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1. Introduction

Image segmentation is a basic early vision problem which serves as precursor to many high
level vision problems. Color image segmentation provides more information while solving
high level vision problems such as, object recognition, shape analysis etc. Therefore, the
problem of color image segmentation has been addressed more vigorously for more than
one decade. Different color models such as RGB, HSV, YIQ, Ohta (I1, I2, I3), CIE(XYZ, Luv,
Lab) are used to represent different colors [5]. From the reported study, HSV and (I1, I2, I3)
have been extensively used for color image segmentation. Ohta color space is a very good
approximation of the Karhunen-Loeve transformation of the RGB, and is very suitable for
many image processing applications [1]. Image Modeling plays a crucial role in image anal‐
ysis. Stochastic models, particularly MRF models, have been successfully used as the image
model for image restoration and segmentation [2], [3], [4]. MRF model has also been success‐
fully used as the image model while addressing the problem of color image segmentation
both in supervised and unsupervised framework. Kato et al [6] have proposed a MRF model
based unsupervised scheme for color image segmentation. In Kato 's method, the model pa‐
rameters have been estimated using Maximum Likelihood criterion and the only parameter
identified by the user is the number of class. This algorithm could be validated using differ‐
ent color textures and real images. Another color texture unsupervised segmentation algo‐
rithm has been proposed by Deng et al [7] and the method has been retermed as JSEG
method. Recently, an unsupervised image segmentation algorithm has been proposed by
Guo et al [8] where K-means has been used to initialize the classification in the classification
of numbers. Very recently Scarpa et al. [13] have proposed a multiscale texture model and a
related algorithm for the unsupervised segmentation of color images. In this scheme, the
feature vectors have been collected and based on the feature vector the textures are then re‐
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cursively merged giving rise to larger and more complex textures. This algorithm could suc‐
cessfully be tested on real world natural and remote sensing images. The model parameters
can be estimated in both supervised and unsupervised framework [6].

In this piece of work, a Constrained Compound MRF model based color image segmenta‐
tion scheme is proposed in unsupervised framework. We have used Ohta (I1, I2, I3) color
space to model the color images. In the proposed scheme, the Constrained Compound MRF
model parameters and the image labels are estimated concurrently. Since the image label es‐
timates and the estimates of model parameters are dependent on each other, obtaining glob‐
al estimates of label as well as model parameters is very hard. Hence, we have proposed a
recursive scheme for estimation of image labels and model parameters. The recursive
scheme yields partial optimal solutions as opposed to optimal solutions. The MRF model
parameter estimation problem is formulated in Maximum Conditional Pseudo Likelihood
(MCPL) framework and the MCPL estimates are obtained using homotopy continuation
bases algorithm. The MCPL estimation strategy results in a set of nonlinear equations which
need to be solved to determine the model parameter estimates. Determination of the esti‐
mates is tantamount to determine the zeros of the unknown function. Homotopy continua‐
tion methods [14], [15] are globally convergent methods that have been used to trace the
zeros of a function and hence determines the solution of functions. We have developed the
fixed point based homotopy continuation method to estimate the model parameters. The
image label estimation problem is formulated in Maximum a Posteriori (MAP) framework
and the MAP estimates are obtained using the proposed hybrid algorithm [10]. The pro‐
posed supervised algorithm has been successfully tested on different images, however, for
the sake of illustration we have presented three results and a comparison is made with [9].

2. MRF model

MRF theory is a branch of probability theory for analyzing the spatial or contextual depend‐
encies of physical phenomena. It is used in visual labeling to establish probabilistic distribu‐
tions of interacting labels.

2.1. Neighborhood system and cliques

The sites in S are related to one another via a neighborhood system. A neighborhood system
for S is defined as

{ }/iN N i S= " Î (1)

Where Ni is the set of sites neighboring i. The neighboring relationship has the following
properties:

1. A site is not neighboring to itself: i∈N i
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2. The neighboring relationship is mutual: i∈N i ⇔ N i 

( ) ( )( ) 2
/ , , , ,i i i i iN i S dist x y x y r i i¢ ¢

ì é ù¢ ¢= Î £ ¹í ë ûî
(2)

For a regular lattice S, the set of neighbors of i is defined as the set of sites within a radius of
r  from i.

Where dist (A, B) denotes the Euclidean distance between A and B and r takes an integer
value. The Fig 1 shows (η1) the first order and second order neighborhood system (η2).

Figure 1. (a) Figure showing first order (η1), second order (η2) and third order(η3)neighborhood structure (b) Cliques on
a lattice of regular sites.

The pair (S, N) = G constitutes a graph in the usual sense; s contains the nodes and N deter‐
mines the links between the nodes according to the neighboring relationship. A clique c for
(s, N) is defined as a subset of sites c={i, i’), or a triple of neighboring sites c = {i, i’, i’’), and so
on. The collections of single-site, pair-site and triple-site cliques will be denoted by C1, C2,
and C3 respectively, where

1 { / }C i i S= Î (3)
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''
2 {{ , } / , }iC i i i N i S= Î Î (4)

''' '' '
3 {{ , , } / , , }C i i i i i i Sareneighborstoone another= Î (5)

The sites in a clique are ordered, and {i, i’} is not the same clique as {i’, i}, and so on. The
collection of all cliques for (S, N) is

1 2 3 .....C C C C= U U U (6)

The type of a clique for (S, N) of a regular lattice is detetrmined by its size, shape and orien‐
tation. Fig. 1 shows the clique types for the first order and second order neighborhood sys‐
tems for a lattice [2] [3].

