the methods’
applicability on an industrial scale has been established, for
example, in [14]. In [15], [16], the application of Event-B
to data validation is described. Further verification approaches
using theorem proving have been based on the RAISE method,
as described in [17].

An introduction into LTL can be found in [18]. The exis-
tential quantification operator for LTL, which plays a crucial

role in our concept of automated data validation, has been
originally introduced in [19]. Its adaptation to finite trace
semantics has been performed by the authors. The original
semantics and algorithms for verifying LTL formulas against
finite trace segments have been devised in [20], [21]. On these
finite segments only a subclass of LTL formulas can be veri-
fied, this class has been identified in [22]. Fairness properties,
for example, which can be expressed in the complete LTL
with infinite computations as models, are not part of this
class. Our data validation properties, however, as well as the
safety properties to be fulfilled by the behavioural interlocking
system semantics, are all part of the so-called Safety LTL
subset which is expressible on finite trace segments.

E. Paper Overview

Sections II and III describe our methods for data validation
and for verifying system safety, respectively. In Section IV,
the presented methods are discussed.

II. DATA VALIDATION

A. Kripke Structure Encodings of Static Plant Model

As sketched above, the software controlling geographical
interlocking systems consists of instances communicating over
channels, each instance representing a physical track element
in the plant model. A subset of these channels – called primary
channels in the following – reflect the physical interconnec-
tion between neighbouring track elements which are part of
possible routes, to be dynamically allocated when a request
for traversal from some starting point to a destination is given
(Fig. 1). Other channels – called secondary channels – connect
certain elements s1 to others s2, such that s1 and s2 are never
neighbouring elements on a route, but s2 may offer flank
protection to s1, when some route including s1 should be
allocated. Since geographical interlocking is based on request
and response messages, each channel for sending request
messages from some instance s1 connected to an instance
s2 is associated with a “response channel” from s2 to s1.
Main channels are subsequently denoted by variable symbols
a, b, c, d, while auxiliary channels are denoted by e, f, g, h.

All software instances are associated with a unique id.
Depending on the track element type they are representing
in the plant model, software instances carry an element type
t. Depending on the type, a list of further attributes a1, . . . , ak
may be defined for each software instance. By using a default
value 0 for attributes that are not used for a certain component
type, each element can be associated with the same complete
list of attributes, where the ones which are not applicable are
set to 0. Each valuation of a channel variable contains either a
default value 0, meaning “no connection on this channel”, or
the instance identification id > 0 of the destination instance
of the channel.

We will now formalise the static design of geograph-
ical interlocking systems as a Kripke Structure K =
(S, S0, R, L,AP), with state space S, set of initial states
S0 ⊆ S, transition relation R ⊆ S × S and labelling
function L : S → 2AP , where AP is a set of atomic

23

1

2

3

11

21
12

22

32

3

2

1

32

22

12

21

11

1

2

13

23

24

13

23

24

a a

c

b

a

b a

b

a

b

a

e

a

b

b b

a

a

a

a

b

b

d

Fig. 1. Physical layout, associated software instances and channel connec-
tions.

propositions and 2AP denotes its power set [18]. To this
end, define a set V of variable names as introduced above,
V = {id, t, a, b, c, d, e, f, g, h, a1, . . . , ak}. The state space S
consists of one valuation function s : V → N0 for each
software component. Each function maps the variables to
integers identifying the associated software component (id is
mapped to its unique id, t to its type, etc.). The set of initial
states S0 is defined to be the set of all states S. This allows
us to start data validations at arbitrary track elements. The
transition relation R defines each instance s2 reachable from
some instance s1 via any of the channels a, . . . , h to be a
possible post-state of s1.

R = {(s1, s2) | s1(v) = s2(id) ∧ v ∈ {a, . . . , h}}
The set of atomic propositions AP is defined as the col-

lection of all propositions stating equality of some attribute
v ∈ V to one of its possible values, AP = {v = ξ | v ∈
V ∧ ξ ∈ N0}. The labelling function L maps each state s
to the set L(s) of propositions which hold true in s, that is,
∀s ∈ S : L(s) = {v = s(v) | v ∈ V }.

Now the violation of any data validation rule may be defined
as a LTL formula specifying witnesses of such an unwanted
sequence of neighbouring elements. This will be illustrated in
the following by a collection of validation examples.

B. LTL Syntax

The LTL formulas specifying witnesses for rule violations
use symbols from V as free variables. The atomic propositions
involved may consist of arithmetic expressions and compari-
son operators =, <,>,≤,≥, 6=. The valid LTL formulas are
constructed according to the following rules.
• Every atomic proposition is a LTL formula.
• If ϕ,ψ are LTL formulas, then1 ¬ϕ, φ∧ψ, φ∨ψ, (∃b :
ϕ), Fϕ, Gϕ, Xϕ, (ϕUψ) are LTL formulas. It is
assumed that bound variable symbol b is not contained
in V .

1We do not need to consider the weak until operator W, and the release
operator R.

C. Bounded Trace Semantics for LTL

The semantic rules for evaluating LTL formulas on finite
trace segments si.si+1 . . . sk are specified using notation 〈ϕ〉ki .
The recursive rules for evaluating the truth value of 〈ϕ〉ki
can be directly transformed into an algorithm unrolling 〈ϕ〉ki
into a proposition no longer involving any temporal operators
(F,G,X,U), but referring to variable valuations in states
si, si+1 . . . , sk and Boolean operators ¬,∧,∨ only. Observe
that we omit the semantics for G here, because our witnesses
violating data rules are always represented by finite trace
segments si.si+1 . . . sk without loops, whereas Gϕ only holds
true if the trace segment has a lasso shape, where previous
state on the segment is re-visited, thereby creating a cycle.
The BMC semantics of G is discussed in detail in [20], [21].

The remaining transformation rules applicable for data
validation are (symbols p denote atomic propositions)

〈ϕ〉ki = false iff i > k
〈p〉ki iff p[si(v)/v | v ∈ free(p)] Note that bound(p) = ∅
〈¬ϕ〉ki iff 〈ϕ〉ki is false
〈ϕ ∧ ψ〉ki iff 〈ϕ〉ki and 〈ψ〉ki are true
〈ϕ ∨ ψ〉ki iff 〈ϕ〉ki or 〈ψ〉ki are true
〈(∃b : ϕ)〉ki ≡ 〈ϕ〉ki ∧

∧k−1
j=i (sj(b) = sj+1(b))

Note that b occurs free in RHS formula
and extends domain of sj , sj+1, . . . , sk by b

〈ϕUψ〉ki ≡ 〈ψ〉ki ∨ (〈ϕ〉ki ∧ 〈ϕ[b′/b | b ∈ bound(ϕ)]Uψ〉ki+1)
〈Xϕ〉ki ≡ 〈ϕ〉ki+1

〈Fϕ〉ki ≡
∨k

j=i〈ϕ〉kj

a) Example: Consider the BMC evaluation of property
(∃b : y = b ∧ X(y = b + 1))U(x > 10) on trace segment
s0.s1.s2, that is 〈(∃b : y = b ∧X(y = b + 1))U(x > 10)〉20.
Applying the rules above, this is unrolled to

〈(∃b : y = b ∧X(y = b+ 1))U(x > 10)〉20 ≡
〈(x > 10)〉20 ∨
(〈(∃b : y = b ∧X(y = b+ 1))〉20 ∧
〈(∃b′ : y = b′ ∧X(y = b′ + 1))U(x > 10)〉21) ≡
(s0(x) > 10) ∨
(〈(y = b) ∧X(y = b+ 1))〉20 ∧∧1

j=0 (sj(b) = sj+1(b)) ∧
〈(∃b′ : y = b′ ∧X(y = b′ + 1))U(x > 10)〉21) ≡
(s0(x) > 10) ∨
((s0(y) = s0(b)) ∧ (s1(y) = s1(b) + 1)) ∧∧1

j=0 (sj(b) = sj+1(b)) ∧
((s1(x) > 10) ∨
(s1(y) = s1(b′) ∧ s2(y) = s2(b′) + 1) ∧ (s1(b′) = s2(b′)) ∧
〈(∃b′′ : y = b′′ ∧X(y = b′′ + 1))U(x > 10)〉22) ≡
(s0(x) > 10) ∨
((s0(y) = s0(b)) ∧ (s1(y) = s1(b) + 1)) ∧∧1

j=0 (sj(b) = sj+1(b)) ∧
((s1(x) > 10) ∨
((s1(y) = s1(b′)) ∧ (s2(y) = s2(b′) + 1) ∧ (s1(b′) = s2(b′)) ∧
((s2(x) > 10) ∨ ((s2(y) = s2(b′′)) ∧ false)))

24

D. Applications
We will now describe several examples illustrating the

expressiveness of LTL for the verification of data validation
rules.

b) Example: The simplest validation rules state that
instances representing elements of a certain type t = τ must
have certain attributes with values in a specific range, such as
ai ∈ [x0, x1]. A violation of this property is readily expressed
by LTL formula F(t = τ ∧ (ai < x0 ∨ x1 < ai)).

c) Example: The following rule checks the correctness
of channel connections. “If there exists a channel from s1 to
s2, there must exist a channel in the reversed direction”. A
violation of this rule can be specified in natural language as
“There exists an instance s1 which is not the auxiliary initial
state, so that s1 is connected to some instance s2, but all
channels emanating from s2 lead to instances different from
s1”. In LTL this is expressed as

F(∃i : id = i ∧ id > 0 ∧X(a 6= i ∧ b 6= i ∧ . . . ∧ h 6= i))

A witness for such a rule violation reaches an element s
with positive id (so it does not equal s0) and at least one
of its reachable neighbours (which, by definition of R, are
only reachable if there is a connecting channel from s to this
neighbour) has no channel with destination s.

d) Example: The following rule pattern frequently occurs
when checking configuration data with respect to software
component instances representing illegal sequences of track
elements along a route. “Following a track element of type
τ1 along its a-channel, and only regarding primary channel
connections, an element of type τ2 must occur, before an
element of type τ3 is found”. The violation of this rule is
specified by “Find a track element of type τ1 and follow it
along its a-channel, so that only elements of type t 6= τ2 may
be found along its primary channel directions, until an element
of type τ3 is encountered”.

F(t = τ1 ∧ ∃x : (a = x ∧X(id = x ∧ ((t 6= τ2 ∧
∃y : ((a = y ∨ b = y ∨ c = y ∨ d = y) ∧X(id = y)))

U(t = τ3)))))

III. VERIFICATION OF SYSTEM SAFETY

This section describes our method for formally verifying
safety of an interlocking system.

A. Formalization of the Verification Task
According to our method, the input of this verification step

should consist of:
• a formal, state-based, behavioural model M of the inter-

locking system and its physical environment and
• safety conditions Φ expressed as a conjunction of propo-

sitions over the state variables in M.
The verification goal is then to verify that the safety conditions
Φ hold for any reachable state in M.

As will be explained below, a model checker tool should
be used for automated verification of such a goal. Therefore,
the model M and the formula Φ should be expressed in the
input language of the chosen model checker.

B. Verification Strategy

There is an established approach to apply bounded model
checking in combination with inductive reasoning, in order
to prove global system properties; this approach is called k-
induction. For proving that safety condition Φ holds for all
reachable states of M, this method proceeds as follows.

1) First prove that Φ∧Ψ holds for the k > 0 first execution
cycles after initialisation, i.e. Φ ∧ Ψ holds for k > 0
successive2 states σ0, . . . , σk−1 of which σ0 is the initial
state of M.

2) Next prove the following for an arbitrary execution
sequence of k+1 successive states σt, . . . , σt+k of which
the first σt is an arbitrary state (reachable or not from
the initial state σ0): if Φ ∧Ψ holds in the k first states
σt, . . . , σt+k−1, then Φ∧Ψ must also hold for the k+1st

state σt+k.
Here Ψ is an auxiliary property that holds for reachable states.
(Note that Ψ is simultaneously proven by the given induction
principle.) The proofs of the base case and the induction
step should be performed by a bounded model checker tool.
An example of such a tool is described in [23]. This tool
treats the two proof obligations by exploring corresponding
propositional satisfiable problems and solving these by a SAT
solver. Note that the induction steps argue over an execution
sequence of k+1 states of which the first state, σt, may be
unreachable, although it would have been sufficient only to
consider sequences for which σt is reachable. For sequences
starting at an unreachable state, the induction step may fail and
the property checker produces a false negative. To avoid this,
the desired property Φ is strengthened with auxiliary property
Ψ that is false for those unreachable states, σt, for which the
induction step would otherwise fail.

S22

G24.2

W118

W100

TRAMWAY MAIN ROUTES:
 1: S20−G21 (NORTH−SOUTH)
 3: S21−G23 (SOUTH−NORTH)

ROUTE 4: S21−G25

ROUTE 5: S22−G23

ROUTE 2:
S20−G25

ROUTE 6:
S22−G21

ROUTE 3
S21−G23

G22.1

G22.0

G22.3

G25.0 G25.1

G23.1

G23.0

G21.1

G21.0

S20

S21

G24.0G24.1

G24.3

G22.2

S20−G21
ROUTE 1:

G20.0

G20.1

G20.2 G20.3

W102

TRAM MAINTENANCE SITE

Fig. 2. A tramway network.

2Two states σi and σi+1 are successive, if there is a transition from σi to
σi+1 according to M.

25

C. Case Study

A reference publication for this verification technique has
been published in [23]. It describes a real-world route-related
tramway control system. For the network in Figure 2, the
model of the tramway control system was verified to be safe,
using k-induction. The safety conditions Φ was a conjunction
of 15 conditions ensuring no collisions and no derailments
of trams, and the auxiliary condition Ψ was a conjunction of
conditions expressing state relations needed as assumptions
in the induction step, in order to rule out unreachable states
that would have given rise to false negatives otherwise. It
turned out that a value of k = 3 sufficed to carry out the
induction. The proofs of the base case and the induction step
were performed by a bounded model checker, which used 392
seconds to perform the proofs. For more details about the case
study, see e.g. [23], [3].

IV. CONCLUSION

In this article the application of bounded model checking
for verification and validation of interlocking systems has been
described. In contrast to global model checking which usually
leads to state space explosions when applied to complex
interlocking systems, bounded model checking allows for
application in large and complex interlocking system layouts.
It has been shown how the technique can be applied on two
levels. First, in the form of LTL property checking, for the
purpose of configuration data validation. Next, in combination
with inductive reasoning, for the purpose of verifying safety
properties for the dynamic behaviour of trains traversing the
track network. Tool applications and measurements show that
both application scenarios scale up for application in an
industrial context.

Acknowledgments: The first author has been supported by
the RobustRailS project funded by the Danish Council for
Strategic Research. The second and third authors have been
supported by the openETCS project funded by the European
ITEA2 organisation.

REFERENCES

[1] “Guide to the software engineering body of knowledge.” [Online].
Available: http://www.computer.org/portal/web/swebok/home

[2] J. Pachl, Railway Operation and Control. VTD Rail Publishing, January
2002.

[3] A. E. Haxthausen, J. Peleska, and S. Kinder, “A Formal Approach for
the Construction and Verification of Railway Control Systems,” Formal
Aspects of Computing, vol. 23, no. 2, pp. 191–219, 2011, the article is
also available electronically on SpringerLink: http://www.springerlink.
com/openurl.asp?genre=article&id=doi:10.1007/s00165-009-0143-6.

