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Abstract

Image segmentation is a classical problem in computerwiaial is of paramount im-
portance to medical imaging. Medical image segmentati@misssential step for most
subsequentimage analysis task. The segmentation of alcatyacture in the brain plays
a crucial role in neuro imaging analysis. The study of mamrbdisorders involves accu-
rate tissue segmentation of brain magnetic resonance (M&)es. Manual segmentation
of the brain tissues, namely white matter (WM), gray mat@&vl) and cerebrospinal fluid
(CSF) in MR images by an human expert is tedious for studiedving larger database.
In addition, the lack of clearly defined edges between adjatesue classes deteriorates
the significance of the analysis of the resulting segmenmtalihe segmentation is further
complicated by the overlap of MR intensities of differemsistie classes and by the pres-
ence of a spatially and smoothly varying intensity in-hoeragjty. The prime objective
of this dissertation is to develop strategies and methafesdfor an automated brain MR
image segmentation scheme.

As an initial attempt in this direction, the brain MR imagesentation problem
is addressed in an unsupervised framework and is formuksqaixel labeling problem.
Stochastic model based approach has been considered &arttee Hidden Markov Ran-
dom Field (HMRF) models have been used to model the tissssedaof the observed
degraded image. Thepriori class labels are modeled as Markov Random Field (MRF)
model. As the problem is addressed in an unsupervised frankeWMMRF model pa-
rameters are assumed to be unknown. It is assumed to hawepheri knowledge of
MRF model parameters which are used to model the unknowa lghsls, but no knowl-
edge of number of classes and image labels. The problem lEscamincomplete data
problem. To handle this problem, Expectation-Maximizatadgorithm is used. In or-
der to incorporate a variable spatial characteristics Wwiaries with internal part of the
brain, the energy function associated with #én@riori model is modified by an biased
factor. This factor controls the effect of spatial informoatto avoid identical spatial in-

formation throughout the brain. The proposed modified mededmed as Biased HMRF



(BHMRF) model. Intensity inhomogeneity or multiplicatibeas field in brain MR image
is also corrected in the proposed scheme. The results edtaythe proposed BHMRF-
EM framework are compared with that of HMRF-EM scheme. Theppsed scheme is
found to be outperforming the later one and is observed tolefeient method for brain
MR image segmentation corrupted by biasfield.

In order to address the problem from practical stand pointew notion of im-
age segmentation is introduced by incorporating the fuhzstering approach in HMRF
framework. The proposed approach is formulated using fuzmyeans (FCM) algorithm
which is facilitated bya priori MRF distribution. In this regard, HMRF oriented mod-
ification of the fuzzy objective function is incorporated.MRF-EM scheme is found
to be sensitive to the initial set of parameters. This has lmeercome by proposing
fuzzy clustering -EM (FCEM) algorithm that does not requoehave a proper choice of
initial parameters. In the proposed HMRF-FCEM scheme, éonatbstrength of fuzzy
clustering approach as well as HMRF model are incorporafdte result obtained by
the proposed FCEM algorithm in HMRF-FCEM scheme are contpeti¢h that of ex-
isting schemes and the results are quite comparable to téredaes. The performance
of proposed algorithm could be successfully tested withrartrary set of initial model
parameters.

Both BHMRF-EM and HMRF-FCEM schemes could be validated fealthy as

well as diseased brain MR images.
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Chapter 1

Introduction

1.1 Image segmentation

Segmentation is the process of splitting an observed inteégats homogeneous or con-
stituent regions. The goal of segmentation is to simplifgloange the representation of
an image into something that is more meaningful and easinabyze. It is important in
many computer vision and image processing applicationomputer vision, segmenta-
tion refers to the process of partitioning a digital imag®imultiple regions. There are
basically three different approaches to image segmentakost is region based, which
relies on the homogeneity of spatially localized featuras @her pixel statistics, the sec-
ond one is based on the methods of boundary finding relyindnergtadient features at
a subset of the spatial positions of an image (near an obgestdary), whereas the third
one is pixel classification approach. Additionally, imaggmentation has applications
separate from computer vision; it is frequently used to aigsolating or removing spe-
cific portions of an image. Image segmentation is typicaligdito locate objects and
boundaries in images. The result of image segmentation & afsegions that collec-
tively cover the entire image, or a set of contours extraftech the image. It provides
additional information about the contents of an image byifigng edges and regions of
similar color, intensity and texture, while simplifyingghmage from thousands of pixels
to less than a few hundred segments. Each of the pixels in@rage similar with respect
to some characteristic or computed property. The segmentaft2D and 3D images is an
important first step for a variety of image analysis and Viigasion tasks. Hence, image

segmentation is one of the early vision problems and has a apglication domain. The
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problem becomes more compound while segmenting noisy isaagibe segmentation

problem can be categorized as (i) supervised and (ii) unsigael approach.

1.1.1 Supervised Image Segmentation

In supervised framework, the model parameters are assunmietlknownra priori. These
model parameters are used for estimating the pixel labetegmentation framework.
The pixel labelling problem, using MRF model has been foated using Maximum a
Posteriori (MAP) criterion and Bayesian framework [1, 2¢dgBnentation of noisy images
including textured images using MRF model could be fornedah supervised manner
successfully. Nandat al. have proposed a supervised image segmentation method where
the MRF model parameters are estimated using homotopy@iion method and MAP

estimate of image labels are obtained by SA algorithm [8].

1.1.2 Unsupervised Image Segmentation

In unsupervised framework, the number of class labels aadrtbdel parameters are
unknown. Estimation of image labels as well as model pararsa$ required simulta-
neously. Since the image label estimation depends uponptwal set of parameters,
the unsupervised image segmentation is viewed as an inetengdita problem. To han-
dle such problem, an iterative scheme namely expectatioimmeation (EM) algorithm
was suggested [11, 16]. Besagal. estimated the parameters using iterated conditional
mode (ICM) algorithm for restoration [2]. Zhargg al. has suggested an unsupervised
scheme which alleviates the difficulty in computing exptgotain EM algorithm for gen-
eral models. In order to accomplish this objective, he hap@sed a Monte Carlo aver-

aging scheme and a scheme related to Besag’s ICM algorithm [9

1.2 Application of Segmentation

1. Medical Imaging:

e Locate tumors

e Measure tissue volumes
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e Computer-guided surgery
e Diagnostic Treatment planning

e Study of anatomical structure
2. Locate objects in satellite images
3. Face recognition
4. Automatic traffic controlling systems

5. Machine vision

1.3 Image models

In recent years, stochastic models have become more paputaage processing. Out
of the various stochastic models, Markov Random Field (MRBYel provides a better
framework for many complex problems in image segmentatibmis is due to the fact
that, MRF model is based on the notion of neighborhood siracnd therefore, helps in
understanding global interaction through local spatitdractions. Moreover, the global
interaction is governed by Gibbs distribution. Markov RandField (MRF) based meth-
ods have been widely used by researchers [2, 21, 7, 8, 10].

The extension of an observable Markov Model is the HidderkdghaModel (HMM).
Here the observation is a probabilistic function (discreteontinuous) of a state. All
observations are dependent on the state that generatednbéeon the neighboring ob-
servations. HMM is a finite set of states, each of which is @ssed with a probability
distribution. In a particular state an outcome or obseovatian be generated, according
to the associated probability distribution. It is only th&@me, not the state visible to
an external observer and therefore states are “hidden”tsid®) hence the name Hidden
Markov Model [12]. This model is specifically useful wheretilata is hidden. A special
case of HMM is that, the underlying stochastic process isictamed as MRF instead of a
Markov chain and therefore not restricted to one dimensidms special case is referred

to as Hidden Markov Random Field (HMRF) model.
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The segmentation only relies on the histogram of the datdlsréfore is sensitive
to noise and other artifacts or variations. To overcome ltmgation, a hidden Markov
random field (HMRF) is derived. The HMRF model is based on treekdv random
field theory, in which the spatial information is encodedotigh a neighborhood sys-
tem. Hidden Markov random field (HMRF) model is a stochastacpss generated by
a Markov random field whose state sequence cannot be obsgireetly but can be ob-
served through observations. Mathematically, it can bevshihat the FM model is a
degenerate version of the HMRF model. Each observationsisnasd to be a stochas-
tic function of state sequence. By Markov Random Field thggrentation algorithm
captures three features that are of special importance ®rfkages, i.e nonparametric
distributions of tissue intensities, neighborhood catieh and signal inhomogeneities.
The advantage of the HMRF model derives from the way in whielspatial information

is encoded through the mutual influences of neighboringlpids, 25, 17].