Let Z = {Z1, Z2, ..., Zm} be a family of random variables defined on the set S, in which each
random variable Zi takes a value zi in L. The family Z is called a random field. We use the
notion Zi = zi to denote the event that Zi takes the value zi and the notion
(Z1 = z1, Z2 = z2, ...., Zm = zm).

To denote the joint event. For simplicity a joint event is abbreviated as Z = z where
z = {z1, z2, ...} is a configuration of z, corresponding to realization of a field. For a discrete
label set L. the probability that random variable Zi takes the value zi is denoted P(Zi = zi),
abbreviated P(zi) and the joint probability is denoted as
P(Z = z) = P(Z1 = z1, Z2 = z2, ..., Zm = zm) and abbreviated P(z).

F is said to be a Markov Random Field on S with respect to a neighborhood system N if and
only if the following two conditions are satisfied:

( ) 0, ( )P Z z z Z Positivity= > " Î (7)

( / ) ( / ) ( )
ii S i i NP z z P z z Markovianity- = (8)

Where S-i is the set difference, zS-I denotes the set of labels at the sites in S-i and

'
'{ / }

iN iiz z i N= Î (9)

Stands for the set of labels at the sites neighboring i.

The positivity is assumed for some technical reasons and can usually be satisfied in practice.
The Markovianity depicts the local characteristics of Z. In MRF, only neighboring labels
have direct interactions with each other[2][3].
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The concept of MRF is a generalization of that of Markov processes (MPs) which are widely
used in sequence analyisis. An MP is defined on a domain of time rather than space. It is a
sequence of random variables Z1, Z2, …., Zm defined in the time indices 1, 2, …, m. It is gen‐
eralized into MRFs when the time indices are considered as spaial indices.

3. Compound Markov Random Field (COMRF) model

Capturing salient spatial properties of an image lead to the development of image models.
MRF theory provides a convenient and consistent way to model context dependent entities
for e.g. image pixels and correlated features [6]. Though the MRF model takes into account
the local spatial interactions, it has its limitations in modeling natural scenes of distinct re‐
gions. In case of color models, it is known that there is a correlation among the color compo‐
nents of RGB model. In our formulation, we have decorrelated the color components and
introduced an interaction process to improve the segmentation accuracy. We have em‐
ployed inter-color-plane interaction (Ohta I1, I2, I3 color model) process which reinforces par‐
tial correlation among different color components.

In this work, a compound MRF model has been proposed and the proposed model is based
on the following notion. The prior MRF model takes care of (i)Intra-color-plane I1 or I2 or I3 I1,
I2, and I3 entities of each color plane(ii)Inter-color-plane interactions of pixels of different col‐
or planes for e.g. I1 and I2, and I3. The MRF prior model takes care of the spatial interactions
in any given color plane and also interaction of a pixel of a given color plane with the pixel
of other color planes. Thus the intra color plane and inter color plane interactions could be
modeled by the compound MRF model. Motivation behind this modeling is as follows. It is
known that strong correlation exists among different color planes of RGB model and there‐
fore not suitable for image segmentation. On the other hand Ohta model is suitable for im‐
age segmentation because of the existing weak correlation among color planes. In order to
develop an appropriate color model, we develop a model with controlled correlation among
the different color planes. Therefore, the a prior compound MRF model takes care of the
controlled correlation among the different planes of Ohta colorspace. The degree of correla‐
tion is controlled by the associated parameters of the clique potential function I1, I2, I3. The
values of these parameters are quite low and hence provide a controlled weak correlation
among the inter planes making it suitable for image segmentation.

We assume all images to be defined on discrete rectangular lattice MxN. In the following the
Compound MRF model is developed. Let the observed image X be modeled as a random
field and x is a realization which is the given image. Let Z denote the label process associat‐
ed with the segmented image Fig.2(a) shows the three planes of Ohta color model. Each col‐
or plane is modeled by a MRF model. Let L denote the number of labels. For a given plane
for example Z, if the spatial interactions are modeled by MRF, then the prior probability dis‐
tribution P(Z) is Gibbs distributed and can be expressed as
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( ) ( ) ( )1 ,1 1 1 /
U z

P Z z z e
q

q
-

¢= = (10)

where Z ′ =∑
z ′

e −U (z ′,θ) is the partition function, U (z 1, θ) is the energy function and is of the

form U (z ', θ) = ∑
c∈C

V c(z
', θ) being referred to as cliqe potential function, θ denotes the cli‐

que parameter vector. Analogously the spatial interactions of I2 and I3 planes can be defined.
This prior MRF model taking care of all the three spatial planes would result in the energy
function of the following form

( ) ( ) ( )

( )

( ) ( )