[4] European Committee for Electrotechnical Standardization, EN
50128:2011 – Railway applications – Communications, signalling
and processing systems – Software for railway control and protection
systems. Brussels: CENELEC, 2011.

[5] A. Ferrari, G. Magnani, D. Grasso, and A. Fantechi, “Model Check-
ing Interlocking Control Tables,” in Proceedings of Formal Meth-
ods for Automation and Safety in Railway and Automotive Systems
(FORMS/FORMAT 2010)), Braunschweig, Germany, E. Schnieder and
G. Tarnai, Eds. Springer, 2011.

[6] A. E. Haxthausen and J. Peleska, “Efficient Development and Verifica-
tion of Safe Railway Control Software,” in Railways: Types, Design and
Safety Issues. Nova Science Publishers, Inc., 2013, pp. 127–148.

[7] A. E. Haxthausen, “Towards a Framework for Modelling and Verification
of Relay Interlocking Systems,” in 16th Monterey Workshop: Modelling,
Development and Verification of Adaptive Systems: the Grand Challenge
for Robust Software, ser. Lecture Notes in Computer Science, no. 6662.
Springer, 2011, pp. 176–192.

[8] ——, “Automated Generation of Safety Requirements from Railway
Interlocking Tables,” in 5th International Symposium On Leveraging Ap-
plications of Formal Methods, Verification and Validation (ISOLA’2012),
Part II, ser. Lecture Notes in Computer Science, no. 7610. Springer,
2012, pp. 261–275.

[9] D. Bjørner, “New Results and Current Trends in Formal Techniques
for the Development of Software for Transportation Systems,” in Pro-
ceedings of the Symposium on Formal Methods for Railway Operation
and Control Systems (FORMS’2003), Budapest/Hungary. L’Harmattan
Hongrie, May 15-16 2003.

[10] A. Fantechi, W. Fokkink, and A. Morzenti, “Some Trends in Formal
Methods Applications to Railway Signaling,” in Formal Methods for
Industrial Critical Systems. John Wiley & Sons, Inc., 2012, pp. 61–84.
[Online]. Available: http://dx.doi.org/10.1002/9781118459898.ch4

[11] K. Winter, “Optimising ordering strategies for symbolic model checking
of railway interlockings,” in 5th International Symposium On Lever-
aging Applications of Formal Methods, Verification and Validation
(ISOLA’2012), Part II, ser. Lecture Notes in Computer Science, no.
7610. Springer, 2012, pp. 246–260.

[12] A. Fantechi, “Distributing the Challenge of Model Checking Interlocking
Control Tables,” in Leveraging Applications of Formal Methods,
Verification and Validation. Applications and Case Studies, ser. Lecture
Notes in Computer Science, T. Margaria and B. Steffen, Eds. Springer
Berlin Heidelberg, 2012, vol. 7610, pp. 276–289. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-34032-1 26

[13] F. Moller, H. N. Nguyen, M. Roggenbach, S. Schneider, and H. Treharne,
“Defining and Model Checking Abstractions of Complex Railway Mod-
els using CSP‖B,” in The 8th Haifa Verification Conference, November,
2012, November to appear.

[14] P. Behm, P. Benoit, A. Faivre, and J.-M. Meynadier, “Météor: A
successful application of b in a large project,” in FM’99 – Formal
Methods, ser. Lecture Notes in Computer Science, J. Wing, J. Woodcock,
and J. Davies, Eds., vol. 1708. Berlin Heidelberg: Springer, 1999, pp.
369–387.

[15] M. Clabaut, C. Metayer, and E. Morand, “4B-2 formal data
validation – formal techniques applied to verification of data
properties,” in Embedded Real Time Software and Systems ERTS, 2010.
[Online]. Available: http://web1.see.asso.fr/erts2010/Site/0ANDGY78/
Fichier/PAPIERS%20ERTS%202010%202/ERTS2010 0158 final.pdf

[16] T. Lecomte, L. Burdy, and M. Leuschel, “Formally checking large data
sets in the railways,” CoRR, vol. abs/1210.6815, 2012.

[17] A. E. Haxthausen and J. Peleska, “Formal Development and Verifica-
tion of a Distributed Railway Control System,” IEEE Transaction on
Software Engineering, vol. 26, no. 8, pp. 687–701, 2000.

[18] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking. Cam-
bridge, Massachusetts: The MIT Press, 1999.

[19] Z. Manna and A. Pnueli, The Temporal Logic of Reactive and Concur-
rent Systems. Springer-Verlag, 1992.

[20] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, “Symbolic model
checking without bdds,” in Proceedings of the 5th International
Conference on Tools and Algorithms for Construction and Analysis
of Systems, ser. TACAS ’99. London, UK, UK: Springer-Verlag,
1999, pp. 193–207. [Online]. Available: http://dl.acm.org/citation.cfm?
id=646483.691738

[21] A. Biere, K. Heljanko, T. Junttila, T. Latvala, and V. Schuppan, “Linear
encodings of bounded ltl model checking,” Logical Methods in Com-
puter Science, vol. 2, no. 5, pp. 1–64, 2006.

[22] A. P. Sistla, “Liveness and fairness in temporal logic,” Formal Aspects
of Computing, vol. 6, no. 5, pp. 495–512, 1994.

[23] R. Drechsler and D. Große, “System level validation using formal
techniques,” IEE Proc.-Comput. Digit. Tech., vol. 152, no. 3, pp. 393–
406, May 2005.

26

Data Formal Validation of Railway Safety-Related
Systems: Implementing the OVADO Tool

Robert Abo
Systerel

Les Portes de l’Arbois - Bâtiment A
1090 rue Descartes

13857 Aix-en-Provence Cedex 3
France

Email: robert.abo@systerel.fr

Laurent Voisin
Systerel

Les Portes de l’Arbois - Bâtiment A
1090 rue Descartes

13857 Aix-en-Provence Cedex 3
France

Email: laurent.voisin@systerel.fr

Abstract—This paper describes the process of data validation
for railway safety-critical computer-based systems implemented
by Systerel. More precisely, it describes the validation of data
against their requirements, but it does not address another
important task performed as part of data validation which is that
data used by the systems really corresponds to the used physical
railway. Standards, especially CENELEC EN 50128, recommend
the use of formal methods for designing such systems. We use
the OVADO formal tool to perform data validation. For that,
we model data requirements by using the specification language
of the B method, namely the B language, before using OVADO
that automatically checks that data meet requirements. This tool
integrates two independent components that must give the same
results when they are applied on the same data, according to
the principle of redundancy. An example of data validation for
a CBTC system is also given.

I. INTRODUCTION

Saying that present-day railway systems, moreover as
most industrial systems (objects of our everyday life, cars,
planes, plants, nuclear power stations, weapons, etc.) imple-
ment computer-based components is obvious, almost a com-
monplace, as computer-science controls our modern industries.
But it is not trite to note that some of them implement a safety
function, so that their malfunction or failure may have dramatic
consequences on them and their users. This is the reason
why their development requires a lot of rigor and discipline,
leading to its own branch of computing known as safeware [1].
Otherwise, each electrical system is characterized by a Safety
Integrity Level (SIL) which, as defined in IEC 61508 standard
[2], denotes the risks involved in the system application by
using a scale of 1 (the lowest risks) to 4 (the highest). Failures
of SIL 3 or SIL 4 systems, aka safety-critical systems, may
cause human casualties, severe damages or loss of expensive
equipments and, also, environmental harms.

In Europe, the development of railway systems is governed
by the legislation in force in a specific country and by
international CENELEC1 standards, which define objectives
in terms of safety and security and the methods to reach them.
These standards, which are all variations of IEC 61508[2], are:
EN 50126[3] (for the methods to implement to demonstrate

1The European Committee for Electrotechnical Standardization), which is
responsible for European standardization in the area of electrical engineering.

RAMS2 of applications), EN 50128[4] (dedicated to the safety
of software components3), and EN 50129[5] (devoted to the
safety of hardware components). They are completed by EN
50159 dedicated to safety-related communications in closed
(part 1) and in open transmission systems (part 2) [6].

In this paper, we focus on Communication-Based Train
Control (CBTC) systems i.e. railway signalling systems
that use telecommunications between trains and trackside
equipment[7]. They aim at safely managing trains on an
entire line, while absorbing the passenger traffic in particular
during peak hours. There may be some differences depending
on the technologies implemented by the different suppliers.
But, basically, as illustrated in Figure 1, a railway signalling
system has a pyramidal structure made of five layers. In the
first one, at the base of its structure, we find the trackside
equipment (i.e. rails, balises, points, signals, etc.). Just above,
the equipments in charge of detecting a train on the track, i.e.
track circuits, mainly. The first of the higher layers is composed
of Interlocking (IXL) which is in charge of safely establishing
and monitoring the train routes without any risks of collisions,
catching up, and other traffic conflicts, for example with cars
at crossings. Interlocking is SIL 4. The layer above is the
Automatic Train Control (ATC) whose purpose is running a
train while protecting it from dangerous situations. For that,
it is composed of Automatic Train Protection (ATP) in charge
of supervizing the train speed (ATP is SIL 4), and Automatic
Train Operation (ATO) which automatically drives the train.
A Maintenance Aid System (MAS) complements this layer.
Finally, the Automatic Train Supervision (ATS) heads up the
whole structure, and allows operators to remotely control
railway traffic on an entire line.

Besides, many safety-related systems as CBTCs are wholly
or partially composed of generic software elements, which are
adapted to a particular application by means of application
algorithms and/or configuration data ([4], Section 8). These
static data describe the geographical arrangement of equip-
ments and capability of the rail infrastructure and, therefore,
they never change, contrarily to dynamic data which describe
the current state of equipment along the track. Each software

2RAMS stands for Reliability, Availability, Maintenability and Safety.
3This standard defines the notion of Software SIL inherited from that of IEC

61508 with a first level, SSIL 0, which denotes a non-safety-related software
component.

27

Train detection

Interlocking (IXL)

ATC
(ATP, ATO, MAS)

Trackside equipment

ATS

Fig. 1. The pyramidal structure of a railway signalling system

component of a CBTC, in particular the most critical ones,
loads at runtime static data to perform its aim. This is why
static configuration data plays a vital role in ensuring the
safe operations of trains. Therefore, as hardware and software
components, it needs to be validated. This is usually done in
the earliest stages of a CBTC’s life cycle by a dedicated team.
In addition, for safety-critical software components including
IXL and ATP, EN 50128 standard “highly recommends” the
use of formal methods for their development process.

We describe here the management of data validation as
it is done by Systerel. The core business of this medium-
sized enterprise, located in Aix-en-Provence, Lyon, Toulouse
and Paris in France, is the development of safety-critical
embedded systems for rail transportation, aeronautics, energy,
etc. It provides an expertise in the use of formal methods
throughout the development cycle of a system, i.e. its design,
its development and its validation4.

This paper is organized as follows. Section I introduces
data validation in the railway sector. Section II outlines its
basics. Section III is entirely dedicated to the OVADO data
validation tool used by Systerel’s to conduct its projects.
Section IV presents a real example of data validation of a
CBTC. Finally, Section V concludes this article.

II. BACKGROUND

In introduction, we have highlighted the need of validating
data for CBTCs. But, what does it exactly mean? In this
section, we define data validation before describing a process
that implements it independently of any CBTC.

A. Definition

When we validate hardware and software components, we
check that they meet their requirements by testing them or by
proving it using formal methods. Similarly, we define data vali-
dation as the process consisting in ensuring that data used by a
safety-critical computer-based system conforms to a collection
of requirements which define its usefulness, correctness and
completeness for this system. In other words, data validation
consists in checking that data meet the requirements defined
for this system.

4For further information, please visit http://www.systerel.fr

B. A semiautomatic process based on the B method

In the railway sector, data validation has been done entirely
manually for a long time, leading to a tricky, fastidious, error-
prone and long-term activity. For example, the authors note in
[8], that it took more than six months to check that one hundred
thousand data items were in accordance with two hundred
properties representing requirements. Great R&D efforts have
induced the design of industrial practical tools that now allow
the semiautomatisation of data validation. This process is not
fully automatic because, while the validation is automatically
performed by a tool, the requirements still need to be manually
modeled and these models need to be checked by dedicated
engineers. Nevertheless, semiautomatisation has undoutedly
increased the speed and level of confidence of data validation
[8]. As mentioned in Section IV-D, let us note now that the
way of modelling requirements has got a great influence on
the performance of the tool.

On the other hand, known as a success story in software
engineering for the railway sector, the B method is a formal
method designed in the nineties by Jean-Raymond Abrial [9].
Let us briefly recall that software development with B consists
in successively refining the models of a specification until
obtaining an implementation which is automatically translated
into source code. Each refinement step consists in introducing
details in abstract models, and then in proving the consistency
and compliancy of refined models with the abstract ones they
refine. More recently designed, Event-B enlarges the scope of
the B method with the purpose of studying and specifying
whole systems, not only its software components [10]. We use
a subset of the specification language of the B method, namely
the B language5 to model data requirements specified in natural
language. The choice of the B language is explained by the
implementation of B in software engineering for railways, its
ease of use (although models are not always easy to write),
and also its ease of learning. Let us note that a data validation
process relying on Event-B has been also developped [11].
The B method and OVADO were chosen because they are
part of the expertise and know-how of Systerel.Other formal
languages and tools exist: for example, let us quote SCADE
based on the synchronous language Lustre6. This is another
approach of formal data validation which is not described
in this paper. Ontologies for railway systems constitute a
promising R&D axis [12].

C. An iterative process

The principle of data validation is illustrated in Figure 2.
Firstly, high-level data requirements are modelled as predi-
cates in set-theory. These predicates are expressed using the
B language. Secondly, a tool automatically evaluates their
truthfulness (true or false). In these conditions, data falls into
two categories: on the one hand, the correct data that meet
the requirements and for which predicates are true, and on the
other hand the incorrect data that do not meet them and for
which predicates are false.

For the latter, an analysis is performed to determine the
origin of the non-conformity before restarting the process from

5A useful summary of the syntax of the B language can be found at http:
//www.stups.uni-duesseldorf.de/ProB/index.php5/Summary of B Syntax.

6Further information about Lustre or model checking is available at http:
//www-verimag.imag.fr/Synchrone,30?lang=en

28

Data sets

Formal models of
data requirements

Data
Validation

or

CONFORMITY

A collection of high-level data

requirements (compiled in a

Software Requirements Specification)

SwRS
NON-CONFORMITY

...

HUMAN ANALYSIS
(through counter-examples)

1) Correction of data values and/or
2) Correction of data requirements and/or

3) Correction of models...

Fig. 2. Principle of data validation

its beginning. In effect, this is an iterative process in the sense
that it is repeated after corrections are made until all data are
compliant with the requirements. The origin of an error may
be: the value of data itself; the requirements in natural language
that have not been updated; or the model! Because, they can
be wrong too and wrong models may validate faulty data!