1.4 Brain MR Images

MRI is an advanced medical imaging technique providing fdiormation about the
human soft tissue anatomy. It has several advantages dwariataging techniques en-
abling it to provide 3-dimensional data with high contrastvieen soft tissues. However,
the amount of data is far too much for manual analysis/im&gbion, and this has been
one of the biggest obstacles in the effective use of MRI. R teason, automatic or
semi-automatic techniques of computer-aided image aisadye necessary. Segmenta-
tion of MR images into different tissue classes, especgtly matter (GM), white matter
(WM) and cerebrospinal fluid (CSF), is an important task.iBMR images have a num-
ber of features, especially the following: Firstly, theg atatistically simple; MR Images
are theoretically piecewise constant with a small numbetadgses. Secondly, they have
relatively high contrast between different tissues. Theti@st in an MR image depends
upon the way the image is acquired. By altering radio fregyemd gradient pulses and
by carefully choosing relaxation timing, it is possible tgHiight different component in
the object being imaged and produce high contrast imagesseTtwo features facilitate

segmentation.
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1.4.1 Weighting

MR images can be acquired using different techniques. Tédtneg images highlight
different properties of the depicted materials. The mostimmn weightings are T1 and
T2, which highlight the properties T1-relaxation and T2aration respectively. Selection
of the most appropriate weighting is important for a sucttés®gmentation. According
to Phamet al. the properties of the tissues that are to be segmented héeskioown to

make a well-founded decision [42].

T1-weighted Images

T1-images show high contrast between tissues having diftélr1-relaxation times. Tis-
sues with long T1-relaxation time emit little signal and shihhey will be dark in the
resulting image. In T1-images air, bone and CSF have lowsitg gray matter is dark
gray, white matter is light gray, and adipose tissue has mtgnsity. T1l-images have

high contrast between white matter and gray matter.

T2-weighted Images

In T2-images, white matter and gray matter are gray and hawas intensities. CSF is
bright, while bone, air, and fat appear dark. As opposed tonfdges, T2-images have
high contrast between CSF and bone. The contrast betweda mhtter and gray matter

is not as good as in T1-images.
Spin Density

Spin density or Photon Density (PD) is the most like CompUi@ahography (CT) of all

the MR contrast parameters. The spin density is simply tinet@s of spins in the sample
that can be detected. The observed spin density in medieaiing is always less than
the actual spin density due to the fact that many spins aradaund lose signal before

they can be observed.
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1.4.2 Artifacts

A variety of artifacts may appear in MR images. Since thdats change the appearance
of the image they may also affect the performance of a se@tientalgorithm. The most
important artifacts in image segmentation are intensibppomogeneities and the partial

volume effect.

Intensity Inhomogeneities

Intensity inhomogeneities are not always visible to the dnraye, but can nonetheless
have negative influence on automatic segmentation. Thismaayfest itself by making
intensities in one part of the image brighter or darker thaotlaer part. It is often caused
by the radio frequency (RF) coils. Different methods extstbmpensate for the inho-
mogeneities. The inhomogeneity is often modeled as a fieldv/dries smoothly over the
image. The inhomogeneity field is often thought to be a miidgpive field, which means
that the true pixel intensity is multiplied by the value ottheld in that pixel. There
are methods which extracts the inhomogeneities during eatation. Wellset. aland
van Li et. alalternate estimation of the inhomogeneity field with clasation to obtain

inhomogeneity corrections [19, 41].

The Partial Volume Effect

The partial volume effect occurs when a pixel cannot be ately assigned to one tissue
type. This is because the intensity in the pixel originatesrffmore than one tissue. It
occurs because one pixel contains many body cells and thalgitted from these cells
make up the detected intensity in this pixel. The partialuwd effect is most apparent
at edges between different tissues. It may deterioratelthgaess of the edges between
tissues. The partial volume effect can be a significant gmbh brain segmentation since
the brain has a complex folded surface [13]. The partial maweffect is caused by the
fact that of limited resolution in the images. Smaller pigigles reduce the partial volume
effect since the probability that more than one tissue tgpmntained in the same pixel

is reduced.
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1.5 Brain MR Image segmentation

Segmentation of medical imagery is a challenging task dubaa@omplexity of the im-
ages, as well as to the absence of models of the anatomy tlyatdpture the possible
deformations in each structure. Brain tissue is a partrtul@omplex structure, and its
segmentation is an important step for derivation of comzee anatomical atlases, as
well as pre- and intra-operative guidance for therapeutervention.

MRI segmentation has been proposed for a number of clinfeadstigations of
varying complexity. Measurements of tumor volume and ispamse to therapy have used
image gray scale methods as applied to X-ray, Computeriaatbgraphy (CT) or simple
MRI datasets. However, the differentiation of tissues mittumors that have similar
MRI characteristics, such as edema, necrotic, or scaj$gs proven to be important in
the evaluation of response to therapy. Other applicatibMiRi segmentation include the
diagnosis of brain trauma where white matter lesions, aagige of traumatic brain injury,
may potentially be identified in moderate and possibly médges. These methods, in turn,
may require correlation of anatomical images with funcaélametrics to provide sensitive
measurements of brain trauma. MRI segmentation methodsdiaw been useful in the

diagnostic imaging of multiple sclerosis, including theetsion of lesions.

1.6 Literature Survey

The image segmentation is a challenging problem that hasvextan enormous amount
of attention by many researchers [1, 2, 3, 4]. Phatnal. and Jameet al. have pre-
sented various techniques used in medical image segnantaid analysis [5, 6]. The
segmentation problem can be categorized as supervisednsagpervised problem. For
appropriate analysis, different image models have begmysexd for taking care of spatial
intrinsic characteristics. The popular stochastic moglkeyides the better framework for
many complex problem in image segmentation is Markov Ranéatd (MRF) model
[7, 10]. MRF model and its variants have been successfulg dsr brain MR image
segmentation [12, 13]. Ruaet al. proposed a fuzzy Markovian method for brain tis-

sue segmentation from magnetic resonance images thatateka fuzzy membership in
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each pixel to indicate the partial volume degree, whichasigically modeled [14].

In unsupervised framework, the number of class labels aadrtbdel parameters
are assumed to be unknown. Hence, estimation of image labdisnodel parameters
are required simultaneously. Since, the image label esbmdepends upon the optimal
set of parameters, the segmentation problem can be viewied@splete data problem.
To handle this problem, an iterative scheme, named Expetidtaximization algorithm
has been proposed [16]. Zhaagal. proposed Hidden Markov Random Field (HMRF)
model to achieve brain MR image segmentation in unsupehfisanework [17]. The
segmentation obtained by Zhang's approach greatly depgpals the proper choice of
initial model parameters. As Expectation-Maximizatiogaithm yields solutions at the
cost of high computational burden, in order to overcome fgsroquinet al. have pro-
posed a new class of probabilistic model, called Hidden amdeasure Field model,
that solved the complex segmentation problem by minimoraetf differentiable energy
function [18]. Wellset al. and Bradyet al. have proposed an adaptive brain MR image
segmentation scheme in EM framework [19, 20]. They have talken spatial intensity
in-homogeneity into account and have estimated the biak fR#cently Hunget al. pro-
posed an automatic segmentation method based on a decisgototclassify the brain
tissues in magnetic resonance (MR) images [22]. Gaiah. have proposed an automatic
hot spot detection and segmentation of whole body PET imagieg threshold and the
Hidden Markov model (HMM). They compare the fixed PET pixeladenreshold and
the fixed standard uptake values (SUV) threshold for segmghbt spots [24]. Nanda
et al proposed a Tabu search based unsupervised scheme using-EMRiamework
which could segment the images properly taking arbitraityalhparameter [25]. Anand
et al. transformed an original image in to a multi scale wavelet donand the wavelet
coefficients are processed by a soft thresholding methodioawavelet filter based
denoising methods are studied according to different toleling values and applied to
ultrasound images [23]. Josét al. modeled the fused multi spectral (MS) image using a
low spatial resolution MS images as the aliased and correlpg noisy versions as high
spatial resolution. The fused image is obtained for eacheMS bands by estimating the

high spatial resolution and then modeling as separate ingemeous Gaussian markov
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random fields (IGMRF) and a maximum a posteriori (MAP) estiora[26].