,

,

1 /

, ,

U z

U z

z

c
c C

P Z z z e

z e

U z V z

q

q

q

q q

-

-

Î

¢= =

¢ =

=

å

å
(11)

where, V c(z, θ) denotes the clique potential function for the three spatial planes I1, I2 and I3

respectively. However, the model is not complete for the color model. We model Z as a com‐
pound MRF, where the spatial interactions of individual color planes are taken care together
with the inter color plane interactions of pixels. The inter color plane interactions of pixels of
one plane with the other is shown in Fig.1(a). For the sake of illustration, Fig.1(b) shows in‐
teraction of (i, j) {th} pixel of I2 plane with the pixels of I1 plane with the first order neighbour‐
hood structure in the inter color plane direction. If this inter color plane interactions need to
modeled with the MRF prior, we can express

P(Z I2

i , j
= z I2

i , j / Z I1

k ,l
z I1

k ,l
, (k , l) ∈ I1) =

P(Z I2

i , j
= z I2

i , j / Z I1

k ,l
= z I1

k ,l
, (k , l) ≠ (i, j), (k , l) ∈ η I1

i , j
)

Figure 2. (a) I1, I2, I3 Plane Interaction (b) Interaction of one pixel of I1 –plane with I2 -plane.
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Let z denote the labels of pixels taking care of all three color planes. In otherwords, z de‐
notes the labels for pixels of the color image. For example, z{i, j} corresponds to the (i, j) th

pixel label consisting of three color components. The prior probability of z has been contrib‐
uted by the intra color plane interactions and inter color plane interactions of pixels. hence,
the prior model of z consists of the clique potential functions Vcs(z) and Vct(z) corresponding
to intra color plane interactions and inter color plane interactions respectively. The vertical
and horizontal line fields for different color planes (k=1, 2, 3) are denoted as v{k} and h{k} re‐
spectively. The horizontal and vertical line fields are defined as follows. Let f v(z k

i , j
, z k

i , j−1)
for the kth color plane be defined as f v(z k

i , j
, z k i, j −1)= | z k

i , j
− z k

i−1, j |
f h (z k

i , j
, z k

i , j−1)> threshold . Vertical line field for each plane is set i.e.

v{i, j} {k}=1 for k=1, 2, 3, if f v(z k
i , j

, z k
i , j−1)> threshold , else v {i, j} {k}=0. Similarly, in case of hori‐

zontal line field let f h (z k
i−1, j

, z k
i , j) be defined as f h (z k

i , j
, z k i, j −1)= | z k

i , j
− z k

i−1, j | .

Horizontal line field for k th plane is set, i.e. h {i, j} {k} =1 for k=1, 2, 3, if else h {i, j} {k} =1. Since the
compound MRF model takes care of intra color plane as well as inter color plane interac‐
tions the prior probability distribution is given by (10), where the energy function can be ex‐
pressed as,

( ) ( ) ( ), , ,s tU z U z U zq q q= + (12)

Where,

( ) ( )
,

, ,
ss c

i j
U z V zq q=å (13)

( ) ( )
,

, ,
tt c

i j
U z V zq q=å (14)

Here, Us(z, θ) and Ut(z, θ) refers to the energy function of intra-color-plane and inter-color-
plane respectively. Vcs (zi, j) corresponds to the intra-color-plane pixels and Vct (zi, j) corre‐
sponds to inter-color-plane pixels. Let hs

k for k=1, 2, 3 denote the horizontal line field for
each color plane in intra-color-plane and ht

k for k=1, 2, 3 denote the vertical line fields for
inter-color-plane directions. Thus the compound MRF model will have the energy function
given by (12). Equation (13) can be written as,

( ) ( ) ( ) ( ) ( )
3 2 2

, , , 1 , , 1, ,
1

, ,

1 1
s

k k k k k k k
c i j i j i j i j i j i j i j

k
k

i j i j

V z z z v z z h

v h

a

b

- -
=

é ù= - - + - -ê úë û
é ù+ +ë û

å
(15)
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Here, z1, z2, z3 correspond to I1, I2, I3 planes respectively. The equation (14) can be written as,

V ct
(zi , j)=α 1 (z 1

i , j
− z 2

i , j−1)2(1−v 1
i , j) + (z 1

i , j
− z 2

i , j−1)2(1−h 1
i , j) + β 1 v 1

i , j
+ h 1

i , j

+α 2 (z 2
i , j
− z 3

i , j−1)2(1−v 2
i , j) + (z 2

i , j
− z 3

i , j−1)2(1−h 2
i , j) + β 2 v 2

i , j
+ h 2

i , j

+α 3 (z 3
i , j
− z 1

i , j−1)2(1−v 3
i , j) + (z 3

i , j
− z 1

i , j−1)2(1−h 3
i , j) + β 3 v 3

i , j
+ h 3

i , j

(16)

Where z1 denotes the interaction between I1-I2 color planes, z2 denotes the interaction be‐
tween I2-I3 color planes and z3 denotes the interaction between I3-I1 color planes respectively.
Here we have assumed, α1 =α2 =α3 =α and β1 =β2 =β3 = β. The α, β T  is the set of unknown
parameter vector that are selected on ad hoc basis. Since the line fields correspond to the
edge pixels and in turn the boundary of a given segment. The similarity measure in case of
boundary pixels for k=1, 2, 3 is not required and hence for boundary pixels, i.e. when hi, j=1
and vi, j=1, for k=1, 2, 3 the clique potential function of (16) consists of only the penalty func‐
tion. Therefore the boundary pixels should not participate in the formation of regions with
similarity measure.

