108 research outputs found

    AutoGraff: towards a computational understanding of graffiti writing and related art forms.

    Get PDF
    The aim of this thesis is to develop a system that generates letters and pictures with a style that is immediately recognizable as graffiti art or calligraphy. The proposed system can be used similarly to, and in tight integration with, conventional computer-aided geometric design tools and can be used to generate synthetic graffiti content for urban environments in games and in movies, and to guide robotic or fabrication systems that can materialise the output of the system with physical drawing media. The thesis is divided into two main parts. The first part describes a set of stroke primitives, building blocks that can be combined to generate different designs that resemble graffiti or calligraphy. These primitives mimic the process typically used to design graffiti letters and exploit well known principles of motor control to model the way in which an artist moves when incrementally tracing stylised letter forms. The second part demonstrates how these stroke primitives can be automatically recovered from input geometry defined in vector form, such as the digitised traces of writing made by a user, or the glyph outlines in a font. This procedure converts the input geometry into a seed that can be transformed into a variety of calligraphic and graffiti stylisations, which depend on parametric variations of the strokes

    Development of Unsupervised Image Segmentation Schemes for Brain MRI using HMRF model

    Get PDF
    Image segmentation is a classical problem in computer vision and is of paramount importance to medical imaging. Medical image segmentation is an essential step for most subsequent image analysis task. The segmentation of anatomic structure in the brain plays a crucial role in neuro imaging analysis. The study of many brain disorders involves accurate tissue segmentation of brain magnetic resonance (MR) images. Manual segmentation of the brain tissues, namely white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF) in MR images by an human expert is tedious for studies involving larger database. In addition, the lack of clearly defined edges between adjacent tissue classes deteriorates the significance of the analysis of the resulting segmentation. The segmentation is further complicated by the overlap of MR intensities of different tissue classes and by the presence of a spatially and smoothly varying intensity in-homogeneity. The prime objective of this dissertation is to develop strategies and methodologies for an automated brain MR image segmentation scheme

    Multiresolution models in image restoration and reconstruction with medical and other applications

    Get PDF

    A population Monte Carlo approach to estimating parametric bidirectional reflectance distribution functions through Markov random field parameter estimation

    Get PDF
    In this thesis, we propose a method for estimating the parameters of a parametric bidirectional reflectance distribution function (BRDF) for an object surface. The method uses a novel Markov Random Field (MRF) formulation on triplets of corner vertex nodes to model the probability of sets of reflectance parameters for arbitrary reflectance models, given probabilistic surface geometry, camera, illumination, and reflectance image information. In this way, the BRDF parameter estimation problem is cast as a MRF parameter estimation problem. We also present a novel method for estimating the MRF parameters, which uses Population Monte Carlo (PMC) sampling to yield a posterior distribution over the parameters of the BRDF. This PMC based method for estimating the posterior distribution on MRF parameters is compared, using synthetic data, to other parameter estimation methods based on Markov Chain Monte Carlo (MCMC) and Levenberg-Marquardt nonlinear minimization, where it is found to have better results for convergence to the known correct synthetic data parameter sets than the MCMC based methods, and similar convergence results to the LM method. The posterior distributions on the parametric BRDFs for real surfaces, which are represented as evolved sample sets calculated using a Population Monte Carlo algorithm, can be used as features in other high-level vision material or surface classification methods. A variety of probabilistic distances between these features, including the Kullback-Leibler divergence, the Bhattacharyya distance and the Patrick-Fisher distance is used to test the classifiability of the materials, using the PMC evolved sample sets as features. In our experiments on real data, which comprises 48 material surfaces belonging to 12 classes of material, classification errors are counted by comparing the 1-nearest-neighbour classification results to the known (manually specified) material classes. Other classification error statistics such as WNN (worst nearest neighbour) are also calculated. The symmetric Kullback-Leibler divergence, used as a distance measure between the PMC developed sample sets, is the distance measure which gives the best classification results on the real data, when using the 1-nearest neighbour classification method. It is also found that the sets of samples representing the posterior distributions over the MRF parameter spaces are better features for material surface classification than the optimal MRF parameters returned by multiple-seed Levenberg-Marquardt minimization algorithms, which are configured to find the same MRF parameters. The classifiability of the materials is also better when using the entire evolved sample sets (calculated by PMC) as classification features than it is when using only the maximum a-posteriori sample from the PMC evolved sample sets as the feature for each material. It is therefore possible to calculate usable parametric BRDF features for surface classification, using our method

    Generalized averaged Gaussian quadrature and applications

    Get PDF
    A simple numerical method for constructing the optimal generalized averaged Gaussian quadrature formulas will be presented. These formulas exist in many cases in which real positive GaussKronrod formulas do not exist, and can be used as an adequate alternative in order to estimate the error of a Gaussian rule. We also investigate the conditions under which the optimal averaged Gaussian quadrature formulas and their truncated variants are internal

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described

    Handbook of Mathematical Geosciences

    Get PDF
    This Open Access handbook published at the IAMG's 50th anniversary, presents a compilation of invited path-breaking research contributions by award-winning geoscientists who have been instrumental in shaping the IAMG. It contains 45 chapters that are categorized broadly into five parts (i) theory, (ii) general applications, (iii) exploration and resource estimation, (iv) reviews, and (v) reminiscences covering related topics like mathematical geosciences, mathematical morphology, geostatistics, fractals and multifractals, spatial statistics, multipoint geostatistics, compositional data analysis, informatics, geocomputation, numerical methods, and chaos theory in the geosciences
    corecore