Indeed, data validation is a great source of errors7 espe-
cially when requirements are difficult to model8. We must
highlight wrong data by really ensuring that data marked as
correct is really correct. This is why the models of require-
ments need themselves to be validated prior to being able to
validate data. Validating the models of data requirement aims
at ensuring that wrong data are detected.

Its model in
 B-language

A requirement in
natural language

Proofreading
of the model

Tests

1 2 3 4
okok

not ok not ok Model validated!

Fig. 3. Validation of the models

Therefore, the principle of data validation as illustrated in
Figure 2 has to be refined. Modelling requirements is a four-
stage process as illustrated in Figure 3. Stage 1 corresponds to
the design of a model from the specification of a requirement
in natural language (English, French, etc.). Several properties
can be provided to cover a single requirement of the informal
specification, with the purpose of simplifying the model. In
order to reduce the risk of errors previously mentioned, each
model is proofread by a reviewer who is different from the
specifier who has written it, as required by EN 50128 Section 5
and 6 (stage 2). Then, the proofread model is tested by using
a set of deliberately wrong data (stage 3). Again, as required
by EN 50128, the tester is different from the designer who
wrote the model. Moreover, he (or she) can only access the
specification in natural language of the requirement, not the
model under test (black-box testing). If an error is discovered,
the model is corrected and the whole validation cycle, from

7Cuiusvis hominis est errare, nullius nisi insipientis in errore perseverare
i.e. “Any man can make mistakes: nobody but a fool will persist in error
(Cicero, Philippicae XII, ii, 5)

8Let us quote an encountered real example of an indivisible requirement
described in nineteen pages of a document. Its model has five hundred lines
of predicates written in the B language.

the beginning, restarts (return to stage 2). Finally, when no
error is found anymore, the model is approved and thus can
be used to validate data (stage 4).

Proofreading consists in tracking down what we could call
“over-specification” errors (i.e. the model specifies more things
than the informal specification), and “under-specification” er-
rors (i.e. the model specifies less things than the informal
specification). These kinds of errors are usually due to a lack of
understanding of the requirements, repetitions, oversights, non-
updated models after a new release of the informal specifica-
tion, sometimes minor, and so on. Let us add that the designer
is not compelled to follow the proofreader’s comments by
justifying his (her) choice.

Verifying the models aims at checking that they translate
well into the B language a requirement in natural language,
and that the specifier does not make any foolish mistakes.
But, tests are also performed to track tautologies i.e. predicates
which are always true, whatever data is. For example, A, B and
C being some predicates, ((A ∧ B)⇒ C)⇔ (A⇒ (B⇒ C)) is
a tautology. This kind of error is difficult to highlight by
proofreading, this is the reason why wrong data is deliberately
designed in order to render each property false at least once.
If it is impossible that a property becomes false, then this
property is a tautology and it must be corrected.

When completed, stages 2 to 4 produce some deliverables:
the proofreading report, which summarizes the proofreads of
all models; the test report, which aims at doing the same thing
for the tests of models; and, of course, the documentation of the
models which summarizes the models with their description
and justification in natural language, and also a traceability
matrix in order to show that all the informal requirements are
covered by at least one property written in the B language.

Finally, to increase confidence in the results, data validation
is done by using two independent tools that must draw the
same conclusion of data compliancy when they are used to
validate the same data. For data validation done at Systerel,
these tools, PredicateB and ProB, are integrated in the OVADO
platform which is the subject of the next section. To finish this
section, we would like to quote that other data validation tool
exist, such as Alstom’s DTVT not presented in this paper.

III. THE OVADO TOOL

A. Overview

The RATP9 initiated the development of OVADO10, a
formal tool in order to validate static data of the Paris’s metro
line 13 that was being automated.

This tool parses datasets (XML, Excel, text-based, or
binary formats), loads properties and checks compliancy of
data with respect to the loaded properties. The development
of OVADO is now subcontracted to Systerel. It is composed
of two different tools that form the basis of two independent
data validation workflows:

9The Régie Autonome des Transports Parisiens is the firm in charge of the
public transports in Paris, France.

10This acronym stands for Outil de VAlidation de DOnnées which means
“Data Validation Tool” in French.

29

• The PredicateB predicate evaluator is in charge of
checking the truthfulness of predicates modeling data
requirements in the B language as explained in Section
II); and

• ProB11[13], is an animator and model checker for the
B Method. It can be used to check a specification
for range of errors. The constraint-solving capabil-
ities of ProB can also be used for model finding,
deadlock checking and test-case generation. ProB is
currently developed by Michael Leuschel’s team at
the University of Düsseldorf in Germany, while its
commercial support is provided by Formal Mind. Data
and the models of requirements are converted into B
models that are fed to the tool to validate data. This
tool has been used with success on several projects
(Roissy-Charles de Gaulle airport shuttle, Paris line 1,
Barcelona line 9, Algiers line 1, etc.).

Data validation with OVADO is organized as follows. Data
and formal properties of data requirements are fed into the tool.
Properties are modelled as predicates in the B language. The
conformance of the input data with the input requirements is
independently validated by the two validation workflows of
the tool. Each of them produces a validation report for each
analysed property. The results of two reports relating to the
same property must be equal. If not, the model or one of the
tool is likely wrong and must be corrected. Let us add that
OVADO has been applied with suceess to data validation of
Paris lines 1, 3, 5, 13, and also Lyon’s line B, etc.

B. Architecture

As shown in Figure 4, OVADO is a generic platform
combining PredicateB and ProB, and can be completed by
specific project plugins, such as the adaptation of OVADO for
the acquisition of data described in a customer-specific format.
Thus OVADO is able to be tailored to specific projects of
industrials. OVADO can be used on a computer equiped with
Microsoft Windows or Linux, and Java 6.

Workflow #1: PredicateB

OVADO

models in
B-language

ECLIPSE

evatuator

Data sets
(XML, Excel,
binary, etc.)

Evaluator of predicates abstract syntax tree

Excel parsorXML parsor ADA parsor

Plugin for ligne X Plugin for ligne Y...

Workflow #2: ProB

converter
B to Prolog

converter

XML parsor

Excel parsor

ADA parsor

PredicateB
validation report

ProB
validation report

Fig. 4. Architecture of OVADO

C. User interface

The user interface of OVADO is illustrated in Figure 5 that
shows the three main parts needed to write the models, perform
data validation and analyse the results. Their organization

11The ProB website is http://www.stups.uni-duesseldorf.de/ProB/

1

2

3

Fig. 5. The user interface of OVADO

within Eclipse depends entirely on how an engineer wants to
organize his workspace. Part 1 displays the project tree. Part 2
shows different tabs where a designer can specify definitions
and properties as explained in Section IV-B. Finally, Part 3
shows the “project properties” tab that lists all the specific
properties of a system. By right-clicking on one of them, it
is possible to launch its validation on the fly. A tab named
“evaluation progress” shows the progress of the evaluation of
a property. An example of the implementation of OVADO for
validating data of a CBTC is detailled in the next section.

IV. IMPLEMENTING OVADO

This section describes a project conducted by Systerel to
validate the static data of a metro line. All names have been
changed to respect the confidentiality of information.

A. Data

Datasets and models are structured in XML (eXtensible
Markup Language) files. Each requirement is modeled by one
or more properties. The decomposition of requirements in one
or more properties is left to the discretion of a designer.

B. Models

1) Interface constants: The first step of the modelling
activities consists in interfacing data with B constants used
in the models. The following types can be defined to link the
elements of datasets with constants of the properties written
in the B language:

• carrier sets and their subsets;

• scalar data (mostly integers and character strings);

• relations between a scalar type and another scalar type;

• functions from a scalar type to another scalar type;
and

• functions from a scalar type to functions of the previ-
ous type.

Each of them has a name, a predicate that specifies it
(except for carrier sets) and a value, or a set of values, which is

30

the result of a XPath request, or several XPath requests in case
of relations and functions, applied on the XML file defining
real data as presented in Section IV-A.

Carrier sets define the different objects of the datasets
used by a CBTC corresponding to the trackside equipment,
the train detection equipment but also the organisation of
the line according to a one-dimension Cartesian coordinate
system, such as balises, signals, points, track circuits, blocks,
etc. A block is an elementary portion of a railroad track,
which has two extremities. Its origin extremity is at abscissa
0, while the abscissa of its destination extremity corresponds
to its length. We also define four types of zones i.e. collec-
tions of blocks corresponding to four carrier sets: oriented
(t zoneori), non-oriented (t zonenori), with two oriented
extremities (t zone2extrori) and, finally, with two non-
oriented extremities (t zone2extr). Oriented zones have sin-
gularities i.e. oriented extremities, while non-oriented zones
have only extremities.

Scalar sets define constant numbers of the system such as
abscissae, distances, speeds, temporary speed limits, delays,
etc.

Relations and functions specify links between these objects
such as the length of a block, the block where a particular
object is located, its abscissa in millimeters on the block (an
integer), the block which follows the current one in a particular
direction, etc.

2) Definitions: In order to simplify the expression of
properties, several libraries of definitions are defined prior to
the modelling of properties themselves. Please note that these
definitions are quite different from the macros one can define
in a DEFINITIONS clause of a classical B machine, where
syntax and semantics of expressions may lack of rigor. In the B
method, our definitions would rather be declared as ABSTRACT
CONSTANTS. A definition has a unique name, a description in
natural language and an expression in the B language. They
ease writing and understanding of properties, and checking
them when proofreading.

For the project under consideration, a library of useful
definitions was used to model graph functions. In effect, a
railway network is represented by an oriented graph. Thus, the
following r zone2extr extr relation gives the extremities of
a zone with two extremities:

dom({zone, extr, numabsextr |
zone 7→ numabsextr :
t zone2extr /
(f TabZones2Extr NumAbsExtr1
∪ f TabZones2Extr NumAbsExtr2) ∧

extr 7→ numabsextr :
t extremite / f TabExtremities NumAbsolu})

And, for each extremity, the f extr segdirabs function
gives the triplet formed by its block, its direction and its
abscissa on its block:

ran({extr, seg, dir, abs, res |
xtr 7→ seg : f extr seg ∧
extr 7→ dir : f extr dir ∧
extr 7→ abs : f extr abs ∧
res = extr 7→ (seg 7→ dir 7→ abs)})

In the same manner, the r zone2extrori singu relation
gives the singularities of a zone with two oriented extremities:

dom({zone, sing, numabssing |
zone 7→ numabssing :
t zone2extrori /
(f TabZones2ExtrOri NumAbsSing1
∪ f TabZones2ExtrOri NumAbsSing2) ∧

sing 7→ numabssing :
t singularite / f TabSingu NumAbsolu})

And, the f singu segdirabs function gives, for each
singularity, the triplet formed by its block, its direction and
its abscissa on its block:

ran({singu, seg, dir, abs, res |
singu 7→ seg : f singu seg ∧
singu 7→ dir : f singu dir ∧
singu 7→ abs : f singu abs ∧
res = singu 7→ (seg 7→ dir 7→ abs)})

The r zonenori extr relation gives the extremities of a
non-oriented zone:

ran({zone, extr, numabsextr, ind, res |
zone 7→ ind 7→ numabsextr :
(t zonenori × INTEGER) /
f TabZonesNOri NumAbsExtremites ∧
numabsextr/ = −1 ∧
extr 7→ numabsextr :
t extremite
/ f TabExtremities NumAbsolu ∧

res = zone 7→ extr})

The following r zoneori singu relation gives the singu-
larities associated with a particular oriented zone:

ran({zone, singu, numabssingu, index, res |
zone 7→ index 7→ numabssingu :
(t zoneori × INTEGER) /
f TabZonesOri ListSingZone ∧

numabssingu/ = −1 ∧
singu 7→ numabssingu :
t singularite

/ f TabSingu NumAbsolu ∧
res = zone 7→ singu})

3) Properties: Each property has a name, a tag recalling
the requirement it refers to, a description in natural language
and a formal description in the B language. The requirement
tags are used for the sake of traceability, in order to ensure that
all requirements that must be modelled have been effectively
modelled. Models should not be too complex to be easily
proofread. In particular, definitions should be intensively used.

Let us consider the informal requirement “each zone must
be connected”. It means that for each zone, all blocks describ-
ing it (a zone is a collection of blocks) should be connected
meaning that from one of these blocks, it must be possible
to reach any other block by connection. With the previous
interface constants and definitions except the definition of the
f zone connexe which is not given in this paper, the model
of this requirement is specified as follows:

31

TABLE I. RESULTS OF DATA VALIDATION WITH PREDICATEB (A
COMPONENT OF OVADO)

Component Number Number of Validation time in minutes
(and its amount) of properties lines in B for a component (and total)

#1 (13) 39 2050 <1 (<10)
#2 (4) 28 1177 <1 (<4)
#3 (4) 369 19613 180 (720 i.e. 12h)
#4 (1) 62 2741 < 1 (idem)

#5 (34) 159 12400 15 (510 i.e. 8.5h)
#6 (1) 26 1641 6 (idem)

∀(typezone, r zone extr, zone, extrs).(
typezone : 0..3 ∧
r zone extr =
{ 0 7→ (r zone2extr extr; f extr segdirabs)
, 1 7→ (r zone2extrori singu; f singu segdirabs)
, 2 7→ (r zonenori extr; f extr segdirabs)
, 3 7→ (r zoneori singu; f singu segdirabs)
}(typezone) ∧

zone : dom(r zone extr) ∧
extrs = r zone extr[{zone}]
⇒
f zone connexe(extrs) = TRUE)

The automatic treatment performed by OVADO has learned
us that initial data sets did not meet this requirement: four
oriented zones were not connected, i.e. there was no com-
munication channel between them. Data sets were therefore
corrected by the teams in charge of the definition of data
before being successfully validated, in particular against this
requirement, by the validation team.

C. Final results

We have modelled the data requirements for six compo-
nents of a CBTC both carborne and trackside. Table I sum-
marizes the results obtained with PredicateB only. To preserve
confidentiality, the component names have been changed.

D. Influence of models on performance

!(x, y, z).
(
 x : 0..100 &
 y : 0..100 &
 z : 0..100 &
 z = f(x → y)
 ⇒
 Predicate
)

!(x, y, z).
(
 x : 0..100 &
 y : 0..100 &
 z = f(x → y) &
 z : 0..100
 ⇒
 Predicate
)

(A) (B)

Fig. 6. A simple example that shows that models influence performance

Figure 6 shows two model patterns. In (A), OVADO checks
the rule z = f(x 7→ y)⇒ Predicate for each triplet (x, y, z)
verifying x ∈ [0..100] and y ∈ [0..100] and z ∈ [0..100]. That
is to say that OVADO will create one million triplets then
check this rule for each of them. In (B), OVADO checks
the rule z : 0..100⇒ Predicate for each triplet (x, y, z)
verifying x ∈ [0..100] and y ∈ [0..100] and z = f(x 7→ y).
That is to say that, OVADO will only create ten thousand
triplets and will only perform ten thousand checks. This is
also true for properties that use existantial quantifiers and/or
sets defined by comprehension.

V. CONCLUSION

In this paper we have described the process for validating
data used for safety-related railway systems. This process,
which relies on the B method, presents several benefits: using
formal methods is recommanded by international standards, the
B language is quite easy to learn and to use, it is well suited
for modelling requirements of CBTCs, large datasets can be
used while the validation time is reasonable. On the contrary,
let us face is it ill-suited for proving performance requirements
and, unfortunatly, applied only in the railway industry at the
moment.