4. Constrained Markov Random Field (MRF) model

In probability theory, a martingale is a stochastic process (i.e., a sequence of random varia‐
bles) such that the conditional expected value of an observation at some time t, given all the
observations up to some earlier time s, is equal to the observation at that earlier time s. Pre‐
cise definitions are given below.

Originally, martingale referred to a class of betting strategies popular during 18th century,
in France. The simplest of these strategies was designed for a game in which the gambler
wins his stake if a coin comes up heads and loses it if the coin comes up tails. The strategy
had the gambler double his bet after every loss, so that the first win would recover all previ‐
ous losses plus win a profit equal to the original stake. Since as a gambler's wealth and avail‐
able time jointly approach infinity his probability of eventually flipping heads approaches 1.
The martingale betting strategy was seen as a sure thing by those who practiced it. Of course
in reality the exponential growth of the bets would eventually bankrupt those foolish
enough to use the martingale for a long time. The concept of martingale in probability theo‐
ry was introduced by Paul Pierre LÃ©vy, and much of the original development of the theo‐
ry was done by Joseph Leo Doob. Part of the motivation for that work was to show the
impossibility of successful betting strategies.

A discrete-time martingale is a discrete-time stochastic process (i.e., a sequence of random
variables X1, X2, X3 that satisfies for all n,

E (| Xn | )<∞
E (Xn+1 / X1, X2, X3, ..., Xn) = Xn

Advances in Image Segmentation88



i.e., the conditional expected value of the next observation, given all of the past bservations,
is equal to the last observation.

Capturing the salient spatial properties of an image lead to the development of image mod‐
els [3]. Though the MRF model takes into account the local spatial interactions, it has its lim‐
itations in modeling natural scenes of distinct regions. In order to incorporate a stronger
local dependence, we constrain this model based on the notion of martingale.The motivation
behind the new model is as follows.

MRF model takes care of the local spatial interactions, nevertheless it has limitation in mod‐
eling natural scenes. In the following we propose new model with a view to take care of in‐
tra as well as inter plane interactions. In this research work, we employed the notion of
martingale to reinforce the local dependence. Let Z (i), i =1, 2, ......n be a martingale se‐
quence, namely for all i =1, 2, ......n E |Z (n)| <∞

and E Z (n + 1) / Z (1), .....Z (n) =Z (n). Now, let Z1, Z2, .....Zn be the random variables associ‐

ated with the image of size n = N 2 and G is the predefined number of class labels. Therefore,
E Zi , j / Zk ,l , k , l ≠ i, j =Zi−1, j for any k , l∈ηi , j,  where ηi , j is the neighborhood of i, j. Con‐
sider,

,

, , , , , , ,| , , , | , , ,
i j

i j k l i j i j i j k l k l
z L

E Z Z k l i j z P Z z Z z k l i j
Î

é ù é ù¹ = = = ¹ë û ë ûå (17)

Assuming further that Z is a Markov process, we have

( )
( )

,

, ,

, , , , , , , ,

,

| , , , [ / , , ]
i j

i j i j

i j k l i j i j i j k l k l i j
z L

i j
z L z L

E Z Z k l i j z P Z z Z z k l

P Z z
z

P Z z

h
Î

Î Î

é ù¹ = = = Îë û

=

=

å

å å
(18)

Since Z is a MRF,

( )
( )

, ,

, , ,| , , ,
i j i j

i j k l i j
z L z L

P Z z
E Z Z k l i j z

P Z zÎ Î

=
é ù¹ =ë û =å å (19)

Since Zi, j is a martingle sequence E Zi , j |Zk ,l , k , l ≠ i, j = zk ,l ∀ k , l ∈ ηi , j

, ,

( )

, , , ( ), ,
i j i j

U z

k l i j i j U z
z L z L

ez k l z
e

h
-

-
Î Î

Î = å å (20)
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Considering first order neighbourhood and choosing one of the neighbourhood pixels for
example zi-1, j, equation(20) can be expressed as

zi−1, j = ∑
zi , j∈L

zi , j
e −U (z)

∑zi , j∈L e −U (z)

Instead of taking a given pixel from the neighbourhood zi-1, j, we take the average of the
neighborhood pixels. The a priori model of Z takes care of this constraint and the U(Z) is
modified as (for∀ (i, j))

, ,

( )
2

, , , ( )
,

( ) ( ) { }
avg

i j i j

U z

i j c i j i j U z
i j z L z L

eU z U z z z
e

l
-

-
Î Î

= + -å å å (21)

Where zi , javg
= ∑

zi , j∈L
zi , j

e −U (z)

∑zi , j∈L e −U (z)  and λc is the constrained model parameter. The energy

function consists of two terms

1 2 3 1 2 3( ) ( , , ) ( , , )
in ir

c s s s c t t t
c C c C

U z V z z z V z z z
Î Î

= +å å (22)

Where V c(zs
1, zs

2, zs
3) and V c(zt

1, zt
2, zt

3) are given by (15) and (16) respectively.