Now a days, fuzzy image segmentation is increasing popylaacause of rapid
extension of fuzzy set theory, the development of variozzyuset based mathematical
modeling, and its successful application in computer visgstem [27]. Ichihashet al.
showed that the EM algorithm for GMM can be derived from théVF{§pe clustering,
when considering a regularization by KL information fuzayjective function, for selec-
tion of the distance metric [28]. Ahmeat al. proposed a bias correction fuzzy c-means
algorithm in which they incorporated a neighborhood regméa into the FCM objec-
tive function to allow labeling of a pixel to be influenced lhetlabels in its immediate
neighborhood [29]. The algorithm is realized by incorporgtthe spatial neighborhood
information into the standard FCM algorithm and modifyihg imembership weighting
of each cluster. Part al. approached a mixture model suitable for segmentation of the
colorimages. The certain color space in a pixel is clustbyeginploying the K-Means al-
gorithm [30]. A General Reflex Fuzzy Min-Max Neural Netwo®RFMN) is proposed
to extract the underlying structure of the data by means pésused, unsupervised and
partially supervised learning by Biswas al. [31]. Chenet al. proposed an adaptive
FCM algorithm which is found to be robust in convergence. ®bgctive function to
be minimized has regularization terms that ensure the agtnbias field is smooth and
slowly varying [32]. Siyalet al. presented a modified FCM algorithm formulated by
modifying the objective function of the standard FCM andsugespecial spread method
for classification of tissues [33]. Warg] al. proposed a modified FCM algorithm, called
mFCM for brain MR image segmentation [34]. Abouleidal. proposed a statistical
feature extraction technique for diagnosis of breast cam@mmograms by combining
the fuzzy image processing with rough set theory [35]. Muegti al. described a way
to segment the medical images using an appropriately defizzg clustering based on
a fuzzy relation. The considered relation is defined in teomBuclidian distance [36].
Kanget al. presented a novel method for segmentation by incorporapagjal neighbor-
hood information in to the standard FCM. An adaptive weidrdeeraging filter is given
to indicate the spatial influence of the center pixel [37h&&t al. presented the adaptive

fuzzy clustering/ segmentation (AFCS). In AFCS, the namstary nature of the image
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taken into account by modifying the prototype vectors agfiam of sample location in
the image. A multiresolution model is utilized for estinmagithe spatially varying pro-
totype vectors for different window sizes. The segmentatb different resolutions is
combined using a data fusion process in order to computerthkftizzy partition matrix.
The results provide segmentation having lower entropy.[B8hamedet al. described
the application of fuzzy set theory in medical imaging. Alfuhutomatic technique to
obtain cluster is proposed. A modified fuzzy c-means clasdibn algorithm is used to
provide a fuzzy partition. The method is inspried by Markemdom field (MRF) and is
found to be less sensitive to noise as it filters the imageendiustering [39]. Kannaat
al. presented a new method called fuzzy membership c-meansHWE segmentation
of Magnetic Resonance Images (MRI). This work develops aiipenethod to construct
the initial membership matrix to clusters in order to impedhe strength of the clusters
[40].

1.7 Motivation

Image segmentation is an essential step in medical imagsslisequent image analysis
tasks. Some of the issues that make medical image segnoendtficult, particularly
in brain magnetic resonance images (MRI) are intensityambgeneity or bias field and
partial volume problem. Many segmentation techniques haen developed by the re-
searchers which help the physicians and neurosurgeonsdsetigate and diagnose the
structure and function of the brain. Brain consists of trgeft tissues such as gray matter
(GM), white matter (WM) and cerebrospinal fluid (CSF). Anfet soft tissue like brain
tumor along with above soft tissues can be imaged using ntiagesonance imaging
(MRYI). Ideally, for any given set of MR imaging parametelisg intensity values of the
pixels of any given tissue class should be constant or qooresto a Gaussian distribution
with small standard deviation. In practice, spatial intgns-homogeneities are often of
sufficient magnitude to cause the distributions of sign&nsities associated with the
tissue classes to overlap significantly. In addition, thek laf clearly defined edges be-
tween adjacent tissue classes deteriorates the signiéiadribe analysis of the resulting

segmentation. The segmentation is complicated due to taes®s. This has motivated
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the need for automatic segmentation techniques that austrabapplication involving a
broad range of brain MR images. Hence, the main objectivaisfthesis is to address

the unsupervised image segmentation schemes for brain NMBeas

1.8 Problem Addressed

In this thesis, attempts are made to address the problenaof BIR image segmentation
in unsupervised framework. The observed degraded imagssisnaed to be corrupted
with white Gaussian noise and bias field. The unsuperviseenses have been proposed
using HMRF model. The research work of this thesis can bedyaategorized as;

(i) unsupervised image segmentation using biased HMRF haodie

(i) fuzzy clustering based image segmentation using HMRiéeh

1.9 Summary of the thesis

In this piece of work, attempts are made to address the problemage segmentation
of brain MRI in unsupervised framework. The observed degdadrain MR image is
assumed to be corrupted with additive white Gaussian naoideraultiplicative bias field.
The segmentation problem is casting as pixel labelling lgroband the model based
approach is adhered for the same. The unknavpmiori class labels for different tissue
classes of brain MR image are modelled as MRF model while bsemwed degraded
images are modelled as HMRF model. As the problem is forradlat unsupervised
mode, both the model parameters and image labels are assarbedinknown and are
estimated together. This problem can be viewed as an inaegta problem and hence
the problem is formulated in EM framework inspired by the wof Zhanget al. [17].

In this thesis, the spatial interaction of pixel labels anecgled through HMRF model.
HMRF model is modified as biased HMRF (BHMRF) model by incogbiog the biased
neighborhood in the energy function such that the anatorbyaoh is encoded through the
proposed scheme. The BHMRF-EM scheme yielded better peafoce than HMRF-EM
scheme. The scheme is modified to estimate intensity in-igemeity or bias field along

with model parameters and image class labels. Furtherauisd that the performance of
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HMRF-EM scheme proposed by Zhaetgal. greatly depends upon the selection of initial
model parameters [17]. In order to circumvent that probleezy clustering based HMRF
model is proposed. In this regard HMRF-FCEM algorithm isgmeed that does not
require to have proper choice of initial model parametetse proposed algorithm yielded
satisfactory results with arbitrary initial model paraerst The proposed algorithms are

validated with synthetic images, simulated as well as resshldlMR images.

1.10 Thesis Organization

The thesis is organized into the following chapters.

Chapter 1: Introduction
It deals with the formal description of image segmentatirajn MR image and its seg-
mentation, literature review and a brief on thesis contrdou

Chapter 2: HMRF model and Fuzzy clustering based image segméation
Background on Markov Random field model, Hidden Markov Randeeld model and
segmentation methods based on above models are focusésichalpter. Basic notion of
fuzzy c-means (FCM) clustering technique is also includer h

Chapter 3: Unsupervised image segmentation and intensitynthomogeneity
correction using Biased HMRF model
In this chapter, the segmentation of brain MR image is ad@esn an unsupervised
framework. The Hidden Markov Random Field (HMRF) model ispéoged for the ob-
served degraded image. MRF model is employed for the noesedlass labels. The
tissue class of brain MR image is modeled as HMRF model withsSian emission dis-
tribution and the associated model parameters sugheaslo for each class are assumed
to be unknown. In order to incorporate a variable spatiakattaristics which varies
with internal part of the brain, the energy function asstadawith thea priori model
is modified by a biased factor. This factor controls the effgfcspatial information to
avoid identical spatial information throughout the braiine proposed modified model is
named as Biased HMRF (BHMRF) model. Expectation-MaxinmratEM) algorithm is
used to estimate the model parameters as well as image jabelg. This leads to the

development of BHMRF-EM algorithm for unsupervised braiR Mnage segmentation.



Chapter 1. Introduction 13

Intensity in-homogeneity or bias field in brain MR imagesisarent due to the presence
of radio-frequency coil during MRI. The slowly varying mudlicative bias field is esti-
mated in various tissue classes of brain MR images based packation-Maximization
(EM) algorithm. This leads to the joint estimation of intépsn-homogeneity, model
parameters and image labels using the proposed modified BHENR algorithm.

Chapter 4: Unsupervised Image segmentation using HMRF-FCH algorithm
In this chapter, a new notion of unsupervised brain MR imaggsentation scheme is
proposed by hybridizing the benefits of fuzzy clusterinditeque and HMRF model. In
the proposed approach, HMRF model is incorporated intoyfutastering scheme by
modifying the fuzzy objective function with HMRF orientati. In this regard, HMRF
model is regarded as defining a number of fuzzy partitionsivie same as number of
class labels. HMRF oriented fuzzy objective function isgmeed by considering the
mean field approximation of the MRF probability. This hylizes the benefits of the
spatial interaction of the HMRF model, and the enhanceddiktyi obtained by the fuzzy
clustering algorithm. HMRF-FCEM algorithm is proposed stimate the image labels
as well as fuzzy membership function jointly. Eventualhg fuzzy objective function is
minimized using the proposed algorithm and an estimatesoHWMRF model parameters
are obtained. The proposed algorithm does not depend upgordiper choice of initial
model parameters.

Chapter 5: Conclusions
This chapter presents the concluding remark on unsuperinssge segmentation schemes

for brain MR images, with scope for further research work loa telated problems.

1.11 Image Metrics

The quality of an image is examined by objective as well agestibe evaluation. The
metrics used for performance comparison of different segai®n schemes are defined
below.

Misclassification error (MCE) is a measure of percentageistlassified pixels changes
their gray scale values in the segmented image. It meadueedifterence between two

images. In other words, it measures the efficiency of the@egd schemes with the for-
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mer existed schemes. Hence, the lower value of MCE, bettbeisegmentation. The

MCE can be calculated as

Number of misclassified pixels in a cluster

MCE = * 100

Original number of pixels in the cluster

Another image metric used for comparison of different mdgh@ the execution
time. Execution time is defined as the time taken for the satnrh of an algorithm. The
less time an algorithm takes for execution, the more efftaiaa considered.