ACKNOWLEDGEMENT

The authors would like to thank their teamates involved in
data validation both based in Aix-en-Provence and Paris. This
paper summarizes their work. Their gratitude is also adressed
to Mr F. Bustany, President of Systerel, for allowing the writing
of this paper.

REFERENCES

[1] N. G. Leveson, Safeware - system safety and computers: a guide to
preventing accidents and losses caused by technology. Addison-
Wesley, 1995.

[2] IEC 61508 : Functional safety of electrical/electronic/ programmable
electronic safety-related systems, International Electrotechnical Com-
mission Std.

[3] EN 50126: Railway applications - The specification and demonstration
of Reliability, Availability, Maintainability and Safety (RAMS), Euro-
pean Committee for Electrotechnical Standardization (CENELEC) Std.

[4] EN 50128: Railway applications - Communication, signalling and pro-
cessing systems - Software for railway control and protection systems,
European Committee for Electrotechnical Standardization (CENELEC)
Std., 2011.

[5] EN 50129: Railway applications - Communication, signalling and
processing systems - Safety related electronic systems for signalling,
European Committee for Electrotechnical Standardization (CENELEC)
Std.

[6] EN 50159: Railway applications - Communication, signalling and pro-
cessing systems - Safety-related communication in transmission systems,
European Committee for Electrotechnical Standardization (CENELEC)
Std., 2010.

[7] IEEE Std 1474.1-2004, IEEE Standard Method for CBTC Performance
and Functional Requirements, IEEE Std.

[8] T. Lecomte, L. Burdy, and M. Leuschel, “Formally checking large data
sets in the railways,” CoRR, vol. abs/1210.6815, 2012.

[9] J.-R. Abrial, The B-Book: Assigning Programs to Meanings. Cam-
bridge University Press, 1996, iSBN:0-521-49619-5.

[10] J.-R. Abrial, Modeling in Event-B - System and Software Engineering.
Cambridge University Press, 2010.

[11] F. Badeau and M. Doche-Petit, “Formal data validation with event-b,”
The Computing Research Repository (CoRR), vol. abs/1210.7039, 2012.

[12] M. Lodemann and N. Luttenberger, “Ontology-based railway infrastruc-
ture verification - planning benefits,” in KMIS, K. Liu and J. Filipe, Eds.
SciTePress, 2010, pp. 176–181.

[13] M. Leuschel and M. Butler, “Prob: A model checker for b,” in FME
2003: FORMAL METHODS, LNCS 2805. Springer-Verlag, 2003, pp.
855–874.

32

Validation of Railway Interlocking Systems by Formal Verification, a Case Study

Andrea Bonacchi∗, Alessandro Fantechi∗, Stefano Bacherini†, Matteo Tempestini† and Leonardo Cipriani†
∗Dipartimento di Ingegneria dell’Informazione

Università di Firenze, Florence, Italy
Email: a.bonacchi@unifi.it, fantechi@dsi.unifi.it

†General Electric Transportation Systems, Florence, Italy
Email: stefano.bacherini@ge.com, matteo.tempestini@ge.com, leonardo.cipriani@ge.com

Abstract—Notwithstanding the large amount of attempts
to formally verify them, railway interlocking systems still
represent a challenging problem for automatic verification.
Interlocking systems controlling sufficiently large stations, due
to their inherent complexity related to the high number of
variables involved, are not readily amenable to automatic
verification, typically incurring in state space explosion prob-
lems. The study described in this paper aims at evaluating
and experimenting the industrial application of verification by
model checking for this class of systems. The choices made
at the beginning of the study, also on the basis of specific re-
quirements from the industrial partner, are presented, together
with the advancement status of the project and the plans for
its completion.

I. INTRODUCTION

In the railway signalling domain, an interlocking is the
safety critical system that controls the movement of the
trains in a station and between adjacent stations. The inter-
locking monitors the status of the objects in the railway yard
and allows or denies the routing of the trains in accordance
with the railway safety and operational regulations that are
generic for the region or country where the interlocking
is located. The instantiation of these rules on a station
topology is stored in the part of the system named control
table. Control tables of modern computerized interlockings
are implemented by means of iteratively executed software
controls over the status of the yard objects.
One of the most common way to describe the interlocking
rules given by control tables is through boolean equations
or, equivalently, ladder diagrams which are interpreted either
by a PLC or by a proper evaluation engine over a standard
processor. A first concern in the history of computerized
interlockings has been the automatic generation of such
boolean equation sets starting from generic signalling prin-
ciples and from the topology of the layout of the station [1].
On the other hand, the certification activities for an in-
terlocking include the verification that the implemented
control tables actually satisfy safety rules. Verification of
correctness of control tables has been a prolific domain for
formal methods practitioners, and the literature counts the
application of several techniques to the problem, namely the
Vienna Development Method (VDM) [2], property proving
[3], [4], Colored Petri Nets (CPN) [5] and model checking

[6], [7]. This last technique in particular has raised the
interest of many railway signalling industries, being the most
lightweight from the process point of view, and being rather
promising in terms of efficiency.
However, due to the high number of boolean variables
involved, automatic verification of sufficiently large stations
typically incurs in combinatorial state space explosion prob-
lem.
The first applications of model checking have therefore
attacked portions of an interlocking system [8], [9]; but
even recent works [10], [11] show that routine verification
of interlocking designs for large stations is still out of reach
for symbolic model checker NuSMV [12] and explicit model
checker SPIN [13], although specific optimizations can help
[11]. As we argument later, SAT-based model checking
appear to be more promising at this respect.
We want however to notice that control tables may have two
main roles (not always both present) in the development of
these systems: either as specifications of the interlocking
rules [14], often issued by a railway infrastructure com-
pany, or as implementations, when they come encoded in
some (typically proprietary) executable language. Hence also
verification may address different problems, such as the
consistency of the former, or the correctness of the latter
w.r.t. the former, or the check of safety properties on the
latter. In the study presented in this paper, we address the last
mentioned verification problem. Anyway, a typical issue of
any of these verification tasks is the choice of how to express
control tables in a language suitable for the verification tool
adopted.
Indeed, commercial solutions exist for the production of
interlocking software, such as Prover Technology’s (Ilock),
that includes formal proof of safety conditions as well, by
means of a SAT solving engine. Industrial acceptance of
such ”black-box” solutions is however sometimes hindered
by the fear of vendor lock-in phenomena and by the loss of
control over the production process.
In the Safety and Validation Laboratory (S&V Lab) of
General Electric Transportation System (GETS), with the
final aim of reducing the costs of verifying the safety require-
ments of the produced interlocking systems, a feasibility
study has been started, conducted in collaboration with the

33

PhD School of Information Engineering of the University
of Florence, on the verification of legacy control tables that
control a portion of a railway yard.
Indeed, the S&V Lab is acting (according to CENELEC
EN50128 norms) as an independent verifier of the interlock-
ing systems produced by other branches of the company,
with little insight of the followed process, and focusing on
the final product. Actually, the only information available
on the implemented control tables can be extracted from the
binary files, that are written in the target using a proprietary
format, by means of libraries, that we will refer from now on
as legacy libraries, provided by the interlocking developers.
In a previous exploratory work [10] the control tables were
modelled as finite state machines and safety properties were
proved by means of NuSMV. In this case, the choice of the
tool and hence of the modelling language was taken instead
according to specific constraints posed by the S&V Lab of
GETS: in order to smoothly adopt this verification technique
inside the internal production process, it was required that
the verification tool is a commercial tool, already known
within the company. Moreover, the difficulties encountered
in dealing with medium and large size interlocking systems
by means of BDD-based verification pointed to the alter-
native of adopting a SAT-based model checker, in order
to exploit at best the native boolean coding coming from
the control tables [15]. The conjunction of these constraints
has favoured the choice of Matlab Design Verifier, which is
based on a SAT solver, using boolean functions with logical
gates as the language in which to translate the legacy control
tables.
The commercial constraints posed by the company are due
to a precise industrial policy, that is, minimizing additional
investment, minimizing dependency from external suppliers,
especially if not yet already known, while internally master
the overall verification process.
This paper describes the current advancement of the fea-
sibility study concentrating on the modelling phase. First
we describe the ladder logic, that is, the industrial standard
graphical language to represent boolean functions involved
in control tables. In section 3 we introduce the modelling
process and in particular the algorithm LLD Parser that
allows the control tables to be translated into boolean
functions that will be implemented in a Simulink model.
On an example model some preliminary verification exper-
iments have been carried out, showing that medium size
interlockings can be verified using this approach (Section
4), and so confirming the initial intuition about using SAT-
based verification tools.

II. LADDER LOGIC DIAGRAMS

Ladder Logic is a graphical language which can represent
a set of boolean equations of the type xi := ei, with
ei = f(xj , · · · , xj+n), where f is a boolean function
built as a composition of and,or, and not operators, and

xi, xj , . . . , xj+n are variables which represent the possible
states of the signalling devices. Ladder Logic represents the
working of relay-based control systems. For this reason the
variables on the right expression of the equation are also
named contacts, while the variables in the left hand are
named coils. Variables can be distinguished in:

• Input variables: the value is assigned by sensor readings
or operator commands. These variables are defined in
the expressions ei and cannot be used as coil.

• Output variables: can be only a coil and their value is
determined by means of the assignments of the diagram
and is delivered to actuators.

• Latch variables: the value is calculated by means of the
assignments, but is used only for internal computation
of the values of other variables. A latch variable is used
as coil in an assignment and is an input variable in other
assignments.

With these three kinds of variables, a Ladder Logic Diagram
(LLD) describes a state machine whose memory is repre-
sented by the latch variables and the evolution is described
by the assignment set. An execution of this state machine,
named control cycle, involves:

1) Reading input variables; the values of these variables
are assumed to be constant for the entire duration of
the control cycle.

2) Computation of the current values for the output
variables and for the latch variables starting from the
values of the input variables and the values of the latch
variables at the previous control cycle.

3) Transmission of the values of the output variables.
An example of a single row of a ladder logic diagram is
reported in figure 1, expressing the boolean equation:

y = x ∧ (w ∨ ¬z)
In this graphical language, if x is a boolean variable, an
expression e can be defined in inductive way by means of
following syntax:

• −− []−− represents a variable.
• −− [/]−− represents the negation of a variable.
• −− () represents a coil.

Figure 1. Example of ladder logic diagram

In general, a Ladder Logic Diagram expresses a set of
boolean equations that can be written:

x̃ = f(x̃, ỹ)

34

where x̃, ỹ are boolean variable vectors representing re-
spectively state/output variables and input variables: these
equations are cyclically executed. Let us call x̃i, ỹi the
vectors of values taken by such variables in successive ex-
ecutions. From the equations we can define F (x̃i, x̃i+1, ỹi)
as a boolean function that is true iff x̃i+1 = f(x̃i, ỹi),
representing one execution of the equations. Let be Init(x̃)
a predicate which is true for the initial vector value of state
and output variables. If P (x̃) is a predicate telling that a
desired (safety) property is verified by the vector x̃, then
the following expression:

Φ(k) = Init(x̃0) ∧
k−1∧

i=0

F (x̃i, x̃i+1, ỹi) ∧
k∨

i=0

∼ P (x̃i)

is a boolean formula that tells that P is not true for the
state/output vector for some of the first k execution cycles.
According to the Bounded Model Checking (BMC) princi-
ples [16], using a SAT-solver to find a satisfying assignment
to the boolean variables ends up either in unsatisfiability,
which means that the property is satisfied by the first k
execution cycles, or in an assignment that can be used as
a counterexample for P , in particular showing a k-long
sequence of input vectors that cause the safety problem with
P .
Due to the constraints we have discussed above on the choice
of Design Verifier as a verification tool, the BMC working
details are no more addressed in the following, since they
are hidden in the tool itself. We need instead to focus on the
representation in a format suitable for Design Verifier of the
legacy control tables that are loaded, in the form of LLDs,
in the analysed interlocking systems.

III. MODEL EXTRACTION

The first activity in the feasibility study has therefore
addressed the definition of a process that allows a model of
a station to be obtained from the analysed implementation
in three steps:

1) Import Station Data: all data about a station (equa-
tions, timers, interfaces, . . .) are imported in Matlab
by means of the legacy libraries that read the binary
files loaded on the interlocking system.

2) Model Station Data: the equations and the links
between them are modelled in a Simulink model by
means of the LLD-Parser.

3) Model Properties: safety properties are modelled with
reference to the station model and are proved by means
of Design Verifier.

A. Importing Data Station

As discussed in section II the boolean equations of an
interlocking are represented in a ladder logic diagram (figure
1), which is encoded in a proprietary binary format for the
diagram interpreter engine.

In order to extract this information from the binary code,
we use those proprietary interpretation routines that we have
called “legacy libraries”. These libraries allow each boolean
equation to be read as a matrix Mn×k. The matrix is just a
one to one representation of the ladder diagram with numeric
codes. The code values in the matrix can be either positive,
representing variables, or negative, representing either a
connector or the polarity of a variable (see table I).

Table I
SYMBOL TRANSLATION

Symbol Value Symbol Value
b -1 −− []−− -10

c -2 −− [/]−− -20

⊥ -3 −− () -30

> -4 Blank space -40

` -5 Horizontal line -50

a -6 Vertical Line -70

+ -7

The LLD in figure 1 is for example encoded by the following
matrix M :

−40 100 −40 200 −40 500
−50 −10 −4 −20 −4 −30
−40 −40 −70 300 −70 −40
−40 −40 −1 −10 −2 −40

The values 100, 200, 300 and 500 are respectively associated
to the variables x, z, w and y.

B. LLD Parser

The extracted matrix needs to be interpreted in order to
define the boolean function it implements, expressed in a
format suitable for Design Verifier. Three alternative ways
to describe these functions are possible in Matlab, that is,
using boolean gates in a Simulink diagram, using truth
tables, or, by taking into account the typical cyclic execution
of the equations as well, using a Stateflow state machine.
Some preliminary experiments have suggested that the latter
choice was employing the less direct correspondence with
the boolean equations, and hence less prone to be efficiently
handled by Design Verifier. We have for the moment cho-
sen the first alternative, leaving a more accurate efficiency
comparison as a future work.
We have hence designed an algorithm that translates the
matrix into Simulink boolean and/or/not gates.
If we focus on the graphical format of LLD, we recognize
one or more connectors which belong to the following set:

C = {b c ⊥ > ` a +}

Considering specific pairs of connectors, in the set C, it is
possible to define a connection relation (CR) between them,

35

which defines a particular conjunction/disjunction between
the variables in a LLD:

CR = {(b, c), (⊥, c), (b,⊥)}
The connection relation is the basis to provide semantics to
a LLD. By means of this relation we can classify LLDs in
a few Families of Equations (FoE).
A FoE is a set of Ladder Logic Diagrams that share some
common graphical features. For example, the diagram in
figure 2 represents the boolean equation:

y1 = x1 ∧x2 ∧ ((x3 ∧¬x4)∨ (x5 ∧¬x6 ∧x7)∨ (y1 ∧¬x8))

and belongs to the same FoE of the diagram in figure 1
because both equations have an or gate connected to an and
gate but, for the second equation, the or gate has three inputs
(three and gate); while the first equation has two variables
in input.