4.1. Constrained Compound Markov Random Field (CCMRF) model

The notions of the Constrained model has been fused with the notion of Compound Model
to develop a new model known as Constrained Compound Model [10].

The model is given by

( ) ( )
( )

( )
,

,
,

,

2

, , ,
,

i j

avg i j
i j

i j

U z

sc i j c i j i j U zi j z L
z L

eU Z U z z z
e

l
-

-Î
Î

ì ü
ï ïï ï= + -í ý
ï ï
ï ïî þ

å å
å

(23)

Where,

( ) ( )
( )

( )
,

,
,

,

, , ,

i j

s avg i j
i j

i j

U z

sc c i j c i j i j U zz L
z L

eU Z V z z z
e

l
-

-Î
Î

ì ü
ï ïï ï= + -í ý
ï ï
ï ïî þ

å
å

(24)
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Where Usc denote the energy function corresponding to intra color plane interactions and

Vcs(zi, j) is defined by (15). Where, Zi , javg
= ∑

zi , j∈L
zi , j

e
−U (zi , j )

∑zi , j∈L e
−U (zi , j )  and λc is the constrained mod‐

el parameter. The energy function taking care of both intra-color-plane and inter-color-plane
interactions with intra plane constraints is given by

( ) ( ) ( ), ,, ,
c cs i j t i jU Z U z U zq q= + (25)

Where Usc
(zi , j, θ) is defined by (24) and U tc

(zi , j, θ) is defined by (14).

V cs
(zi , j) and V ct

(zi , j) are given by (15) and (16) respectively.

5. Unsupervised framework

In unsupervised scheme, the MAP estimates of the labels and the estimates of the model pa‐
rameters are carried out concurrently. Thus, an estimation strategy need to be developed,
which using the observed image, X, will yield an optimal pair (Zopt, θopt). The following joint
optimality criterion is considered,

( ) ( ),, arg max ,opt opt
zz P Z z X xqq q= = = (26)

The estimated pair satisfying (26) is the global optima of P(Z=z/X=x, θ) with respect to Z and
θ. Since both the entities Z and θ are unknown, and interdependent the problem is a very
hard problem. Therefore, it is necessary to opt for strategies for suboptimal solution. In (26),
z, θcould be viewed as a set of parameter of the given function P(Z=z/X=x, θ). For such kind
of problems in deterministic framework, Wendell and Horter have proposed an alternate
approach that would yield suboptimal solutions instead of optimal solution. Their approach
is based on splitting the variables followed by recursively estimating the parameters. The fi‐
nal estimate in this process is called as the partial optimal solution. In our case, in stochastic
framework, we in the same spirit venture to split the original problem into estimation of la‐
bels (z) and parameters estimate θ to obtain the partial optimal solutions. The splitting of
the variables can be expressed as follows

( ) ( )* *arg max ,zz P Z z X x q= = = (27)

( ) ( )* * *arg max .P Z z X xqq q= = = (28)
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These partial optimal solutions Z *and θ* are not global maxima, rather they are almost al‐
ways local optimal solutions. But with θ=θ*, the estimate z* is global optimal satisfying
equation (27) and analogously for z=z*, θ* is global optimal satisfying equation (28). Since
neither θ* nor z* is known, a recursive scheme is adopted where the model parameter esti‐

mation and segmentation is alternated. Let at the kth iteration θ k = α k , φ k T  be the estimate
of model parameters and zk be the estimate of the labels of the observed image. We adopt
the following recursion

( ) ( )1 arg max .k k
zz P Z z X xq+ = = = (29)

( ) ( )1 1 *arg max ,k kP Z z X xqq q+ += = = (30)

The first problem of equation (29) is solved using Bayesian approach [2]. The optimal value
of θ k is obtained by the proposed Homotopy Continuation method [6]. The MAP estimates
are obtained by the proposed hybrid algorithm. One estimate of zk and θk constitute one
combined iteration. this recursion is continued for finite number of steps to obtain zk and θk.
Thus, the partial optimal solutions are obtained.