Subjective or Qualitative measure:

Subjective assessment is required to measure the imagigyquhavailability of
guantitative performance measure in case of image segtientsubjective or qualitative
measure is another option for comparison. In a subjectisesssnent measures charac-
teristics of human perception become paramount, and thgamaality is correlated with
the preference of an observer or the performance of an apei@tsome specific task.
Hence, as an usual case of image segmentation there is nttgirmperformance eval-
uation measure because no ideal image can be used as refedgryaeasonable measure
should be tuned to the human visual system. However peralegaality evaluation is not
a deterministic process. So, subjective evaluation is thg to prove the performance.
Hence, human observer is the only way by which segmentedamaglity can be ob-
served.

The processor used for simulation of the segmentation proldPentium IV Intel
core 2 Duo processor, 1.8 Ghz, 1 GB RAM, Fedora-6 version in hux operating

system
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Fundamentals of HMRF model Fuzzy
clustering methods

2.1 Introduction

Image Segmentation techniques using spatial interactiodets like Markov Random
Field (MRF) to model the image have become very popular. Teeai contextual in-
formation is indispensable in low level as well as high leweage Processing . Markov
Random Field theory provides a convenient and consisteptoivenodeling the entities
with contextual constraints. This is achieved through abtarizing mutual relationship
among such entities such as pixels of an image and otheaBpatrrelated features us-
ing MRF probabilities. MRF forms a probabilistic model foset of variables that interact
on a lattice structure. This started with the influential kvof Geman& Geman [1] who
linked via statistical mechanics between mechanical sys@nd probability theory. The
distribution for a single variable at a particular site isiddioned on the configuration of
a predefined neighborhood surrounding that site.

Hidden Markov field (HMF) models are widely applied to ditfet problems con-
cerned with image processing. The use of hidden Markov m@tlM) is a powerful
modern statistical technique that has been found to beregtyeuseful for a wide spec-
trum of applications in ecology, crypt analysis, image ustinding, speech and hand-
writing recognition. Formally, a hidden Markov model, is autbly embedded stochas-
tic process with an underlying process that is not obseevabt can only be observed

through another set of stochastic process that produceetiigesce of observations. It
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is a statistical model where the system being modeled isvesguo be Markov process
with unknown parameters, and the challenge is to determméitdden parameters, from
the observable parameters, based on the assumption. irtiaetels, the hidden process
is a Markov field and estimated from its observable noisy ienddis models are popular
mainly due to the fact that the conditional probability dimition of the hidden layer with

respect to the observed layer remains Markov.

2.2 Markov Random Field

Let consider a collection of random variablgX);; }, that is a random field defined over
a finite discrete rectangular latticeof size (M x N). The latticeS is defined as5 =
{(4,j) : 1 <1 < M,1 < j < N}, where site(i, j) corresponds to each pixel of the
discrete image lattice structure. A neighborhood sysieom this rectangular lattic®
can be defined as follows.

Definition 1 A collection of subsets ¢f described ag = {n, ; : (1,7) € S,n;; C S}tisa
neighborhood system dghif and only if »; ;, the neighborhood of pix€t, j), is such that

1. asite is not neighboring to itsel{(i, j) & 7;;

2. the neighboring relationship is mutual : (K,1) € n;;, then(i,j) € ny for any
(t,7) €5

The neighbor set ofy;; is defined as the set of nearby sites within a radiwssich that
ni; = {(k,1) € S| {dist((i,7), (k,0)}* < r (i,7) # (k,1)}, where distA, B) denotes
the Euclidean distance betwednand B, r takes an integer value. A hierarchically or-
dered sequence of neighborhood systems is shown in FiglirevBeren!, 7%, n®.... are
the “first-order”, “second-order”, “third-order”......neighborhood systems respectively
and are denoted by numbers 1,2,3....as shown in Figure R4 tdxthe finite lattice used,
the neighborhood of pixels on the boundaries are necegsagller unless a toroidal (pe-
riodic) lattice structure is assumed. A nearest neighbadhdependence of pixels on an
image lattice is obtained by going beyond the assumptiotatitical independence. The

neighborhood systems that can be defined évare neither limited to the hierarchically
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Figure 2.1:Hierarchically arranged neighborhood system of Markov &am Field

ordered sequence of neighborhood systems, nor they have igotyopic or homoge-
neous.

Definition 2 Let » be a neighborhood system defined over lattice A random field
X = {X,,} defined over latticeS' is a Markov Random Field (MRF) with respect to the
neighborhood systemif and only if

1. All of its realizations have nonzero probabilities:

P(X = z) > 0 for all x (property of Positivity)

2. Its conditional distribution satisfies the following perty:
P{X’Lj = Ty | Xk:l = Tkl (k7l) S Su (k7l> 7é (Z7j>}
= P{X,; = vij | X =z, (k,1) € m;;} forall (i, ) € S (property of Markovian-
ity)

wherez;; is the configuration corresponding to the random variableand so on.When
the positivity condition is satisfied, the joint probahiliP(X) of any random field is
uniquely determined by its local conditional probabikti]. The Markovianity depicts
the local characteristics of which is characterized by the conditional distributioneeT
Definition 2says that the image value at a pixel does not depend on the idadg outside

its neighborhood, when the image data on its neighborhoedji@en. Hence, the most
attractive feature of MRF is thdimages tend to have a degree of cohesiveness: pixels
located near to each other tend to have the same or similaswsl [1]. It does not

constitute a theoretical restriction either, becauseaildom field satisfyDefinition 2
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Figure 2.2:Cliques associated with first-order neighborhood system
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Figure 2.3:Cliques associated with second-order neighborhood system

with respect to a large enough neighborhood system,:g.g= S for all ; ; € S. On
the other hand, MRF models, even with respect to small neidfdnd systems such as
n* prove to be very flexible and powerful. Let us define thigueassociated withS, ),

a lattice neighborhood system pair:

Definition 3 A clique of the pair(.S, ) denoted by: is a subset of5S such that
1. c consists of a single pixel, or
2. for (i,7) # (k,1), (i,5) € cand(k,l) € cimplies that(i, j) € n,

The collection of all cliques of S, n) is defined byC(S, 7). The clique types associ-
ated with first-order and second-order neighborhood systeshown in Figure 2.2 and

Figure 2.3 respectively.

2.3 Gibbs Random Field

Gibbs Distribution (GD) or equivalently the Gibbs Randorel&i(GRF) can be defined
as follows.

Definition 4 Letn be a neighborhood system defined over a finite laffica random field
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X is said to be a Gibbs Random Field (GRF) on latti¢&vith respect to a neighborhood
system if and only if its configuration obey a Gibbs distribution whihas the following
form

P(X =1) = —¢ /@ (2.1)
where,

Z =Y etV (2.2)

is the partition functionZ is simply a noxrmalizing constant so that the sum of the prob-
abilities of all realizationsy becomes onel" is a constant analogous to temperature
which shall be assumed to be 1 unless otherwise stated andis the energy function
or Hamiltonian of a Gibbs distribution, which can be expegkas follows

Ulz) = 3 Vila) (2:3)

ceC
Hence, energy is sum of clique potenti&]$z) over all possible clique§'. V.(x) are a set

of potential functions depending on the valuescddt the sites in the clique Thus, the
key functions in determining the properties of the disttiba are the potential functions
V.(x). P(x) measures the probability of the occurrence of a particutafiguration:z.
The more probable is a particular configuration, has lessergy. This is so because the
energy is computed as a measure of the distance between thet aral the raw image
data. The potential functions are chosen to reflect the ekgroperties of the image
so that the more likely images have a lower energy and arerttare probable. The
temperaturél” controls the sharpness of the distribution. When the teatpes is high,
all configurations tend to be equally distributed and whegraidually decreases to zero,
global energy minima is achieved. Gibbs energy formalisstha added advantage that
if the likelihood term is given by an exponential, and theopiis obtained through a
MRF model, the posterior probability continues to be a Gidbs This makes the MAP

estimation problem equivalent to an energy minimization.