Figure 2. Example of ladder logic diagram

We need to find these patterns (pairs) to model the equations
by means of logical gates. In fact, the LLD Parser (reported
in algorithm 1) visits four times the matrix M ; the first time
it discovers all the input/output variables (positive values in
the odd rows of M), then it reads the even rows of M ,
which contain the polarity of the variables (that is if they
are asserted and/or negated in the equation).
Finally, if there is at least a logic or, that is, the value
corresponding to the symbol > is present in the equation
matrix M (line 3), the LLD Parser looks for the FoE to
which the matrix M belongs and then runs a Depth First
Search (DFS) on the connectors that are in the equation;
otherwise this means that all the variables in the equation
are in logic and (line 15).
The algorithm 2 is the DFS for the LLDs reported in figures
1 and 2 and the subrelations defined are: CR1 = {b, c},
CR2 = {`,a} and CR3 = {>,>}.

Sorting connectors (lines 2-3): the connectors in the
matrix (CM) are sorted from the deepest (greatest row and
column in M) to the shallowest (CMO).

Main Loop (lines 4-16): from the set CMO a connectors
pair (c1, c2) is extracted and if the pair belongs to a
connection subrelation the variables are linked accordingly.
In particular:

Create a new or gate (lines 5-10): if (c1, c2) belongs to
CR1 an or gate is created and the variables varpattern
between the connectors (c1, c2) are connected, possibly
through an and gate, to the new or gate; this construction is

done by the function LinkVariables. At last, the variables in
varpattern are deleted from the set var which contains all
not yet connected variables.

Link other variables (lines 11-15): the case in which
(c1, c2) belongs to CR2 or CR3 is similar to the previous
cases, but no new or gate is built and the varpattern variables
are connected to the most recently created or gate by the
function LinkVariables.

Create final and gate (lines 17-19): if there are still
variables in the set var (see the example of variable x for
the LLD in figure 1 and variables x1, x2 in figure 2), they
are linked with the most recently created or gate to a final
and gate; otherwise the most recently created or gate is the
final gate.

Algorithm 1 LLD Parser
Require: M equation matrix
Ensure: Model of the equation

1: var ← GetVariables(M)
2: syntax← GetVariablePolarity(M,var)
3: if > ∈M then
4: family ← GetFoE(M)
5: switch (family)
6: case 1:
7: DFS1(M, var, syntax)
8: case 2:
9: DFS2(M, var, syntax)

...
10: case N:
11: DFSN (M, var, syntax)
12: default:
13: end switch
14: else
15: LogicAnd(var)
16: end if

After the parsing of the matrix M the output of the
equation can: (1) activate a timer, (2) be input to the same
equation. In the first case a timer is modelled and the output
of the equation is linked to the timer, in the second case a
delay block is created.
All the equations are then linked between them by means of
the latch variables, or by timers when needed; in this way
the model of a station is completed (see left part of Figure
3). The model has as input and output the input/output
variables of the equations.

IV. PRELIMINARY RESULTS

The S&V Laboratory has carried out some preliminary
experiments with the process and algorithm discussed in the
previous section considering a network of four Computer
Interlocking Subsystems: (CIS1, CIS2, CIS3, CIS4) that

36

Algorithm 2 Depth First Search
1: numOrGate← 0
2: CM ← C ∈M
3: CMO ← Order(CM)
4: for all (c1, c2) ∈ CMO do
5: if (c1, c2) ∈ CR1 then
6: numOrGate← numOrGate+ 1
7: varpattern ← var ∈ (c1, c2)
8: LinkV ariables(varpattern,M)
9: var ← DeleteV ariables(varpattern, var)

10: end if
11: if (c1, c2) ∈ CR2||(c1, c2) ∈ CR3 then
12: varpattern ← var ∈ (c1, c2)
13: LinkV ariables(varpattern,M)
14: var ← DeleteV ariables(varpattern, var)
15: end if
16: end for
17: if var ∈ varpattern then
18: CreateAndFinal(var, numOrGate)
19: end if

controls a small railway station.
The network has 2625 equations, 717 inputs and 915
outputs; each equation can have from one input to a
maximum of 25 inputs. The number of equations, inputs
and outputs, apportioned to single CISs is reported in table
II.

Table II
DATA OF SINGLE CIS

CIS Num. Equations Num. Inputs Num. Outputs
CIS1 77 44 52

CIS2 1608 370 522

CIS3 430 151 157

CIS4 511 152 184

An example of property P that has been defined and proved
on CIS3 is the following:

Under the preconditions:
1. The input from a track circuit A gives it as unoccupied.
2. A predefined time period has elapsed.
3. The input from the adjacent track circuit B, in accor-

dance with the driving direction, is occupied.
the modelled state of A passes from occupied to unoccupied.

The property P is modelled in Simulink by the diagram
in Fig 3. To prove the property P a small number of
input/output variables was used (see figure 4) and Design
Verifier has generated a counterexample; that is an input
variables assignment that does not satisfy the property P .
Each input variable in the counterexample assumes the

Figure 3. Property P

values: true (1), false (0) or don’t care (-). Due to the
high complexity of the interlocking logic, interpretation of
the counterexample is not immediate, and requires the help
of signalling engineers, who are able to distinguish real
counterexamples from unfeasible combinations of inputs. At
the current stage of the project, this particular activity has not
yet been started. The first experiments were rather aimed at
testing the capability of Design Verifier to deal with models
of this size.
The entire process of importing data from the binaries,
modelling the station and proving the property P (with a
generation of a counterexample) has been run on an AMD
Athlon(tm) II X2 B24 3GHz, 4GB of RAM machine with
Windows 7, 32 bits, operating system. In table III, we report
the times (in seconds) of the three phases.

Figure 4. Prove Property

Table III
TIMES

Phase Time (sec)
Import Data 60,334

Model Station 2506,271

Prove Property 2,000

Total 2568,605

37

V. CONCLUSION

In this paper we have reported a solution to model an
interlocking system and to prove the correctness of safety
properties P on the model.
We have implemented an algorithm that: (1) reads the data
station by the binary files, that is loaded on the target, by
means of legacy library; (2) parses the boolean equations,
that are written in ladder logic, and generates a model which
contains the equations and the station interfaces towards the
adjacent stations.
To model the boolean equations we have defined the se-
mantic of the ladder logic. The algorithm runs a depth first
search in the ladder logic diagram to find out the connection
patterns and by means of these patterns the algorithm builds
the equation model. Finally all equation models are linked
between them and the station model is created.
In the first experiments carried on, the algorithm has been
applied on an interlocking system of 2625 equations and
717 input and 915 output interfaces that controls a portion
of a railway station, obtaining the station modelling in less
than one hour; finally the verification of a safety property
has been attempted by means of Design Verifier, raising the
problem of the interpretation of counterexamples obtained
by verification, which may require the help of signalling
engineers, to distinguish real counterexamples from unfea-
sible combinations of inputs. In order to rule out such un-
feasible counterexamples, we plan to shape our verification
process according to the CEGAR (CounterExample Guided
Abstraction Refinement) paradigm [17], in order to provide
an automated method adoptable in an industrial context.
The current experiments are focused on providing verifi-
cation results on a set of production interlocking cases of
different sizes. We will then address a deeper analysis of
these results, focusing in particular on the optimization of the
model to better exploit the underlying SAT solver of Design
Verifier. At this regard, the possible alternative choices (state
machine, truth tables) for modelling the control tables will
be compared w.r.t. the verification performance of the tool.
Moreover, we shail investigate the application of other
verification tools, such as NuSMV, to the extracted data,
in order to compare results and performance issues. This
activity, although a change of the verification engine in the
defined verification process is not planned by the company,
will help to consolidate it, and will provide interesting
compared data about the application of formal verification
tools on industrial production case studies.

REFERENCES

[1] B. Fringuelli, E. Lamma, P. Mello, and G. Santocchia,
“Knowledge-Based Technology for Controlling Railway Sta-
tions,” IEEE Expert: Intelligent Systems and Their Applica-
tions, pp. 45–52, 1992.

[2] K. M. Hansen, “Formalising Railway Interlocking Systems,”
in Proceedings of the 2nd FMERail Workshop (1998).

[3] A. Borälv, “Case Study: Formal Verification of a Computer-
ized Railway Interlocking,” Formal Asp. Comput., pp. 338–
360, 1998.

[4] W. Fokkink and P. Hollingshead, “Verification of Interlock-
ings: from Control Tables to Ladder Logic Diagrams,” in
FMICS’98, 1998, pp. 171–185.

[5] S. Vanit-Anunchai, “Modelling Railway Interlocking Tables
Using Coloured Petri Nets,” in COORDINATION, ser. Lecture
Notes in Computer Science, vol. 6116, 2010, pp. 137–151.

[6] K. Winter, W. Johnston, P. Robinson, P. Strooper, and
L. van den Berg, “Tool support for checking railway interlock-
ing designs,” in Proceedings of the 10th Australian workshop
on Safety critical systems and software, 2006, pp. 101–107.

[7] A. Mirabadi and M. Yazdi, “Automatic Generation and Verifi-
cation of Railway Interlocking Control tables using FSM and
NuSMV,” in Transport Problems : an International Scientific
Journal, 2009, pp. 103–110.

[8] C. Bernardeschi, A. Fantechi, S. Gnesi, S. Larosa, G. Mon-
gardi, and D. Romano, “A Formal Verification Environment
for Railway Signaling System Design,” in Formal Methods in
System Design, 1998, pp. 139–161.

[9] J. F. Groote, S. van Vlijmen, and J. Koorn, “The Safety
Guaranteeing System at Station Hoorn-Kersenboogerd,” in
Logic Group Preprint Series 121, Utrecht University, 1995.

[10] A. Ferrari, G. Magnani, D. Grasso, and A. Fantechi, “Model
Checking Interlocking Control Tables,” in FORMS/FORMAT,
2010, pp. 98–107.

[11] K. Winter and N. J. Robinson, “Modelling Large Railway
Interlockings and Model Checking Small Ones,” Twenty-Fifth
(ACSC2003), pp. 309–316, 2003.

[12] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia,
M. Pistore, M. Roveri, R. Sebastiani, and A. Tacchella,
“NuSMV 2: An OpenSource Tool for Symbolic Model
Checking,” in LNCS 2404-CAV ’02, 2002, pp. 359–364.

[13] G. Holzmann, Spin model checker, the primer and reference
manual, 2003.

[14] A. E. Haxthausen, M. L. Bliguet, and A. A. Kjær, “Modelling
and Verification of Relay Interlocking Systems,” in Monterey
Workshop, 2008.

[15] P. James and M. Roggenbach, “Automatically Verifying Rail-
way Interlockings using SAT-based Model Checking,” in
AVOCS, 2010, pp. 141–153.

[16] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, “Symbolic
Model Checking without BDDs,” in LNCS 1579-TACAS ’99,
1999, pp. 193–207.

[17] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith,
“Counterexample-Guided Abstraction Refinement,” in Com-
puter Aided Verification, 12th International Conference,
LNCS 1855-CAV ’00, 2000, pp. 154–169.

38

Verification of solid state interlocking programs

Phillip James, Andy Lawrence
Faron Moller, Markus Roggenbach,
Monika Seisenberger, Anton Setzer
Swansea Railway Verification Group

Swansea University, Wales, UK

Karim Kanso
Critical Software Technologies
Southampton, England, UK

Simon Chadwick
Invensys Rail Northern Europe

a Siemens company
Chippenham, England, UK

Abstract—We report on the inclusion of a formal method into
a design process in industry. Concretely, we suggest carrying out
a verification step in railway interlocking design between pro-
gramming the interlocking and testing this program. Safety still
relies on testing, but the burden of guaranteeing completeness and
correctness of the verification is in this way greatly reduced. We
present a complete methodology for carrying out this verification
step in the case of ladder logic programs and give results for real
world railway interlockings. As this verification step reduces costs
for testing, Invensys Rail is working to include such a verification
step into their design process of solid state interlockings.

I. INTRODUCTION

Solid state interlockings represent one of many safety mea-
sures implemented in railways. In Vincenti’s terminology [1],
interlockings are normal designs: railway engineers have a
clear understanding of their workings and customary features,
and it is standard practice to design them and to bring them
into operation.

The formal method we propose is a verification step
between programming the interlocking and the testing of this
program. On the one hand we have interlocking programs, their
representation in propositional logic, and their semantics in
terms of a labelled transition system; whilst on the other hand
we have general safety properties expressed in first order logic,
their specialization to propositional logic, and their satisfaction
relative to the labelled transition system. Both representation
and specialization can be automatically derived. The method
we suggest is to apply standard model checking approaches
and tools to the resulting model checking problem.

We first define interlockings and describe their design
exemplified by the GRIP process and the realisation of GRIP’s
Detailed Design phase at Invensys Rail. We detail our for-
mal method, i.e., the verification step, and compile different
technologies upon which the verification can be based, giving
comparative results in terms of a case study. We conclude with
a brief discussion of related work and future research. This
paper summarizes results published in [2]–[10].

II. DESIGNING SOLID STATE INTERLOCKINGS

In railways systems, solid state interlockings provide a
safety layer between the controller and the track. In order to
move a train, the controller issues a request to set a route.
The interlocking uses rules and track information to determine
whether it is safe to permit this request: if so, the interlocking
will change the state of the track (move points, set signals,
etc.) and inform the controller that the request was granted;

otherwise the interlocking will not change the track state.
In this sense, an interlocking is like a Programmable Logic
Controller (PLC). The standard IEC 61131 [11] identifies
programming languages for such controllers, including the
visual language ladder logic discussed below.

Interlockings applications are developed according to pro-
cesses prescribed by Railway Authorities, such as Network
Rail’s Governance for Railway Investment Projects (GRIP)
process. The first four GRIP phases define the track plan and
routes of the railway to be constructed, while phase five – the
detailed design – is contracted to a signalling company such
as Invensys which chooses appropriate track equipment, adds
control tables to the track plan, and implements the solid state
interlocking. It is for part of this phase, namely for the correct
implementation of a control table in a solid state interlocking,
that our paper offers support in terms of a formal method.

Signalling handbooks (e.g. [12]) describe how to design
control tables for the routes of a track plan selected for
signalling. Technical data sheets provide information of how to
control the selected hardware such as points, signals and track
circuits. It is a complex programming task to implement the
control tables for the selected hardware elements. For a larger
railway station, the resulting program can involve thousands
of tightly coupled variables, so thorough testing for safety is a
must. To this end, programs are run on a rig which simulates
the physical railway, and it can take any number of iterations of
testing and debugging for a program to pass all prescribed tests.
This testing cycle is cost intensive, as it is hardly automated
due to its interactive nature and concerns about the safety
integrity of any automated testing environment: the tester has
to run the program through various scenarios developing over
time. Furthermore, debugging is time consuming as there is
little support for producing counter examples.