6. Image label estimation

The segmentation problem is cast as the pixel labeling problem. Each pixel can assume a la‐
bel from the set of labels {0 − L}. In a given image of size L = M1 x M2, let Zi, j denote the
random variable for (i, j)th pixel, ∀ (i, j) є L = M1 x M2. Z denotes the label process and z
denotes a realization of the process. The label estimates ẑ is obtained by maximizing the
posterior probability P(Z = z | X = x, θ). Thus, the optimality criterion can be expressed as
follows,

( )ˆˆ arg max .zz P Z z X xq= = = (31)

where, θ denotes the associated parameter vector of the double MRF model Z. Since z is un‐
known the above equation can not be computed. So, by using Baye’s theorem, hence (31)
can be expre ssed as

( ) ( )
( )

,
ˆ arg maxz

P X x Z z P Z z
z

P X x

q

q

= = =
=

=
(32)
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The observed image X is given and hence the denominator P(X = x | θ) of (32) is a constant
quantity. P(Z = z) is the a priori probability distribution of the labels. The degradation proc‐
ess is assumed to be Gaussian and hence P(X = x | Z = z, θ) of (32) can be written as
P( X = x | Z = z, θ ) = P(X = z + w | Z , θ) = P(W = x − z | Z , θ). Since, W is a Gaussian
process, and there are three spectral components present in a color image, we have,

( )
( )

( ) ( )1

1,
2 det

1
2

n

T

P W x z Z
K

x z K x z

q
p

-

= - =
é ùë û

- - -

(33)

Where K is the covariance matrix. Hence, this minimization can be expressed as,

( ) ( )( ) ( ) ( )
2

3

, ,2
, 1

ˆ arg min
2 s t

i i

k k
z c i j c i j

i j k

x z
z v z v z

s=

-
= + +åå (34)

V cs
(zi , j) and V ct

(zi , j) are given by (15) and (16) respectively. Solving (34) yields the MAP esti‐

mates of the image labels and hence segmentation. The color image has three spectral com‐
ponents xk, zk, k=1, 2, 3, Vc is the clique potential function for all the three spectral
components.

7. Model parameter estimation

We estimate the a priori model parameter using the ground truth image z. The associated
MRF parameters of this ground truth image is θ. We also assume the number of labels asso‐
ciated with the original image to be known. The parameter estimation problem is formulat‐
ed using Maximum Likelihood criterion. Here the image label available at the (k+1)th

iteration is used to estimate θ at (k+1)th iteration. Therefore, the problem can be stated as the
following

1 1arg max ( / )k kP Z zj q+ += = (35)

Since, Z is a MRF, we have,

1exp( ( , ))1 arg max
exp( ( , ))

kU zk
U

qj
z qq

z
å

+-+ =
- (36)
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where ζ ranges over all realizations of the image z. Because of the denominator of (36), compu‐
tation of the joint probability P(Z = z k +1 / θ) is extremely difficult task. We maximize the pseu‐
dolikelihood function P̂(Z = z k +1 / θ) instead of the likelihood function P(Z = z / θ) where

1
, , ,,( , ) , )1 1( / ( / ), ,( , )

k
m n m n i jZ z m nk kP Z z P Z zi j i ji j L

h q q+= Î =Õ + += =
Î

(37)

From the definition of marginal conditional probability, we can write

1
, , ,( , ) ( , ), ( , ) , )1( /, ,( , )

1( / )
( / )

,

k
k l k lZ z k l i j i j LkP Z zi j i ji j L

kP Z z
P X x

z Mi j

q

q
q

+= ¹ " ÎÕ

=
å

+=
Î

+=
=

Î

(38)

Because of MRF assumption,

1
, , ,, , , )1( /, ,( , )

1exp( ( , ))

1( , )
,

k
m n m n i jZ z m nkP Z zi j i ji j L

kV zcc C
kV zcz M c Ci j

h q

q

q

+= ÎÕ

å

=
å å

+=
Î

+-
Î

+

Î Î

(39)

Substituting equation (39) in (37) we have

1ˆ ( / )
1exp( ( , ))

1exp( ( , ))
,

kP Z z
kV zcc C
kV zcz Mi j

q

q

q

+=

å

»
å

+-
Î

+

Î

(40)

Therefore, the maximization problem (41) reduces to

1

( , )

ˆarg max ( / )

arg max

1exp( ( , ))

1exp( ( , ))
,

k

i j L

P Z z

kV zcc C
kV zcz M c Ci j

q
q

q

q

+

Î

=

å

=
å å

+-
Î

+-
Î Î

Õ (41)
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In (41), the summation is over all possible labels M. (41) is highly nonlinear in nature and no
a priori knowledge of the solution is available. Solving the resulting non-linear equations is
hard and hence we developed a globally convergent based Homotopy Continuation meth‐
od. We carry out the maximization process and obtain the estimate of parameter vector θ
with the help of homotopy continuation method based algorithm.

7.1. Salient steps of the unsupervised algorithm

1. Initialize parameter vector as θ 0, pixel label estimates z0 for k=0, 1, 2, ..., N do

2. Using θ k , observed image x and initial segmented image zk, obtain the MAP estimate of
the labels ẑk +1

3. With ẑk +1, obtain the MCPL estimate of the parameter vector θ̂k +1, using homotopy con‐
tinuation based algorithm

4. Compare θ̂k +1with the previous estimate of θ̂k , if | θ̂k +1− θ̂k | < threshold , set θ k +1 =θ kgo
to step 2 else go to step 5