2.4 Markov-Gibbs Equivalence

Markov Random Field (MRF) is characterized by its local madyp (the Markovianity)
whereas Gibbs Random Field (GRF) is characterized by itsajlproperty (the Gibbs
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distribution). Hammersley-Clifford’s famous theorem [Rinpublished by the original
authors) states thagiven the neighborhood structureof the model, for any set of sites
within the lattice.S, their associated contribution to the Gibbs energy functshould
be non zero, if and only if the sites form a clique; a randond®&ehaving the Markov
property is equivalent to its having a Gibbs distributio his theorem establishes the
equivalence of these two types of properties and providesra general basis for the
specification of MRF joint distribution function. Many habeen used throughout the
literature [10]. The difficulties inherent in the MRF fornatiion are eliminated by use of

this equivalence which are as follows:
1. Readily availability of joint distribution of random fil
2. Obtaining local characteristics regardless of incdaesaisy
3. Characterizing the Gibbs Distribution model with few graeters

By use of this equivalence MRF theory provides a mathemldeadation for solving
the problem of making a global inference using local infotiova It follows from the
above equivalence that the local characteristics of the MiRFeadily obtained from the

joint distribution in 2.1 as

P(Xi:j = Ti 5 ‘ Xk,l = Tk, (kvl) € S? (kvl) 7é (17]))

=P(Xij; = | Xpy=xpy, (k1) €nij)

e LeecVelo) -
pu— — % - .
mees e~ 2cecVe(®)

2.5 Gibbs Sampler

To implement the Relaxation algorithm, Geman and Gemandi¢lbped the Gibbs Sam-
pler to explore the energy surface. The interpretation efTheorems derived by them

are as follows.

e The interpretation of th&heorem A is “At a constant temperature, if each site of

an image lattice is visited infinite times, as time to infirtitye configurationX will
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be a sample from the Gibbs distribution and this distriboti® independent of the

initial configuration”.

e The interpretation oTheorem Bis “To reach equilibrium state with lowest energy,
the temperature is forced to decrease slowly. As time toitnfix' will be a sam-
ple from the Gibbs distribution at temperature absoluteozgegree or the Gibbs

distribution with minimum energy”.

The Gibbs sampler works by updating each random variableidhdhlly, but conditional

on the states of the surrounding sites. The sequential mga¢ation corresponding to a
raster scan is used for Gibb’s sampler. The state of imagevby discrete changes.
So for convenience time is discretized, say 1,2, 3..... Ata given time, each site; ; is
represented by a random variab¥g ;(¢) with values inG = 0,1,2....,n — 1. Hence the
total configuration of the image i¥(¢) = {z; ;(¢)}; ¢,7 € S. The starting configuration

X (0) is arbitrary and at any time t, the total configurati&iit) evolves due to state change
of individual site. At any instant of time only one site unglees (possible) change. So
the state at any two consecutive instant of titrend¢ — 1 can differ by at most one
coordinate. Ifny, no, ... be the sequence in which the sites are visited for replacemen
thusn, € S andX;;(t) = X, ;(t —1),7 # n.. For replacement at each site a sample is
drawn from its local characteristics. In other words, aestat Gn; is chosen from the
conditional distribution ofX,,,. Given the observed states of the neighboring sites. All
other sites remaining unchanged, the change in total enethg changes due to change
at siten, with respect to its neighborhood. LEtt — 1) is the old energy anti (¢) be the
new one. IfU(t) is found to be less thali(¢ — 1), then the change is accepted; otherwise
it is accepted with a probability to avoid the sampling tac&tin a local minimum. When

all the sites of the image are visited once, one iteratioais$ ®© be completed.

2.6 Hidden Markov Model (HMM)

HMM is a finite set of states, each of which is associated withemerally multidimen-
sional) probability distribution. Transitions among thates are governed by a set of

probabilities called transition probabilities. In a pediar state an outcome or observa-
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tion can be generated, according to the associated prdigabdtribution. It is only the
outcome, not the state visible to an external observer amitfibre states are “hidden”
to the outside; hence the name Hidden Markov Model. Bagidals an extension of
observable Markov Model. The observation is a probabdigtnction (discrete or contin-
uous) of a state. All observations are dependent on the thiattgenerated them, not on
the neighboring observations. Hidden Markov models expha “locality” of physical
properties of a system. They are often used to construct Imoéiphysical systems when
the information about the system is gathered using an apysattaat distorts the physical
reality being observed in some manner. Markov Random FMIRK) theory provides a
basis for modeling contextual constraints. It is commortdgepted that the pixel inten-
sities in an image exhibit high spatial statistical intgreledence, i.e., background pixels
have a high probability of occurring next to other backgmyoxels. Likewise, pixels
generally lie adjacent to other pixel. The key assumptiotha a high spatial interde-
pendence present in the image field can be easily incorgbrate a MRF model. A
description of MRF is given in section 2.2 before.

MRF is a multidimensional extension of Markov chain, but generalization is
complicated by the lack of a natural ordering of pixels in fidiinensional space. Hid-
den Markov fields are a natural generalization of the HMM thate proved essential
to the development of modern speech recognition, but apaimtultidimensional nature
of the signals makes them inherently more complicated talleaThis added complex-
ity contributed to the long time required for the developmeinsuccessful methods and
applications. Here, the output of the process is the setabésiat each instant of time,
when each state corresponds to an observable event anti@lsotput in any given state
is not random (deterministic). The above stochastic pcesild be called an observ-
able Markov model since the output of the process is thestiteach instant of time,
where each state corresponds to a physical (observable). éaehis section we extend
the concept of Markov models to include the case where there@son is probabilistic
function of the state, i.e. stochastic process with an uyiehgr stochastic process that
is not observable (hidden), but can only be observed thr@ungither state of stochastic

processes that produce the sequence of observations.dtexrample is produced for an
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better insight into the theory of Hidden Markov model.

2.7 HMRF Image Model

The concept of a hidden Markov random field (HMRF) model iswéer from hidden
Markov models (HMM), which are defined as stochastic proeggenerated by a Markov
chain whose state sequence cannot be observed directiythwaligh a sequence of ob-
servations. Each observation is assumed to be a stochastitdn of the state sequence.
The underlying Markov chain changes its state accordingltecd transition probabil-
ity matrix, wherel is the number of states. HMMs have been applied successtully
speech recognition and handwritten script recognitiomc8&ioriginal HMMs were de-
signed as 1D Markov chains with first order neighborhoodesyst it can not directly be
used in 2D/3D problems such as image segmentation. Herepmgder a special case
of a HMM, in which the underlying stochastic process is a Markandom field (MRF),
instead of a Markov chain, therefore not restricted to 1D.réfer to this special case as
a hidden Markov random field (HMRF) model [17]. Mathemaligzadn HMRF model is

characterized by the following:

e Hidden Random Field: The Random fieldX = X;, S is an underlying MRF
assuming values in a finite state spdcwith probability distribution. The state of

X is unobservable.

e Observable Random Field:Y = Y;, 7S is a random field with a finite state space
D. Given any particular configuration,e X everyY; follows known conditional
probability distributiorp(y;|z;) of the same functional fornfi (y;; 6,.,), whered,, is
the involved parameter. This distribution is called the siun probability function

andY is also referred to as the emitted random field.

e Conditional Independence:For anyze X, the random variableys; are conditional

independent.

Based on the above, we can write the joint probability®fY") as

P(y,z) = P(y | 2)P(z) = P(x) [ [ P(yi | z:) (2.5)
€S
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According to the local characteristics of MRFs, the joirglpaibility of any pair of X;, Y;),

given X;'s neighborhood configuratioX y;,, is

Thus, we can compute the marginal probability distributbdX v, Y; dependent on the

parameter set (in this case, we treat as a random varialde) an

yz|lea Zp y27l|$Nw
leL

=3 Fy 0)P( | 2w,) (2.7)

leL
wheref = {0,,1 € L}. . This is the hidden Markov random field (HMRF) model. The
concept of an HMREF is different from that of an MRF in the setis# the former is
defined with respect to a pair of random variable famili&s Y) while the latter is only
defined with respect t&X'. More precisely, the HMRF model can be described by the

following:
1. X = X, ieS - hidden MRF, with prior distribution p(x);

2. Y =Y, ieS - observable random field, with emission probability disttionp(y;|x;)

for eachy;;
3. 0 ={6,,1 € L} - the set of parameters involved in the above distributions.

If we assume the random variabl&$ are independent of each other, which means that
for VieL andieS, we havep(l | xy,) = p(l) = w;, then equation reduces to
p(y|0) szf y; 0r) (2.8)
leL

This is the definition of the finite mixture model. ThereforEM model is a degen-
erate special case of an HMRF model. It is obvious from thevalbivat the fundamental
difference between the FM model and the HMRF model lies iin thiferent spatial prop-
erties. The FM model is spatially independent whereas th&HNMhodel may be spatially
dependent. Therefore, the HMRF model is more flexible forgenaodeling in the sense

that it has the ability to encode both the statistical andiaijaroperties of an image. With
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a Gaussian emission distribution, the FM model is usuallgvkmas the finite Gaussian
Mixture (FGM) or finite normal mixture (FNM) model. More spécally, the observable

random variables have the following density function:

ply | ¢) =" wygly;6) (2.9)
leL
where
1 (yz - Ml)2) T
1 0) = exp | ————— ) and 0; = (u, 2.10
g(y l) \/W P ( 20_12 l (lul Ul) ( )

Similarly, the HMRF model with a Gaussian emission disttitx can be specified as:

p(yi | wn,,0) = gy, 0Pl | xn,) (2.11)

leL
whereg and{, are defined as in . This type of HMRF as the Gaussian hiddendwark
random field (GHMRF) model.