It is at this point that the formal method described below
is able to reduce costs in the design process. Rather than
testing an interlocking program, we automatically transform
the program and the safety property that the test shall establish
into a model checking problem. Tool support then allows to
automatically check if the property is fulfilled. In case it is
not, a counter example is produced, possibly in the form of a
trace of controller requests and train movements. This allows
the programmer to obtain intelligible feedback. This process is
fast and far less involved than testing the program. For these
reasons, based on our research, Invensys Rail is working to
include such a verification step into their design process of
solid state interlockings.

39

III. FROM LADDER LOGIC TO MODEL CHECKING

A. Ladder Logic

Ladder logic gets its name from its graphical “ladder”-like
form (see Fig. 1) reminiscent of relay circuits. Each rung of the
ladder computes the current value of an output from the values
of one or more inputs in the rung one time step (i.e. one cycle)
earlier. A ladder logic program is executed top-to-bottom, and
an interlocking executes such a program indefinitely.

A ladder logic rung consists of the following entities. Coils
represent boolean values that are stored for later use as output
variables from the program. A coil is always the right most
entity of the rung and its value is computed by executing
the rung from left to right. Contacts are the boolean inputs
of a rung, with open and closed contacts representing the
values of un-negated and negated variables respectively. The
value of a coil is calculated when a rung fires, making use
of the current set of inputs – input variables, previous output
variables, and output variables already computed for this cycle
– following the given connections. A horizontal connection
between contacts represents logical conjunction and a vertical
connection represents logical disjunction. For example:

C

(a) A coil

X

Y

(b) Disjunction
with closed contacts

X Y

(c) Conjunction with an
open and a closed contact

As a running example we model a Pelican crossing,
consisting of: two buttons at each side of a road, allowing
pedestrians to make a request to cross; and four sets of lights
(2 pedestrian lights, pla and plb, and 2 traffic lights, tla and
tlb) controlling the flow of pedestrians and traffic. This is
modelled by a boolean input variable pressed and 8 variables
plar, plag, plbr, plbg, tlar, tlag, tlbr, tlbg, modelling the as-
pect of the light, ’r’ for ’red’, ’g’ for ’green’.

We also have two internal variables: req represents whether
one of the pedestrian buttons has been pressed in a previous
iteration of the program and whether there is already a request
to cross; and crossing models the fact that a pedestrian is
allowed to cross the road. Fig. 1 presents a ladder logic
program for such a Pelican crossing.

B. From Ladder Logic to Propositional Logic

From an abstract perspective, ladder logic diagrams repre-
sent propositional formulae. However, the process of obtaining
these formulae as described in [2] requires special care to pre-
vent a blow-up in formula size regarding nested disjunctions,
which would result in bad performance for CNF translation1.
This is achieved by traversing the formula from left to right,
building up sub-formulae, each of which consisting of a
conjunction or disjunction. The efficient use of sub-formulae
requires the introduction of auxiliary variables. Fig. 2 shows
an example and locations where variables are introduced.

A new variable is introduced for each step in the computa-
tion: After every contact x a new variable xi is introduced
(where i is fresh for x), and for each vertical connection
(disjunction) a new variable ∨j is introduced (where j is fresh).

1Required when interfacing with theorem provers.

req crossing crossing

pressed req req

pressed crossing tlag

req

pressed crossing tlbg

req

crossing tlar

crossing tlbr

crossing plag

crossing plbg

crossing plar

crossing plbr

Fig. 1. The ladder logic program for the pelican crossing

a b f

f e

c ∨1

∨2

a1

f1

c1

b1

e1

Fig. 2. Try tracing back from coil f : It is clear that the nested disjunction
results in the large formula f ′ ↔ (¬b∧ (a∨¬f ′ ∨ c))∨ (e∧ (a∨¬f ′ ∨ c)).

The rung is then broken at each of the intermediate variables,
resulting in a simplified ladder. Each rung in the simplified
ladder consists of only conjunction or disjunction and at most
one negation. By following the above procedure, applied to
the ladder in Fig. 2, the below assignments are obtained.

Translating the assignments from (a) below is canonical2
with respect to the operators, giving the formula in (b):

a1 := a
f1 := ¬f
c1 := c
∨1 := a1 ∨ f1 ∨ c1
b1 := ∨1 ∧ ¬b
e1 := ∨1 ∧ e
∨2 := b1 ∨ e1
f := ∨2

(a) Assignments of Fig. 2.

(a′1 ↔ a)
∧ (f ′1 ↔ ¬f)
∧ (c′1 ↔ c)
∧ (∨′1 ↔ a′1 ∨ f ′1 ∨ c′1)
∧ (b′1 ↔ ∨′1 ∧ ¬b)
∧ (e′1 ↔ ∨′1 ∧ e)
∧ (∨′2 ↔ b′1 ∨ e′1)
∧ (f ′ ↔ ∨′2)

(b) Translation of (a).

The ladder logic of the Pelican logic in Fig. 1 translates (for
readability without the optimization) into the conjunction of

2Variables on the rhs of a rung get a prime if they already have been defined
in a previous rung.

40

these formulae:

crossing′ ↔ req ∧ ¬ crossing,
req′ ↔ pressed ∧ ¬ req,
tlag′ ↔ (¬ pressed ∨ req′) ∧ ¬ crossing′
tlbg′ ↔ (¬ pressed ∨ req′) ∧ ¬ crossing′
tlar′ ↔ crossing′, tlbr′ ↔ crossing′,
plag′ ↔ crossing′, plbg′ ↔ crossing′,
plar′ ↔ ¬ crossing′, plbr′ ↔ ¬ crossing′

C. Ladder Logic Formulae and their Semantics

A ladder logic program is constructed in terms of disjoint
finite sets I and C of input and output variables. In our
example in Fig. 1, we have I = {pressed} and C =
{crossing, req, tlag, tlbg, tlar, tlbr, plag, plbg, plar, plbr}.
We define C ′ = {c′ | c ∈ C} to be a set of new variables
(intended to denote the output variables computed in
the current cycle). In addition, we need a function
unprime : C ′ → C,unprime(c′) = c.

Definition 1 (Ladder Logic Formulae). A ladder logic formula
ψ is a propositional formula of the form

ψ ≡ ((c′1 ↔ ψ1) ∧ (c′2 ↔ ψ2) ∧ . . . ∧ (c′n ↔ ψn)

such that the following holds for all i, j ∈ {1, . . . , n}:
• c′i ∈ C ′

• i 6= j → c′i 6= c′j

• Vars(ψi) ⊆ I ∪ {c′1, . . . , c′i−1} ∪ {ci, . . . , cn}
Remark 1. Note that the output variable c′i of each rung ψi,
may depend on {ci, . . . , cn} from the previous cycle, but not
on cj with j < i, due to the imperative nature of the ladder
logic implementation. Those values are overridden.

Remark 2. In the formulae extracted from a ladder logic
program equivalences (c′1 ↔ ψ1) ∧ · · · can be replaced by
(c′1 = ψ1) ∧ · · · . Both formulae are equivalent since for
Boolean values b and c the truth values of b ↔ c and
b = c are the same. The use of ↔ is suitable for the
input language of SAT solvers, which require logical formulae
(in our example combined with verification conditions) to be
checked for satisfiability. The use = is suitable for the input
language of model checkers, which require equations defining
the variables of the next state in terms of the current one.

Definition 2 (Semantics of Ladder Logic Formulae). Let {0, 1}
represent the set of boolean values and let

ValI = {µI |µI : I → {0, 1}} = {0, 1}I
ValC = {µC |µC : C → {0, 1}} = {0, 1}C

be the sets of valuations for input and output variables. The
semantics of a ladder logic formula ψ is a function that takes
the two current valuations and returns a new valuation for
output variables.

[ψ] : ValI ×ValC → ValC

[ψ](µI , µC) = µ′C

where

µ′C(ci) = [ψi](µI , (µC)�{ci,...,cn}, (µ
′
C ◦ unprime)�{c′1,...,c′i−1})

µ′C(c) = µC(c) if c /∈ {c1, . . . , cn}

and [ψi](·, ·, ·) denotes the usual value of a propositional
formula under a valuation.

D. Labelled Transition Systems

Next we make use of the above to form a labelled transition
system representing the ladder logic program.

Definition 3 (Labelled Transition System). A Labelled Tran-
sition System (LTS) M is a four tuple (S, T,R, S0) where
• S is a finite set of states.
• T is a finite set of transition labels.
• R ⊆ S × T × S is a labelled transition relation.
• S0 ⊆ S is the set of initial states.

We write s t−→ s′ for (s, t, s′) ∈ R. A state s is called reachable
if s0

t0−→ s1
t1−→ . . .

tn−1−−−→ sn, for some states s0, . . . , sn ∈ S,
and labels t0, . . . , tn−1 ∈ T such that s0 ∈ S0 and sn = s.

Definition 4 (Ladder Logic Labelled Transition System). We
define the labelled transition system LTS(ψ) for a ladder logic
formula ψ to be the four tuple (ValC ,ValI ,→,Val0) where

• µC
µI−→ µ′C iff [ψ](µI , µC) = µ′C

• Val0 = {µC |µC inital valuation}
Remark 3. The standard initial valuation in the railway
domain sets all red lights to 1, and all other variables to 0,
i.e. this results in exactly one initial state. A variant proceeds
as follows: First, all output variables are set to 0 and then all
possible transitions are performed. Val0 is then defined as the
set of states obtained after this first transition. In the Pelican
crossing example (see Fig. 3 below) this would lead to two
initial states rather than one. In both cases, a formula Init
characterizes Val0.

E. Producing Verification Conditions

In order to guarantee safety, companies such as Invensys
ensure through testing that interlockings fulfil certain prop-
erties. We formulate them as logical formulae, and call the
result safety conditions. These conditions are the main example
of verification conditions, which are formulae, for which we
check using our tools whether they hold in an interlocking
system. In our setting verification conditions are first-order
formulae, with variables ranging over entities such as points,
signals, routes, track segments, while referring to predicates.
An example of a signalling principle is the formula

∀rt , rt ′ ∈ Route.∀ts ∈ Segment.rt 6= rt ′

→ (part of(ts, rt) ∧ part of(ts, rt ′))
→ ¬(routeset(rt) ∧ routeset(rt ′))

expressing the property: for all pairs of routes that share a
track segment, at most one of them can be set to proceed.

Note there are two kinds of predicates: State and Topol-
ogy. State predicates express the state of entities at a given
time. E.g. routeset(rt26) expresses that route rt26 has been
set. These predicates will unfold into variables in the lad-
der logic program, so in the previous example the predi-
cate would—depending on the actual naming scheme—unfold
to the variable rt26ru . Topology predicates express meta
information relating to the topology of the railway yard.

41

E.g. part of(ts54 , rt26) expresses that the track segment ts54
is part of route rt26 . These predicates unfold to true or false,
depending on whether the property holds; thus, the previous
example unfolds to true when ts54 is actually part of rt26 ,
otherwise false.

Some topology predicates are atomic and stated explicitly
as true or false for given arguments. Other predicates can be
computed in terms of these atomic predicates. E.g., signal ms1
is a main signal guarding access to route rt , if there exists track
segments ts1 and ts2 such that ts1 is before route rt , ts1 is
connected with ts2 , ts2 is part of the route rt , and ms1 is
located directly between ts1 and ts2 . This can be expressed
as follows:

route main signal(ms1 , rt)↔ ∃ts1 , ts2 ∈ Segment.
before(ts1 , rt) ∧ connected(ts1 , ts2) ∧ part of(ts2 , rt)
∧ infrontof(ts1 ,ms1) ∧ inrearof(ts2 ,ms1)

In [2], [6] Kanso introduced a translation of such formulae
to propositional formulae which then can be verified using SAT
solving or model checking. He took the following steps:

(1) Expressed the topology as a Prolog program, which de-
termined the truth value of the topology predicates. It consisted
of clauses such as mainsignal(ms1) (ms1 is a main signal),
infrontof(ts0a,ms1) (signal ms1 is in front of track segment
ts0a). The above predicate route main signal(ms1 , rt) is
defined in Prolog as:

route main signal(ms1 , rt) :−
before(ts, rt), connected(ts, tss),
part of(tss, rt), infrontof(ts,ms1),
inrearof(tss,ms1).

(2) Translated using standard techniques from logic the
formula into prenex form, i.e. a formula starting with a block
of quantifiers followed by a quantifier free formula.

(3) Now ∀x ∈ A.ϕ(x) is replaced by ϕ(a1) ∧ · · · ∧ ϕ(an)
and ∃x ∈ A.ϕ(x) by ϕ(a1)∨· · ·∨ϕ(an), where a1, . . . , an are
the elements of set A in the topology. ϕ is now instantiated to
closed instances. Therefore the topological predicates evaluate
to truth values true or false, which can then easily be omitted
from the formula. Safety formulae can usually be translated
into universally quantified formulae in prenex normal form3.
The universally quantified formula is replaced by conjunctions,
where most conjuncts reduce to false, since topology predicates
such as connected(ts1 , ts2) are false for most choices of
arguments. Finally state predicates are replaced by the Boolean
variables of the ladder logic. In case of safety conditions
we obtain a conjunction of instantiations of ψ. Since safety
conditions usually become conjunctions, the validity of the
conjuncts can be checked separately for validity. This allows
to identify problems relating specific objects of the railway
yard.

A typical verification condition for our Pelican crossing
example would for instance ensure that the traffic lights and
the pedestrian lights are not green at the same time:

ϕ ≡ (tlag∧tlbg∧¬plag∧¬plbg)∨(¬tlag∧¬tlbg∧plag∧plbg)
3∀x1 ∈ A1, . . . , xn ∈ An.ϕ(x1, . . . , xn), where ϕ is quantifier free.

F. The Model Checking Problem

Definition 5 (Safety Conditions for a Ladder Logic Program).
Given a ladder logic formula ψ over the variables in I ∪C a
verification condition is a propositional formula formed from
the variables in I ∪ C ∪ C ′.
Definition 6 (The Verification Problem for Ladder Logic
Programs). We define the verification problem for a ladder
logic formula ψ for a verification condition φ

LTS(ψ) |= φ

iff for all triples µC , µI , µ′C such that µC
µI−→ µ′C and µC is

reachable in LTS(ψ), we have [φ](µC , µI , µ
′
C) = 1.

Note that in most cases, as in our Pelican crossing example,
the verification condition φ only consists of variables in C,
therefore the model checking problem simplifies to considering
individual states, i.e. whether [φ](µC) = 1 at all times. Fig. 34

shows the labelled transition system for the Pelican crossing
example. We have included one unreachable state in which
both required and crossing are true.

Crossing = 0
Req = 0

.

.

.

Crossing = 1
Req = 0

.

.

.

Crossing = 0
Req = 1

.

.

.

Crossing = 1
Req = 1

.

.

.

0

0, 1

1

0

0, 1

1

Fig. 3. Pelican crossing transition system

G. Model Checking Approaches

Target technology for the first three algorithms is SAT-
solving; in the algorithms, execution terminates after a “return”
statement has been performed.

1) Bounded Model Checking (BMC): BMC, see, e.g., [13],
restricts the depth of the search space. Let the formulae
ψInitn , n ≥ 1, be unrolled transition relations which encode
n steps with ψ from an initial state of the LTS. The following
algorithm explores the LTS to a depth of up to K steps (we
assume that φ uses the variables concerning the last state):

if ¬(Init→ φ) satisfiable, return error state
n← 1
while n ≤ K do

if ¬(ψInitn → φ) satisfiable, return error trace
n← n+ 1

return “K-Safe”

As BMC produces a counter example trace if the verifica-
tion fails, it is especially interesting for debugging purposes.