5. Set estimate of parameter vector θ * = θ̂k +1

6. Estimate z * (segmented image) using θ *, ẑk +1and observed image x

8. Parameter estimation using homotopy continuation method

8.1. Homotopy continuation method

Often, a wide variety of practical problems reduces to finding solution to a system of non-
linear equations. The problem becomes difficult when we have little knowledge about the
solutions of the system. In such situations, the popular Newton algorithm may fail to con‐
verge to a solution. Such examples can be found in [19]. Therefore, we need a method
which, irrespective of the starting point always converges to a solution of the given system
of equations. Homotopy continuation methods under some conditions always converges to
a solution with probability one. Such methods are called globally convergent homotopy con‐
tinuation methods [14]. The homotopy function is defined as follows :Let X, Y be two topo‐
logical spaces and I be the unit interval λ / 0 ≤ λ ≤ 1. The two maps f, g be maps from a space
X to a space Y f , g : X → Y , then f is said to be homotopic to g if there exists a map
H : X → Y such that H(x, 0) = f(x) and H(x, 1) = g(x) for x ∈ 0, 1 , such a map H is called a
homotopy from f to g. In the above definition, H represents a continuous deformation of the
map f to g as the parameter λ is varied from 0 to 1. There is no unique homotopy map that
will continuously deform from a trivial map to any map. Depending upon the problem at
hand the path has to be accurately tracked and hence, a suitable homotopy function has to
be chosen for the existence of a path leading to the solution. The commonly used Homotopy
maps are (i) Linear Homtopy (ii) Newton Homotopy (iii) Fixed Point Homotopy.
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It is clear from Section 7 that the parameter estimation problem has been reduced to maximi‐
zation of (41) with respect to θ . Towards this end let

1ˆ( ) {log[ ( / , )]}kf P X x Y yq q
q

+¶
= = =
¶

(42)

Now the homotopy method is employed to solve f (θ) = 0. In the following, we develop a
general framework for solving f (θ) = 0 using homotopy continuation method where θ is
the unknown parameter vector to be determined.

In the continuation method we need to trace the homotopy path from a solution of a known
system to that of the desired solution. In this regard, we have considered the fixed point ho‐
motopy map [14] which offers the advantage of arbitrary starting point for the path. This
fixed point map is given by

( , , ) ( ) (1 )( )h q f qq l l q l q= + - - (43)

where 0 ≤ λ ≤ 1 and q is an arbitrary starting point. Here the predictor-corrector method is
employed to track the path defined by the homotopy in (43). The procedure can be briefly
outlined as follows:

Let (θ k , λ k , θ k−1) be a point that satisfies (43). Therefore, the point considered is on the
path. Tracking the path involves computing the adjacent point on the path. This is deter‐
mined in the following way. Increment λ k  by some small value Δλ thus giving the next
point λ k +1 = λ k + Δλ and evaluate equation (43) at (θ k , λ k +1 , θ k−1). If the value of the map
h (θ k , λ k +1 , θ k−1) is not equal to zero, then the point (θ k , λ k +1 , θ k−1) is not on the path.
Sinceh (θ k , λ k +1 , θ k−1) ≠ 0, we try to obtain an estimate of θ k , say θ̂k  corresponding to
λ k +1  such that h (θ k , λ k +1 , θ k−1) ≈ 0. To achieve this one could use Newton's algorithm,
namely,

1 1 1 1 1
ˆ1

ˆ ˆ ˆ ˆ[ ( , , )] ( , , )k k k k k k k k
i i i iJ h hqq q q l q q l q- + - + -
+ = - (44)

Where the superscript i denotes the ith Newton iteration and is the inverse of the Jacobian of
h with respect to the coefficient of the parameter vector θ . But if θ̂0k  is too far from θ̂k  the

value which makes, h (θ̂k , λ k +1 , θ k−1) ≈ 0 then (44) may not converge. To improve the con‐
vergence of (44), we select the initial point as θ̂0k = θ k . A further improvement in the con‐
vergence is obtained by considering

1 1 1 1 1
ˆ0̂

ˆ [ ( , , )] ( , , )k k k k k k k khJ h hqq q l q l q q l q
l

- + - + -¶
= -D

¶
(45)
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The derivation of (45) is analogous to the derivation of Stonick and Alexander [15] for our
homotopy map (43). Equation (45) corresponds to the prediction of the next point by taking
a step in the direction of the path's slope. For the fixed point homotopy map considered, (45)
becomes

0 2

1
1 1

ˆ {
1 ( ) (1 ( ))

( )
[ ] }{ ( ) ( )}
( ) 1 ( )

k k
k k

k
k k k

k k

I I

F I fq

q q l
l l l l

q
q q q

l l l l

-
- -

= -D -
- + D - + D

+ - -
+ D - + D

(46)

Where I is the identity matrix. The intermediate steps for arriving at (46) is given in [16] and
[17]. If θ̂0k  estimated by (45) is not on the path then it is taken as the initial point in the cor‐
rection step (44). Otherwise θ̂0k  is considered as the next point on the path. Suppose

| θ̂M +1k − θ̂M k | ≤ γ then we set θ̂M k = θ̂k = θk +1.

8.2. Homotopy continuation algorithm

Initialize: (θ =θ 0 and λ =0)

do{

Increment λ k +1 = λ k + Δλ

Update θ k  to θ̂0k  using equation (38)

if ()

else

take θ0k  the initial point for Newton algorithm

Update:

θ̂ i k to θ̂k +1k  using (40)

if ()

else go to update: }

(Until λ = 1).