2.8 Fuzzy Clustering
2.8.1 Classical Sets

A classical set is a set that has a crisp boundary. For exarapssical set X of real
numbers greater than 6 is expressed as

A={z|z>6}

In this set of real numbers there is a clear unambiguous kayn@l such that if x is
greater than this number. In this case x either belongs sos#tiA or it does not belong
to this set. These types of sets are called Classical SeassiChl sets are an important
tool in mathematics and computer science but they do notctethe nature of human
concepts and thought. In contrast to a classical set, a feekzys a set without crisp
boundaries. That is, the process of an element belongs tad@dees not belong to a set
is gradual. This transition is decided by the membershigtion of a fuzzy dataset. Real
life problems have data which most of the time has a degremiehéss or falseness that
is the data cannot be expressed in terms of classical set.08 ggample of this is; the
same set! is a set of tall basketball players. According to the cladsset logic a player

6.01 ft tall is considered to be tall whereas a plage)9 ft tall is considered to be short.
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2.8.2 Fuzzy Sets and Membership Function

Membership functions give the flexibility in modeling comnip used linguistic terms
such as the water is hot or the temperature is high to fuzay Zsideh (1965) points out
that, this imprecise data set information plays an impdrtale in human approach to
problem solving. It is important to note that fuzziness inatiadet comes does not come
from the randomness of the elements of the set, but from tlcertain and imprecise
nature of the abstract thoughts and concept&X i$ a collection of objects denoted by
then a fuzzy sefle X is defined as a set of ordered paits= (z, pA(z)) | zeX, Where
wA(z) is called the membership function (MF) for the fuzzy set AeTinembership
function maps each element &fto a membership grade between 0 and 1. If the value of
the membership function is restricted to either O or 1, tHes reduced to a classical set
anduA(x) is the characteristic function of. Usually X is referred to as the universe of

discourse and may consist of discrete objects or continspase.

2.8.3 Data Clustering Algorithms

Clustering of numerical data forms the basis of varioussifastion and system modeling
algorithms. The purpose of clustering is to identify natgraupings of data from a large
data set to produce a concise representation of a systehasioe Clustering algorithms
are not only used to organize and categorize data, but goéuhel data compression and
model construction. Clustering partitions the data sed sgveral groups such that the
similarity within a group is larger than among the groups. abhieve such partitions it
is essential to have a similarity metrics that takes two injactors and returns a value
reflecting their similarity. As most of the similarity metg are sensitive to the range
of elements in the input vectors, each of the input variabyiast be normalized or scaled

down. Clustering techniques are broadly classified as Hastlezing and fuzzy clustering.

2.8.4 Fuzzy C-means Clustering Algorithm

Fuzzy C-means clustering (FCM) algorithm, also known agyuzgodata, is a data clus-
tering algorithm in which each data point belongs to a clusiex degree specified by a

membership grade. Bezdek al. proposed this algorithm in 1973 as an improvement to
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K-means algorithm also known as the hard C-means algoribhend k-means algorithm
executes a sharp classification, in which each object igre#bsigned to a class or not.
The application of fuzzy clustering to the dataset funcelows the class membership
to have several classes at the same time but with differegrede of membership func-
tion ranging from 0 to 1. Fuzzy c-means (FCM) is a method o$t@ung which allows
one piece of data to belong to two or more clusters. It is basedhinimization of the
following objective function

N C

Tn= Y > ul | xi—c | (2.12)

i=1 j=1
wherem the fuzzy factor, any real number greater than is the number of cluster de-
cided by the useny;; is the degree of membership of in the clusterj, x; is the:™
of d-dimensional measured data namely throughput, stdeagt and volumeg; is the
d-dimension center of the cluster, afid:; — ¢; ||? is any norm expressing the similarity
between the measured data and the center. Fuzzy partgisrarried out through an
iterative optimization of the objective function shown abpwith the update of member-
ship matrixu;; and the cluster centers by,

1

5 and,

ZC llzi—ci][2 ) m—1
k=1 \ [la;—ci|?

uij

(2.13)

(2.14)

This iteration will stop when max; , | u{i™" — u{¥ |< ¢ wherec is a termination

criterion between 0 and 1 and usually set to 0.02 whekeigsthe iteration steps. This
procedure converges to a local minimum or a saddle point,0fThe algorithm is com-

posed of the following steps mentioned below.

The steps of the algorithm are as follows:
1. Fixe,2 <c¢< N,m,1 <m < infty initialize The class prototypes V

2. Compute the partition matrix
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3. Compute the fuzzy cluster centers V using
V= Z]k\%vl U T
> h—1 Uik
4. Compute the change in the cluster centers values usingra@gate norm; if the

change is small, stop. Else return to step 2.

2.8.5 Fuzzy Factor and Ideal Number of Clusters

The fuzzy factorm was is also known as fuzzifier. As the valuemfapproaches 1 the
clusters formed tend to be hard and as the value ténds to infinity the obtained clusters
tend to go in a the fuzziest state. There is no theoreticéfigegtion on the value ofn but
is usually set to 2 and in a more generalized form tends to tvedas 1.5 and 3.

The number of clusters for a certain type of data will varydzhen the data partition

desired. The number of clusters can vary between 2 to infinity

2.8.6 Significance of Membership Function in Cluster Analys

As discussed in the earlier section, data are bound to easteclby means of a member-
ship function, which represents the fuzzy behavior of thg®athm. To do that, we build
an appropriate matrix named U whose factors are numbersseet@and 1, and represent
the degree of membership between data and centers of clustethe FCM approach,
instead, the same given datum does not belong exclusivelytell-defined cluster, but
it can be placed in a middle way. In the case of FCM, the merhijefanction follows

a smoother line to indicate that every datum may belong ters¢elusters with different

values of the membership coefficient.



Chapter 3

Unsupervised image segmentation and
Intensity in-homogeneity correction
using Biased HMRF model

3.1 Introduction

Segmentation of brain MR images into different tissue das®specially gray matter
(GM), white matter (WM) and cerebrospinal fluid (CSF) is aportant task for computer-
aided image analysis. The MR image is degraded considebgbdectronic noise, the
bias field (intensity inhomogeneities in the Radio Freqydietd) and partial volume ef-
fect during its acquisition. Often, model based approad¢tze® been adhered to obtain
proper segmentation of degraded MR images. In this reghedptoblem is casting as a
pixel labeling problem and the segmentation problem reslt@westimation of pixel labels.
With an aim to develop the automatic segmentation methedyibdel based problem is
viewed as unsupervised one. In this chapter, Hidden MarkandB@m field (HMRF)
model proposed by Zhargt al. has been employed to formulate the unsupervised seg-
mentation problem [17]. HMRF models have been used to mddetissue classes of
the observed degraded image. TEhpriori class labels are modelled as Markov Random
field (MRF) model. The model parameters, the number of ckssl$ and the image la-
bels are assumed to be unknown. The problem becomes an iteterdpta problem and
is formulated in Expectation-Maximization (EM) framewankotivated by Dempstest

al. [11]. Using this HMRF-EM framework proposed by Zhaepal.,, the segmentation

of brain MR images are obtained without any significant ineraent in segmentation
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accuracy and computational time for the cleaner data [hi7¢rdler to overcome this bot-
tleneck, we have proposed the Biased HMRF model with a biasgghborhood system.
The energy function associated with ta@riori model is modified by an biased amount
of internal field. By this modification, the effect of intetrstructure is incorporated in
the new model. With the BHMRF-EM framework, the image lakaisl the model pa-
rameters are estimated recursively in E- step and M-stgqeotisely. MAP estimation of
image are obtained using Iterated Conditional Mode (ICNpathm.

In this chapter, we have also extended the BHMRF-EM framkwmincorporate
the intensity inhomogeneity correction task. In this reljare have developed a modified
BHMRF-EM algorithm for estimation of bias field, bias fieldroected image labels as

well as model parameters.

3.2 Image model

Let X denotes the random field associated with the labels of tiggnatiimage and
x denotes the realization of that. The label proc&ss assumed to be MRF. We have
already described about MRF model in chapter 2. Hence, ftné gostribution can be
expressed as

PX=ux|¢)= %e—UW (3.1)

whereZ is the partition functiong denotes the clique parameter vector. Déis
the unobservable and denotes the observed random field denotes the pixel intensity
and: is the individual site inS. It is assumed that for any realizatian the random
variables are conditionally independent.
PY=y|X=x2)=][PVi=u|Xi=1) (3.2)
€S
whereS denote the set of all sites of the image. The joint probabdft(X,Y") can be

expressed as

PY=yX=x)=PY=y|X=2)P(X =2)

=P(X =a)[[PVi=ywi | Xi = ;) (3.3)
€S
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Thus the marginal probability distribution &f can be expressed by using the local char-

acteristics of MRF as

P(Yi =y | Xy = 2,,0) = 3 P(Yi = yi | X,, = 2, 6)

leL

=> P(y;,1,6) P(| z,) (3.4)

leL
whered = {0,,l € L}, L denotes the number of class labels.= [y, oy is the model
parameters for each clasgs, o, are the mean and covariance of each class of the inhage,
is corresponding class label. (3.4) is referred as the Hiddarkov Random Field model.