4The transition labelled 0,1 is in fact two transitions, one labelled with 1
and the other labelled with 0.

42

2) Inductive Verification (IV): IV checks if an over-
approximation of the reachable state space is safe. In the
following algorithm we assume that φ uses the variables
concerning the current state and φ′ those concerning the last
state:

if ¬(Init→ φ′) satisfiable, return error state
if ¬(ψ ∧ φ→ φ′) satisfiable, return pair of error states
return “Safe”

The over approximation happens in the second line of the
algorithm: here one considers all safe states rather than the
reachable ones. This idea makes IV a very efficient approach
involving at most two calls to a SAT solver [2], [6].

3) Temporal Induction (TI): TI, see, e.g, [14], combines
BMC and IV to allow for both: complete verification and
counter example production. Let ψn be the unrolled transition
relation encoding n steps with ψ, let LFn be a formula
encoding that all n states of a sequence of states are pairwise
different and safen be a formula encoding that all these states
fulfil the verification condition, n ≥ 0. Define Basen ≡
Init ∧ ψn → φ and Stepn ≡ ψn+1 ∧ LFn+1 ∧ safen → φ,
n ≥ 0, where φ uses the variables concerning the last state.

n← 0
while true do

if ¬Basen satisfiable, return error trace
if ¬Stepn unsatisfiable, return “Safe”
n← n+ 1

4) Stålmarck’s Algorithm: This algorithm has been devel-
oped and patented by Stålmarck [15]. It usually works well on
industrial problems as they are often of considerable size, but
with a simple underlying structure. This is due to its ability to
merge the conclusion of branches in a proof tree which can be
seen as a form of learning. Its underlying theory was influenced
by sequent calculus and semantic tableaux which inspired the
branch and merge dilemma rule and the simple proof rules
respectively. The algorithm makes use of equivalence classes
in the form of data structures known as triplets.

5) Optimization via Slicing: Usually, the verification condi-
tion φ does not use all variables of the ladder logic formula ψ.
This opens up the possibility to slice ψ with respect to φ, i.e.,
to compute a formula ψφ with ψ |= φ ⇔ ψφ |= φ where ψφ
involves fewer variables and rungs than ψ. [16], [17] present
an algorithm to compute ψφ, [4], [9] give a correctness proof.
Here is the sliced ladder logic program of the Pelican crossing
example for the condition (tlag ∨ tlar) ∧ ¬(tlag ∧ tlar) ∧
(tlbg ∨ tlbr) ∧ ¬(tlbg ∧ tlbr):

crossing′ ↔ req ∧ ¬crossing,
req′ ↔ pressed ∧ ¬req,
tlag′ ↔ (¬ pressed ∨ req′) ∧ ¬ crossing′
tlbg′ ↔ (¬ pressed ∨ req′) ∧ ¬ crossing′
tlar′ ↔ crossing′,

tlbr′ ↔ crossing′

Such slicing can be applied as a pre-processing step for all
four approaches discussed above.

H. Excluding False Positives by Invariants

When verifying concrete examples, often false positives
were obtained. When discussing these counter examples with
railway experts, one obtains usually that these examples do not
occur because a certain combination of values for variables is
not possible. This means that a certain invariant was violated.
We identified [2] two kinds of invariants, physical invariants
and mathematical invariants. Physical invariants are due to the
fact that certain combinations of input variables are physically
impossible. An example is a three way switch, which is mod-
elled by 3 variables where each variable i indicates whether
the switch is in position i or not.5 It is physically impossible
for this switch to be in two positions simultaneously. Physical
invariants need to be carefully investigated by domain experts.
One example could be a paper clip falling into a three way
switch, which connects then two contacts, and one might want
the railway yard to be safe even if a paper clip has falled into
the switch.

Mathematical invariants. When using IV one might obtain
states which violate the safety condition, but are not reachable
from the initial state. In this case one can identify invariants,
which hold in all reachable states but not in the false positive.
In many cases one can prove now using the tool that the
invariant holds in all cases, and then prove again using the
tool that the verification condition holds provided the invariant
holds.

I. Graphical Representation

In order to investigate counter examples a graphical rep-
resentation of the error states was given. For our prototype
Kanso [2], [6] developed a latex document, which contained
a scheme plan with signals sets of points and routes, together
with tables listing the state of all variables in question. The
state of signals (red or green) and points and of all tables listed
was determined by macros. It was now easy to compute from
an error state a document setting these macros to the values
in this state, and therefore present an easy to view document.

IV. TECHNOLOGY & CASE STUDIES

A. Sat-Solving with open software

An initial—successful—feasibility study was conducted
using the open-source OKLibrary as underlying SAT solving
framework to automate IV in order to establish safety prop-
erties. To this end, we used the Dimacs format as a target
language. Note that this requires a representation in CNF.

Extending this implementation, we produced a framework
of automatic translations of the formulae ψ, written in Haskell
(about 8000 lines of code), and φ, written in Java (about 1000
lines of code), into the formulae required for the algorithms
BMC, IV, and TI. As target format we chose TPTP [18], which
is the input language of the Paradox tool [19]. Internally, the
open source tool Paradox is based on the SAT solver Minisat
[20], which is open source as well. Using Paradox has the
advantage that the tool takes care of the translation into Dimacs
format. The framework also includes a Haskell implementation
of slicing (about 500 lines of code).

5One could easily model it by 2 variables; however having 3 variables
makes it easier to compute the next state from the current state.

43

Using this framework, experiments on our Pelican crossing
example with the above verification condition showed: with
BMC the program is K safe for all K ≥ 0 we tried; with
IV, we obtain a pair of error states; TI gives the result “Safe”.
This example demonstrates that though IV is sound, it is not
complete.

B. The SCADE Suite as an Industrial Tool

For comparison, we applied a tool widely used in Industry,
where however no control over the method applied is available.
In SCADE (Safety Critical Applications Development Environ-
ment) [21] programs are verified using the SCADE language
and Prover Technology based on Stalmarck’s algorithm. The
program to translate ladder logic programs into SCADE lan-
guage is based on the framework described above, it has a
length of approximately 8000 lines of Haskell code [5].

The SCADE language is based on the synchronous dataflow
language Lustre [22]. The flows which constitute a Lustre
program are infinite sequences of values which describe how
a variable changes over time. Flows are combined together to
form nodes which can be seen as the Lustre equivalent of a
function or procedure. There are two main temporal operations
which can be applied to flows:

• The operator pre allows one to speak about the
previous value of a flow.

• The operator -> allows one to speak about the initial
value of a flow and its successive values.

The following is the result of the automatic translation of the
pelican crossing ladder logic to SCADE.

node PelicanLadderLogic1(pressed: bool)

returns (req, crossing, tlag, tlar, tlbg, tlbr, plag,
plar, plbg, plbr: bool)

let crossing = false -> pre req and (not (pre crossing));
req = false -> (not pre req) and pressed;
tlag = false -> ((not pressed) or req) and (not crossing);
tlbg = false -> ((not pressed) or req) and (not crossing);
tlar = true -> crossing;
tlbr = true -> crossing;
plag = false -> crossing;
plbg = false -> crossing;
plar = true -> not crossing;
plbr = true -> not crossing;

tel

C. Industrial Case Study

Using the approaches described above we automatically
translated real world railway interlockings and safety proper-
ties into the Dimacs format (for IV), the TPTP language (for
BMC, IV, and TI) and the SCADE language. The verification
results gained have been positive. For every safety condition
the tools have either given a successful verification, or a
counter example (trace). All results have been obtained within
the region of seconds.

In the following we report on the verification of a small,
real world interlocking which actually is in use on the London
Underground. The ladder logic program consists of approxi-
mately six hundred variables and three hundred and fifty rungs.
Concerning typical verification conditions, slicing reduces the
number of rungs down to 60 rungs, i.e., the program size is

reduced by a factor of 5. All experiments reported have been
carried out on a computer with the operating system Ubuntu
9.04, 64-bit edition, an Intel Q9650, Quad core CPU with
3GHz, and a System Memory of 8GB DDR2 RAM.

1) Evaluation with an Open Source Tool: The first con-
dition encodes that if a point has been moved, it must have
been free before. Here, the verification actually fails. IV yields
a pair of states within 0.75s, while BMC produces an error
trace of length 3 in 0.81s, TI produces the same trace. The rail
engineers were able to exclude this counter example as a false
positive. By adding justifiable invariants we could exclude this
false positive. The second condition excludes that the program
gives an inconsistent command, namely, that a point shall be
set to normal and to reverse at the same time. IV proves this
property in 0.71s; BMC yields K-safety for up to 1000 steps,
after which we ran out of memory; BMC on the sliced program
is possible up to 2000 steps; TI does not terminate, neither
for the original nor for the sliced version. Our experience is
that IV can deal with real world examples. Slicing yields an
impressive reduction of the size of the ladder logic program. It
is beneficial when producing counter examples with BMC as
it reduces the runtime and also helps with error localization.

2) Verifying the Industrial Case Study using SCADE:
All above safety conditions take times less than 1s [5]. We
attempted the verification of 109 safety conditions out of these
54 were valid and 55 produced counter examples. The latter
are false positives and were eliminated by adding invariants
as described above. The total time for the verification and
production of counter examples for all of these safety condi-
tions was under 10 seconds. This may be in part due to some
support for multi-core processors allowing the SCADE suite
to dispatch multiple verification tasks efficiently. Generally,
in the process of removing false positives approximately one
hundred invariants were added. Overall, this shows that SCADE
is a viable option for the verification of railway interlockings.

V. CONCLUSION

The overall conclusion is that the verification step described
works out: the required translations can be automated, the cur-
rent tools scale up to real world problems, the gained benefits
are convincing enough for the company Invensys to change its
practice. In terms of the underlying proof technology, it is a
matter of taste / philosophy / further constraints if one wants
to employ open software tools or a commercial product.

Our work on verifying ladder logic programs has been
inspired by [16], [17]. Alternative approaches include [23]
who apply timed automata and UPPAAL or [24] who present a
development framework for ladder logic, including verification
by port-level simulation. Our contribution is to put known
verification approaches into the context of a concrete engineer-
ing problem and, by providing a prototypical implementation,
demonstrating that they work.

Putting the context even wider, in his PhD thesis [3] Kanso
shows how to fully verify railway interlockings by interactive
theorem proving. This work greatly reduces the gap between
formal verification of safety and safety in the real world.

44

REFERENCES

[1] W. G. Vincenti, What engineers know and how they know it. The
Johns Hopkins University Press, 1990.

[2] K. Kanso, “Formal verification of ladder logic,” 2010, MRes Thesis,
Swansea University.

[3] ——, “Agda as a platform for the development of verified railway
interlocking systems,” 2012, PhD Thesis, Swansea University.

[4] P. James, “SAT-based model checking and its applications to train
control software,” 2010, MRes Thesis, Swansea University.

[5] A. Lawrence, “Verification of railway interlockings in SCADE,” 2011,
MRes Thesis, Swansea University.

[6] K. Kanso, F. Moller, and A. Setzer, “Automated verification of sig-
nalling principles in railway interlocking systems,” ENTCS, vol. 250,
pp. 19–31, 2009.

[7] K. Kanso and A. Setzer, “Specifying railway interlocking systems,” in
PreProceedings of AVoCS’09, 2009, pp. 233 – 236.

[8] ——, “Integrating automated and interactive theorem proving in type
theory,” in Proceedings of AVOCS 2010, 2010.

[9] P. James and M. Roggenbach, “Automatically Verifying Railway In-
terlockings using SAT-based Model Checking,” in Proceedings of
AVoCS’10. Electronic Communications 35 of EASST, 2010.

[10] A. Lawrence and M. Seisenberger, “Verification of railway interlockings
in SCADE,” in Proceedings of AVOCS 2010, 2010.

[11] IEC, “IEC 61131-3 edition 2.0 2003-01. international standard. pro-
grammable controllers. part 3: Programming languages,” January 2003.

[12] M. Leach, Ed., Railway Control Systems: a sequel to Railway Sig-
nalling. A & C Black, 1991.

[13] E. Clarke, A. Biere, R. Raimi, and Y. Zhu, “Bounded model checking
using satisfiability solving,” in Formal Methods in System Design.
Kluwer Academic Publishers, 2001, p. 2001.

[14] N. Een and N. Sörensson, “Temporal induction by incremental SAT
solving,” ENTCS, vol. 89, no. 4, 2003.

[15] G. Stålmarck, “System for determining propositional logic theorems by
applying values and rules to triplets that are generated from boolean
formula,” 1994, US Patent: 5,276,897.

[16] J. Groote, J. Koorn, and S. Van Vlijmen, “The safety guaranteeing
system at station Hoorn-Kersenboogerd,” in Compass’95. IEEE, 1995.

[17] W. Fokkink and P. Hollingshead, “Verification of interlockings: from
control tables to ladder logic diagrams,” in FMICS’98, 1998.

[18] “The TPTP problem library for automated theorem proving,”
http://www.cs.miami.edu/ tptp/.

[19] K. Claessen, “New techniques that improve mace-style finite model
finding,” in CADE-19, 2003.

[20] “Minisat,” http://minisat.se.
[21] P. Abdulla, J. Deneux, G. Stålmarck, H. Argen, and O. Akerlund,

“Designing safe, reliable systems using SCADE,” in Springer LNCS
4313, 2006, pp. 115–129.

[22] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice, “LUSTRE: a
declarative language for real-time programming,” in POPL’87, 1987.

[23] B. Zoubek, J.-M. Roussel, and M. Kwiatowska, “Towards automatic
verification of ladder logic programs,” in CESA’03. Springer, 2003.

[24] K. Han and J. Park, “Object-oriented ladder logic development frame-
work based on the unified modeling language,” in Computer and
Information Science. Springer, 2009.

45

Modelling Functionality of Train Control Systems
using Petri Nets

Michael Meyer zu Hörste
and Hardi Hungar

German Aerospace Centre (DLR)
Institute of Transportation Systems

Lilienthaplatz 7, 38108 Braunschweig, Germany
Email: {Michael.MeyerzuHoerste,Hardi.Hungar}@dlr.de

Eckehard Schnieder
Technical University Braunschweig

Institute for Traffic Safety and Automation Engineering
Langer Kamp 8, 38106 Braunschweig, Germany

Email: E.Schnieder@tu-bs.de

Abstract—Railway safety systems are highly complex systems
with respect to functionality as well as dependability. The new
European Train Control System (ETCS) as one part of the
European Rail Traffic Management System (ERTMS) is the
example presented here. A formal model using Coloured Petri
Nets (CPN) was prepared by using the existing ERTMS/ETCS
specification as a basis. The applied method is an integrated event-
and data-oriented approach, which shows the different aspects of
the system on their own Petri Net levels. The model comprises
three sub-models with a model of the environment developed next
to the onboard and trackside systems. This environment model
covers all the additional systems connected through the system
interfaces, examples of which are interlocking or regulation.
Starting from a net representing the system context, the processes
of the onboard and trackside sub-systems were modelled. Here,
the different operations and processes are visualized in the form
of scenarios, which in turn have access to additional refinements
representing specific functions.