9. Results and discussions

In simulation, two images with weak edges and two images having both weak as well as
strong edges have been considered. The first original image, a liver image with ill defined
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edges, is shown in Fig. 3(a). In order to compute the percentage of misclassification error,
the Ground Truth image, as shown in Fig. 3(b), has been constructed manually. The estimat‐
ed MRF model parameters are, α= 0.005601, β = 2.34 and σ = 0.55. However σ is chosen by
trial and error and is fixed at 0.5. The Percentage of Misclassification Error (PME) with re‐
spect to Ground Truth image is defined as PME = {number of misclassified pixels in all the
classes}/{total number of pixels of the image}. The MAP estimates in each recursion has been
obtained by our proposed hybrid algorithm [10]. The results obtained by basic MRF model
is shown in Fig. 3(c), where it is observed that one of the weaker edge could be preserved
while the ill defined edge adjacent to it is completely lost. In case of the CMRF model, some
portions could be sharper but the adjacent ill defined edge could not be recovered as shown
in Fig. 3(d). However, as seen from Fig. 3(e), the use of the proposed CCMRF model could
preserve well the weak edge as well as the adjacent ill defined edges. In case of Yu 's [9] ap‐
proach, the inside weak edge could not be preserved even though the outer edge could be
preserved. The adjacent ill defined edge is completely lost as seen in Fig. 3(f). Thus, the pro‐
posed CCMRF model with bi-level line field with Gaussain weighted penalty function could
preserve well the ill defined edges together with strong edges.

Figure 3. (a) Liver Abscess image (468x345) (b) Ground Truth (c) MRF optimized using Hybrid (d) CMRF optimized us‐
ing Hybrid (e) CCMRF optimized using Hybrid (f) Clausi’s result.

Fig.4(a) shows a cell image where the outer boundary of the cell is a strong edge while the
inner portion of the cell contains weak edge or poorly defined edge. In order to compute the
classification error, the corresponding ground truth image is manually constructed and is
shown in Fig.4(b) and Fig.4(c) shows the result obtained with MRF model and it may be ob‐
served that the strong edges could be preserved but the weak edges could not be preserved.
The poorly defined edges improved with CMRF model as shown in Fig.4(d). With CCMRF
model, as observed from Fig.4(e), the outer edges of the cells could be preserved and the
edges inside the different cells also have been well defined. The threshold considered for
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weak and strong edges are 0.91 and 0.25 respectively. The degradation process parameter is
chosen to be 0.5 and the value k of the edge penalty function is chosen to be 0.2. This has
also reflected in the misclassification error that is the PME is 22.72 for MRF model which re‐
duced to 14.86 for CMRF model and further reduced to 3.11 for CCMRF model. As seen
from Fig.4(f) Yu 's method preserved both weak and strong edges. The PME for Yu 's meth‐
od is 6.21. It is found that the CCMRF model with bi-level line field proved to be the most
effective among other methods.

Figure 4. (a) Cell image (491x370) (b) Ground Truth (c) MRF optimized using Hybrid (d) CMRF optimized using Hybrid
(e) CCMRF optimized using Hybrid (f) Clausi’s result.

In order to demonstrate the unifying modeling property of the CMRF and CCMRF model, a
third example as shown in Fig. 5(a) is considered where the background has texture like at‐
tributes. The estimated MRF model parameters are α = 0.01842, β= 2.79 and σ = 0.42. As ob‐
served from Fig.5(e) that the CCMRF model could segment the image and preserved many
poorly defined edges. This observation is absent in case of use of the MRF and CMRF mod‐
el. Use of CCMRF model could preseve the sharp features while Yu 's method could not pre‐
seve all the weak edges. This is observed from Fig. 5(f). The percentage of misclassification
error also reflect the observation. Thus, in case of all the three examples, the use of CCMRF
model could segment the image and preserve both the strong as well as weak edges. This
proposed model could perform better than that of Yu 's approach [9] in the context of weak
edge preservation and hence misclassfication error.
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Figure 5. (a) Hand Ring (Indoor) image (303x243) (b) Ground Truth (c) MRF optimized using Hybrid (d) CMRF optimize
dusing Hybrid (e) CCMRF optimize dusing Hybrid (f) Clausi’sresult.

Figure 6. (a) MANASA SOROVER (Remote Sensing) image (500x500) (b) Ground Truth (c) MRF optimized using Hybrid
(d) CMRF optimized using Hybrid (e) CCMRF optimized using Hybrid (f) Clausi’s result.

Similar observations have also been made in case of the Manasa Sorover image as shown in
Fig.6(a). As observed from Fig.6(a) there are many weak edges to be preserved. In this case,

Advances in Image Segmentation100



the CCMRF model with bi-level linefield could preserve many weak edges together with the
strong edges. This may be seen from Fig.6(e) and it can be observed from Fig.6(d) that many
weak edges have been preserved even using CCMRF model. Thus, in this example the per‐
formance of CCMRF model is found to be better than that of CMRF model in the context of
misclassification error.
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