With Gaussian distribution, (3.4) can be expressed as

p(Yi =i | Xp = 2y,,0) =Y g(yi, 0)P(L | 2y,) (3.5)
leL
where
1 (yi - Ml)2 T
i 01) = —_ d o, = (p, 3.6
g(y l) \/Wexp ( 20_12 an l (:ul 0'[) ( )

3.3 Proposed Biased HMRF model

As described in chapter 2, the spatial constraint encodeddn the HMRF model
aims to solve the data with noise and local variations. Tlggnsatation of brain MR
images using HMRF-EM scheme proposed by Zhangl. is obtained without any sig-
nificant improvement in segmentation accuracy and time dexity with cleaner data
than a noisy data [17]. To overcome this limitation, a modifieodel is proposed to im-
prove the neighborhood system of HMRF model by better claramng the structure of
human brain. While taking different weightings of MR imagssveral difficulties arises
due to imaging artifacts. In human brain, WM and CSF are odjg@ent to each otherin
the regions around the ventricles. In most of the T1 weigbtaih regions it is a big task
to differentiate between WM and CSF due to low contrast iensity. Also in case of
T2 weighted images, the contrast between GM and WM is néggigind CSF has high
contrast. This information is encoded into segmentatiaméwork and BHMRF model
is proposed. In HMRF model, it is considered that a pixel igariikely to be a certain

tissue type if the neighboring pixels are of that type. Bamethis assumption, the energy
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function is defined a8, = > . V.(z) and the clique potential is normally defined as
Ve(z) ==0 iffw; — x| =0 (3.7)
=0 iffr;—xz| #£0
In our proposed BHMRF model, the clique potential is modiasd
Ve(z) = =0(x; — ;) — p*6(| 2 — 2 | 1) (3.8)

wherep is biased factor. In this way, a CSF pixel in the neighborhsggtem can also
contribute to the central pixel being a gray matter but nadp@ white matter, and vicev-

ersa. Therefore, this reduces the probability that WM anB @@ adjacent to each other.

3.4 MAP estimation of image labels

Let X be the random field associated with the noise free class &lzet be the
realization of the sameX is modeled as a MRF.

Let Y denote the observed image random field aruzk the realization of itY is
modeled as Hidden Markov Random Field (HMRF).

Let  be the associated model parameters. In the pixel labelioglgm, letz*
denote the true but unknown labeling configuration amtknote the estimate far*.

x* is the realization of random field’, which is modeled as MRF. The observed
imagey is a realization of proposed BHMRF framework. The problertoisecoverz*

from the observed imagg The following optimality criterion is adopted,
T=argmaxP(X =z |Y =y,0) (3.9)

whereP(X = x | Y = y,6), is the posterior probability distribution of’, the model

parameters for each class = [u, 0] are taken from histogram analysis. Sin&eis

unknown, the posteriori probability distributidi(z | y, #) can not be evaluated. Hence,

using Baye’s rule, (3.9) can be expressed as

Py | z,0)P(x)
P(y)

SinceY is known, the denominator of (3.10) is a constant. ThusQ)3can be written as

=

= argmax
x

(3.10)

T =argmax P(y | z,0)P(x) (3.11)
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SinceX is MRF, the prior probability distribution in (3.11) is gimesP(x) = Ee*U@).
It is also assumed that the pixel intengjtyfollows a Gaussian distribution with parame-
terso, = {u, 0, }. Given the class label; = [,
1 (yi — HZ)Q)
Ply; | x;) = exp | ————— 3.12
(i | @) N ( 207 (3.12)
Using the assumption of conditional independence

Ply|z) =] P l=)=]] {\/127 <—(yi ;Jg“)Q —log(azi))] (3.13)

S S

(3.13) can be expressed as

Ply | 2) = eap(~Uly | 2))) (3.14)

Uly|z)=> Uly| ) —Z{%j%og(%)}

€S €S Ti
andZ’ = (27)"/2. Using the above, (3.11) can be expressed as

1 1

i = argma | Zeap(~U(a) eap(~Uly | o) (3.15)

(3.15) is equivalent to minimizing the following
& =argmin[U(y | x) + U(z)]

whereU(y | ) andU(z) are the energy functions corresponding to the conditioisl d

tribution P(Y =y | X = x,0) and thea priori class distributionP?(X = x) respectively.

=arg mxin [Z {% + log(oy, ] Z Ve(x ] (3.16)

i€S i c;eC

=

The MAP estimate of in (3.16) is obtained by employing the ICM algorithm.

3.5 Iterated Conditional Mode Algorithm

Since it is difficult to maximize the joint probability of an RF, Besaget al. pro-
posed a deterministic algorithm called Iterated Conddldviodes (ICM) which maxi-

mizes local conditional probabilities sequentially. TI@&M algorithm uses the greedy
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strategy in the iterative local maximization. Given theadatnd the other Iabel.g(skli,
the algorithm sequentially updates eaéf"‘? into xgk'“) by maximizingP(x; | vy, xs_;),
the conditional probability, with respect tg. Two assumptions are made in calculating
P(x; | y,z5-):
1. The observation components -, ys... ¥, are conditionally independent given
and eachy; has the same known conditional density functidg; | x;) dependent

only onzx;. Thus

ply | x) = Hp(yz- | z;) (3.17)

2. The second assumption is thatlepends on the labels in the local neighborhood,

which is the Markovianity.

From the two assumptions and the Bayes theorem, it folloais th
Pz |y, ws—i) o< p(yi | 23) Pz | 2n,) (3.18)

Obviously,P(z; | y;, %) is much easier to maximize thaf(z | y), which is the point
of ICM. Maximizing 3.18 is equivalent to minimizing the cesponding posterior energy

using the following rule.

oF o argmaz Ul |y, ](\f)) (3.19)
Z;

The result obtained by ICM depends very much on the inititirestor (*) and the ICM
is locally convergent [10].

3.6 Parameter estimation

The problem of parameter estimation is regarded as an inlaeagata problem
in this scheme. Expectation-Maximization (EM) algorithsnal potential tool to handle
the incomplete data problem. It solves the Maximum-Liketiti (ML) estimation of the
model parameter.

E- step estimates the expected value of unknown variables, giverctinrent pa-
rameter estimate. The MAP estimates of the image labels@eened by the Iterated
Conditional Model (ICM) algorithm.
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M- step re-estimates the distribution parameters to maximizeik&dithood of the
data, given the expected estimates of the unknown variables

The E and M steps are iterated recursively till the paramnsetenverge to the op-
timal solution. Experiments on both real and syntheticrbMR images show that the
segmentation results of proposed BHMRF-EM scheme outpesgfthe existing HMRF-

EM scheme.

3.7 EXxpectation-Maximization algorithm

To perform unsupervised segmentation of image data, whattethe class labels
and model parameters are unknown, a method of concurrestitp&ting the underlying
class labels of the image and associated model parametegused. Alternately, the
problem may be viewed as an incomplete data problem. Fallgwhis approach, the
complete data comprisés = {X,Y}, whereY is observed and is the underlying
or hidden component. Applying this to image segmentatiortomprises the observed
noisy image andX is a lattice on which the segmentation of the image is defiieith
the complete data seét = {X, Y}, a joint density functionP(Z | §) = P(X,Y | §) =
£(0 | X,Y) is specified, which is the complete-data likelihood functgmd.£(0 | V) is
the incomplete-data likelihood functiofijs the set of parameters governing the observed
data.

The Expectation-Maximization (EM) algorithm was first posed by Dempstest
al. as an iterative maximum likelihood procedure for paramestimation from incom-
plete data [11]. The methodology has been extensively eghpdi the problem of image
segmentation and specifically to brain MR image segmemttio]. Since the EM algo-
rithm yields maximume-likelihood estimate for the hiddenajahe unsupervised segmen-
tation problem is solved using the following steps.

e Obtain an initial parameter estimate™® using an initial guess.
e Use the EM algorithm to find the maximum-likelihood parametstimate.

e Use a supervised algorithm to obtain the maximume-likelthoomaximuma pos-

teriori estimate for the hidden data.
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The EM algorithm is an iterative process, where each itenatbnsists of two steps. The
first of these finds an expression for the expected value afdh®plete data log-likelihood
log P(X,Y | #) with respect to the hidden dafs, given the observed dald and the
current parameter estimates. The second step maximizesexpectation to estimate the
parameters.