I. INTRODUCTION

Complex systems as train control systems are specified
by many functional, safety-related or other requirements.
Showing completeness and consistency of these requirements
is a quite difficult task. In the case of ETCS many documents
- so-called Subsets - have been written for different purposes.
Characteristics of these documents are that they specify
different aspects, are based on each other, and have different
objectives [1], [2]. From this follows that there are separate
documents for specific sub-functions and sub-systems which
specify a certain segment of the requirements made on the
system, a phenomenon which is most apparent with the central
systems which immediately adjoin the interoperable interfaces.
The documents can be seen as forming a specification network
interlinked by references and cross-references. All this means
that, in order to finalize specification work and set about
implementation, the specification has to be proved to be
fully consistent, and system operability has to be verified; it
should also be checked that the system suits the operational
conditions of the different railway operators and countries.
In the past, a multitude of highly diverse methods and
means of description, employing specific computer tools or
even manual operations, were used to meet these requirements.

The basic architecture of ETCS exhibits an air gap between
the trackside and the onboard subsystems. In one typical

equipment configuration, the trackside is realised by a Radio
Block Centre (RBC) which sends messages by radio to the
Onboard Unit (OBU). The model developd follows this system
structure and adds a third part, which is the common system
environment. More details can be found in [3]. The Fig. 1
shows the structure.

Fig. 1. Example train control system architecture

Central aspects were the air gap and the EuroBalise in-
terface, which were to be modelled with as much detail as
possible and in compliance with the System Requirements
Specification [1].

II. SOME DEFINITIONS

A. The term ’model’

A model can in a general way be characterised by three
properties: a model represents part of the reality, and of that
reality those features that are of relevance for the immediate
purpose of the model; other features that are without relevance
for the purpose of the model are only presented in a reduced
form. The model serves a specific purpose; this characteristic
of a model is referred to as pragmatics. A model can serve to
describe certain conditions, it can provide insights, or it can
replace a real system.

B. Means of description, method and tool

The GMA sub-committee 1.8.1 “Standardisierte Beschrei-
bungsmittel in der Automatisierungstechnik” (Standardised
means of description in automation engineering) provides the
following definitions for the terms ’means of description’,
’method’ and ’tool’ [4]:

46

Means of description: A means of description describes
graphically certain conditions for visual percep-
tion and storing. Means of description are al-
phanumeric signs, symbols and other graphic ele-
ments of representation (semiotics,) and also con-
ventions on how these can be combined (syntax).
Assigned to the different elements of representa-
tion, their possible combinations and allocations
are specific conditions and concepts from a certain
context, which may be specified in a more or less
detailed and formal way (semantics).

The following distinctions are made:

Formal means of description: Has a mathematical basis
and a defined and complete syntax.

Semi-formal means of description: Has a defined and
complete syntax, not, however, a mathematical
basis.

Informal means of description: Also possesses the char-
acteristics of a means of description (semiotics,
syntax, semantics), these are, however, not always
complete.

The means of description used in modelling ERTMS/ETCS
are coloured and hierarchic Petri nets, since the aim is to ex-
amine whether these offer the possibility of using one uniform
means of description for the entire development cycle, starting
with the specification through to implementation. Above and
beyond that, Petri nets provide the required capacity that allows
different methods to be used during one single phase of the
development cycle and also phase-specific methods [5].

Method: A method is a procedure, systematic both in
terms of the point in question and the purpose,
following a set of principles and designed to
produce insights and practical results.

In the project presented here, an integrated method was
used, which has both a data and event-related orientation. It
provides for visualization of the sub-system processes, but also
of the operational processes in the form of scenarios, and of
the functions in individual nets.

Tool: Designed to assist man in or during the production
of results. Today, the term ’tool’ is normally
understood to mean ’realised by computer systems
(hardware / software)’.

Following comparative investigations and studies, De-
sign/CPN was selected as tool for this project. The decision
was not least taken because of the fact that it provides for a
reachability analysis [5], [6].

III. MODEL STRUCTURE

A. Principles of the Net Structure

For ERTMS/ETCS modelling it was decided to visualize
system context, sub-system process, operational processes in
the form of scenarios and functions in an integrated manner.
For this purpose, nets are decomposed to reflect these four
aspects in four levels (see Table I).

TABLE I. THE DIFFERENT LEVELS OF NETS WITHIN THE MODEL

Level Content
Context System and relation to system envirnoment (Architecture)
Process System and interfaces (Interfaces)
Scenario Reactive sequence of messages and events (Event-Sequence)
Function Details of functional steps with respect to an event (Functionality)

B. Overall Model / Context Net

The system context is depicted on the uppermost level.
This net comprises the two modelled sub-systems onboard
system and RBC. All the other sub-systems are comprised in
the environment, they may, however, be further refined during
a later phase of modelling work.

Fig. 3. Petri Net model level 1: System context

This net corresponds to the formal representation of the
system architecture in Fig. 1. On this level, all the interfaces
are defined as uni-directional channels.

C. Nets on the Process Level

The next level is formed by the nets of process visualiza-
tion. This level defines what scenarios can be passed in what
sequence.

In a central position are the transitions and places that pro-
vide additional application logics. To the right and to the left
are two dark-grey boxes, which accommodate the interfaces
to the outside. Messages sent to a receiver or received by a
sender are combined in one place. At the train end the right-
hand box, and at the RBC end the left-hand box, is reserved
for communications between train and control system.

D. Scenario Nets

The different scenarios are refined with two more aspects.
The interfaces are disintegrated until individual messages are
singled out. For each message there is a transition, referred
to as driver, which is responsible for translating the message
from the general data type ”message” into the required

47

Fig. 2. Petri Net model level 3: Scenario

Fig. 4. Petri Net model level 2: Process

context specific type. In this context, messages are defined
strictly in compliance with the definitions in chapters 7 and
8 of the System Requirements Specification [1]. In the nets
themselves, the sequence of events is shown. The possibility
of parallel event sequences as a function of specific initial
situations and stimulations is given due consideration. Used
as a basis here is SRS [1] and the related low-level documents.

These nets comprise three areas: the application logics is
again located in the centre, while the two boxes with the
interfaces are located at the outer left and right. Next to the
interfaces is a box designated radio driver and interface driver,
respectively. All transitions in these boxes start with ’send’ or
’receive’; they comprise the receive or send logics for a specific
message. This is why between these boxes and the application

logics there are one or several more dark-grey boxes, providing
one place for each individual message. The name of these
boxes starts with ”messages”. This overall structure is common
to all scenario nets.

E. Functional Nets

The functions, if explicitly modelled, form a net level of
their own, and are visualized in the following way.

Fig. 5. Petri Net model level 4: Function

The nets on this level are much simpler in structure: they
only show the transition refinements. This is why they do not
have any interfaces with external systems, even if the transition
itself has such interfaces. Communication is safeguarded by the
higher (scenario) level net. The net logics is accommodated in
a box delimited by a dashed line; the inputs and outputs of the
transitions of the higher-level net are outside this box.

48

IV. RESULTS

A. Model Complexity and Performance

ERTMS/ETCS system modelling has to date proceeded
to the degree of complexity given in Table II. As modelling
aims at providing a detailed visualization of the air gap, the
environment model only serves to produce stimulations, which
is why the environment model was not taken beyond the
required abstraction level.

TABLE II. MODEL COMPLEXITY

Onboard RBC Environment
Number of nets 75 87 6
Net elements 1,075 1,411 97
Places 734 954 65
Transitions 341 457 32
Hierarchy levels 7 7 3
Lines of code 15,500 12,500 0
(incl. comments)

The model performance can be subdivided into two groups.
On the one hand, modelling itself has achieved a number
of aims: the SRS has been modelled in a formal way, the
interface that has a central role to play for interoperability,
i.e. the air gap between track and train, has been visualized,
and the operational processes have been shown in the form
of scenarios. A second group is represented by the simulation,
which implies both simulation of the operational processes and
simulation of the supervision functionality.

One may compare the modeling approach chosen here,
namely to use Petri nets, to one emplying state machines
from the UML. Both share the idea of introducing hierarchy
to offer views at different levels of detail. A main difference
lies in the form in which the communication mechanism is
represented. The Petri net model represents communications
(or communication relations) explicitly in a graphical form
via places and tokens. This is in particular helpful when
communication is a major concern, as it is the case with the air
gap. State machines would rather use events, i.e., non-graphical
elements. This gives per se more readable results when entities
partake in many activities. Here, this occurs at level 4. Our
Petri net model employs “shared places” to remain readable.
These are places like the one on the right in Fig. 5, which
appear in more than one net.

B. Quality Assurance of the Specification

Validation of the model is, of course, an important aspect.
The precise goal of the validation will depend on the purpose
for which the model is to be used. Manual techniques like in-
spections or reviews [8], [9] common for program verification
can be transferred to semi-formal and formal models.

These manual techniques can be complemented by model
animations and simulations, or by specific analyses. Some
reachability analyses have already been done, in which in-
dividual scenarios and sequences of scenarios were used as
examples. See Fig. 6 for an example visualisation of the
results. This figure shows an occurancy graph of a part of
the model for 13 different external messages A to M coming
in. Generally can be seen, that normally the message comes
at a defined state and after a number of events - partially in
a fixed sequence, partially parallel - the systems reaches one

defined state. The important difference is the message K, where
two branches appear, which never converge again. The OG
shows here a failure either in the model or in the specification.
This exmaple shows, how analysis techniques can be used for
quality assurance of the model and the specification, too

V. USE OF THE PETRI NET MODEL

A. Safety Standards / Certification Support

The formal model can assist in furnishing the proof of
safety standards. Formal description of the system at the same
time provides a clear and unequivocal definition of the system
behaviour. On this basis system implementation can be tested
with reference to the model, and the system behaviour can be
checked for given conditions and also in an abstract manner,
in the form of an analytical procedure.

B. Use for Test and Validation of Products

In this respect, the model will serve as a reference for the
behavior of the product. There are different forms of relation
between model and product behavior.

1) Abstract observer: Each of the different levels of the
Petri net can be viewed as an abstraction of the real system. A
formal definition of the abstraction relation will map concrete
traces to abstract ones (more generally, it may relate the trace
sets). Then, any animation, simulation, test, or field observation
of an implementation yields traces which can be checked for
consistency with the model. This is a standard use case for
any kind of model which has an operational semantics.

On the other hand, such observations on an implementation
may also be seen as a check for the correctness of the model.
In system development, abstract specifications done in early
design steps are often not correct in a strict interpretation of
this term. For instance, they may be too restrictive (overspec-
ification) or lack important detail (error handling, effects of
low-level timing). Such discrepancies, if uncovered, can be
used to correct or complete the model. Checking the observer
relation is thus a means to arrive at a consistent development
documentation.

2) Test construction: The scenario and functional nets pro-
vide (as indicated above) abstract view of the behavior of the
implementation. These can obviously also be used as skeletons
of test cases. To turn them into applicable test cases, the
skeletons will have to be parameterized, translated to technical
interfaces of the unit under test, and turned into executable
scripts with stimuli specifications and pass/fail criteria. In other
words, one may derive a test specification from the Petri net
model by systematically covering the model.

3) Supporting hardware-in-the-loop tests: The approach
sketched above is a way in which a single activity, namely
test derivation, in standard development processes may be
improved. There are more ambitious scenarios, in which test
execution and the development itself might be modified. Thes
require further extensions to the model.

Presently, simulations of the model are made off-line, and
timing is discrete in the form of discrete steps of sequences
of events. Real-time simulations of models presuppose that
in modelling the system, aspects of the real-time mode are

49

Fig. 6. Occurence Graph of Transition Level 1 to Level 2/3

given due consideration. I.e., the model needs a real-time
interpretation, for which some additions to the model will be
necessary. Also, a real-time compatible tool for simulating the
model is needed.

Adequate modelling and hardware provided, the simu-
latable model can support tests in the form of hardware-
in-the-loop tests. For such tests, part of the real system is
replaced by a simulation using suitable hardware, and one or
several parts of the system are linked in the form of their
implementation. This procedure allows hardware components
to be tested individually.

An overview about different simulations for validation and
hardware-in-the-loop tests are given in the table III taken from
[3]. “sim.” means here simulated. The bold numbers show the
target system of the test.

TABLE III. SIMULATIONS AND TESTS

onboard trackside
sim. real sim. real

Aim

1-2 0 1 0 Validation of oeprational procedures
0 1 1 0 Test and validation of onboard subsystem

1-n 0 0-m 1 Test and validation of trackside subsystem
0-n 1 0-2 1 Validation of Interoperability
0 1 0 2 trackside handover

2-n 0 0-m 1 Stresstest

4) Interface Generators: A simulatable model can be used
to supply the interfaces of a real or simulated system with
stimulations. Possible approaches are presented in [7].

5) Code Generation: Generally executable models can be
transformed into software code. Analysed are the following
three options of generating executable codes:

1) Automatic source code generation, which is followed
as a second step by conventional compilation.

2) Compilation of the Petri net itself to produce an
executable code.

3) Execution of the net itself in the form of a system.
Within the meaning of the definition of the term
’model’ this implies that the system is substituted by
a model and its hardware.

VI. CONCLUSION

On the basis of the System Requirements Specification
and the relevant documents [1] an ERTMS/ETCS model was
developed. This model visualizes the system in the form of
three Petri net models. The onboard and trackside systems
together form the core which is embedded in a model of
the environment. The two core models reflect the aspects of
the sub-system context, of the processes proceeding within
the sub-systems, of operational processes in the form of
scenarios and specific functions. In developing these models,
a combination of three elements was used: Petri nets as
a means of description, an integrated method and the tool
Design/CPN. It was demonstrated that during the phases of
system development, covering the system specification through
to the final system design, a model based on Petri nets can be
used.

REFERENCES

[1] UNISIG: ETCS Subset 026 - SRS. System Requirements Specification.
[2] UNISIG: TIU FFFIS. 97E117 Version 1.0.
[3] Meyer zu Hörste, M.: Methodische Analyse und generische Modellierung

von Eisenbahnleit- und -sicherungssystemen. Fortschritt-Berichte VDI.
Series 12, No. 571, Düsseldorf, 2004 (In German).

[4] GMA Unterausschuss 1.8.1 Standardisierte Beschreibungsmittel in der
Automatisierungstechnik: Glossar. Braunschweig, 1998. www.ifra.ing.tu-
bs.de/gma181/glossar.htm.

[5] K. Jensen: Coloured Petri Nets, Volume 1, Monographs in Theoretical
Computer Science. Springer-Verlag, Berlin u.a. , 1992.

[6] Design/CPN: Occurrence Graph Analyser-Manual. Version 3.0, Aarhus,
1996.

[7] H.-M. Schulz: The complexity of technical testing. FORMS’98, Braun-
schweig, 1998.

[8] M. E. Fagan: Design and Code Inspections to Reduce Errors in Program
Development. IBM Systems Journal, July 1976, pp 182–211, reprinted
1999, pp 258–287.

[9] E. Yourdon: Structured Walkthroughs. Prentice-Hall, Englewood Cliffs,
NJ, 1979.

50