Expectation Step:

The E-stepcalculates the conditional expectation

Q0 16") = E{log P(X,Y | 0) | Y, 6} =) P(X|Y, 6")log P(X,Y | ) (3.20)

zeX

where the parameter sét= {1y, 0, | [ € L} is the new parameter that is optimized to
increase) andd! is the current parameter estimate that is used to evaluagxfectation.

For a givenX, @ function is formulated as

QO 0') =D icg Plxi | yi, 0') log P(xi, i | 0)
= Zies ZleL Pt(l ‘ Yi) IOg{P(yi | 74) P('Ti ‘ Lnis 9)}

= ZiGS ZZGL Pt(l | yi){ log P(y: | ;) +log P(I | Tni s 0)}

2

can(= ) log P | . )

= Zies ZleL Pt(l | yi){log(

1
\/2mo?

2
Yi — |
=Y ies der PY(1 | yi){—i( 52 ) —logo; — 0.5log 2m} + log P(L | 2, 0)
!

2
Yi — K
=S ies Sies P - rogon o 10g P |2, 0))
l

+PY(1 | y;)(—0.51log 2m)
=D ies 2er P y) (W +C)

(yi — pu)*
2012
Maximization Step:

wherelV = — —logo; +1log P(l | z,;, 8)} andC' = —0.5log 27
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The M-stepmaximizesQ(f | 6") to obtain the next estimate with respect to the first

argument of th&) function which is the conditioner of the complete data litkebd.

arg m

0 Q6" (3.21)

0t+1 —
e Maximizing Q-function with respect tq :

0Q(6 | ¢')

S —oor 2 -y 0

207
or PY(L | yi)ys = PU(L | yi)u

> ies P vi) vi
> ics P yi)

or it =

e Maximizing Q-function with respect to} :

Q016"

Jo? o

Q. (yi — pu)? -
or an{P (1] yz)(—T) —logo} =0

or PU(L| i) (ys — u)* = P(1 | y;)o?

or o2+ _ Lies P i) (yi — m)?
2ies PP yi)

The EM algorithm consists of choosing an initial paraméter”), then iterates the E-step

and M-step successively until the paraméteonverges td.

3.8 Joint estimation of image labels and model parame-
ters using Biased HMRF-EM framework

In the EM framework, image labels as well as the model pararaetre estimated recur-

sively until the model parameters converge to the optimabkoit he image label estimates
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2 are obtained by computing the MAP estimation using thedhitiodel parameters that
are taken from histogram of the noisy images. The MAP esgnsmbbtained by ICM
algorithm described in section 3.5. Using the label est@®al and the degraded im-
ageY’, the model parameter® is estimated by maximizing th@ (0, 6*). This recursive
process is repeated till the parameters converge to optiataés. The optimal values of
the parameters are used to obtain the desired segmentasiolt rThe image labels and
model parameters are obtained by the BHMRF-EM algorithme 3&ient steps of the
proposed BHMRF-EM algorithm is described below.
BHMRF-EM Algorithm:

1. Perform the initial parameter estimation and segmeontati

2. Calculate the likelihood distribution
P (yilz:) = 9 (v 0 (1))
3. Estimate the class labels by MRF-MAP estimation

2 = argmax Py | x,6" + P(z))

zeX

ICM algorithm is used to estimate the class labels.

4. Calculate the posterior distribution

9D (yi;0,) p? (1] zn,)
p(yi)

p(t) (l ‘ yi) =

5. Update parameters by

’u(t+1) — Zz‘@ p" (U] vi) yi a(t+1)2 _ Zies p (i) (i — Ml)2
: Zies p(t) (l ‘ yl) : Zies p(t) (l ‘ yl)

6. t — t + 1 and repeat from 2 until enough iterations have been perfdrme
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3.9 Bias Field estimation

In this chapter, we have taken the bias field model proposed/dlis et al. [19].
Let the observed intensity of the given imagd is- (1, ....., Iy) and
the true intensity of the given imageis= (17, ....., I})

The degradation effect of the bias field at pixell < 7 < N can be expressed as

The bias field effect is treated as an additive artifact détgarithmic transformation.

Let the observed log transformed intensityYisand the true log transformed in-
tensity isY*. ThenY = Y* + B. The bias fieldB is modelled with Gaussian prior
probability density (B) = G, (B) whereyp is the N x N covariance matrix. Assum-
ing the true intensity value at pixel i following the Gaussaistribution with parameter

0 (z;) = (4, 02, ) With given class labels x is

p(ila:) = g (y;; 0 (1)) (3.23)

With bias fieldb;, the distribution can be written in terms of the observedrsityy; as,

p (yilzi, B) = g (yi — bi; 0 () (3.24)

Thus, the intensity distribution in terms of Gaussian migtonodel is
pWilB) =gy —bi:0(j) P () (3.25)
JEL
The optimal estimate of the bias field is obtained using theP\MpAnciple as

A

B =arg mgXP(Y | B)p(B) (3.26)

A zero gradient condition is to assess this maximum as

Wil B)p (i = j)
Wia p (vl B) (3.27)

[F'R]i

T

with 1= (1,1,,1)7
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where R is the mean residual for pixel
R = ]EZL Wi (v = 15) (i}._ ) (3.28)
1 is the mean inverse covariance
Uit =Y Wyod, if i=k
JjeL
0 otherwise (3.29)
and F is the low-pass filtefV;; is the posterior probability that pixelbelongs to clasg
given the bias field estimate. The E step assumes that theddthis known and calculates
the posterior tissue class probabillty;;. In the M step, the bias field B is estimated given
the estimatedV;; in the E step. Once the bias field is obtained, the originansity /*
is restored by dividing by the inverse log of B. Initially, the bias field is assumed&o
zero.
3.10 Joint estimation of bias field, image labels and model
parameters using modified Biased HMRF-EM frame-
work

In the EM framework, the bias field and class labels as welhasmodel parameters
are estimated recursively until the model parameters agevi® the optimal ones. The
bias field B° and the image class label estimatésare obtained by computing the MAP
estimation using the initial model parameters. Using tihel@stimates’ and the bias
field B, the model parametefs is estimated by maximizing th@(#, B'). This recursive
process is repeated till the parameters converge to optiadaés. To estimate the class
labels and model parameters along with bias field, a modifldMBRF-EM algorithm is

proposed. The salient steps of the proposed BHMRF-EM dlguris as follows.
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Modified BHMRF-EM Algorithm:
1. Perform the initial parameter estimation and segmeontati
2. Estimate the bias field

FR|; ,
bl(t) — %,WZH?J - (L 17 ) 1)T

3. Calculate the likelihood distribution
P (yilai, B) = ¢ (i — bi; 0 (,))
4. Estimate the class labels by MRF-MAP estimation

@ =arg max Py |z,0" + P(z))
S

5. Calculate the posterior distribution

9D (yi;0,) p? (1] zn,)

(t) _
(U yi) =
() p(yi)
6. Update parameters by
D = >ies P (1] i) yi S > ies P (1] i) (i — u)?
: ZiES p® (1| i) : ZiES p® (1| i)

7. t — t 4+ 1 and repeat from 2 until enough iterations have been perfdrme

3.11 Results and Discussions

In simulation, both synthetic as well as brain MR images amswered to validate the
proposed algorithm. Synthetic images consisting of 3 anth8ses are considered for
the simulations. Besides, 5 simulated and 3 real brain MRyeaghealthy as well as
diseased) are considered. The degraded images are obbgiraettling white Gaussian
noise of varying strength to the original image. The simedabrain MR images are
obtained from “bicadmin@bic.mni.mcgill.ca” and “macanefi®davidson.edu” . The

real brain MR images are obtained from “Department of Radygl IGH, Rourkela” and

“the whole brain Atlas”.
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Synthetic images:

Synthetic image of three class is considered as shown in3lg(a). The corresponding
noisy version of SNRs 20 dB and 18 dB are shown in Fig. 3.1 (d)3ah (e) respectively.
The noisy images are modelled as Biased HMRF model andlimialel parameters
1 ando considered for each class are selected from the histogramspective noisy
images. Proposed BHMRF-EM algorithm is used to obtain tiggnemted image of re-
spective noisy images. Trepriori MRF model parametef and the biased parameter
are selected on the trial basis The performance of the éfgoiis compared with Zhang'’s
HMRF-EM algorithm [17]. The initial and converged paramstare tabulated in table
3.1. The results obtained by BHMRF-EM algorithm are showirign 3.1 (c) and (f)
for SNR 20 dB and 18 dB respectively. Similarly the simulat@nd results obtained
by HMRF-EM algorithm are shown in Fig 3.1 (d) and (g) respesii. As the number
of classes is assumed to be unknown, the algorithm is run figmer number of initial
classes and the algorithm converged to three classes. Henawve assumed 5 no. of ini-
tial classes. It is clear from the result that proper labgliof pixel could be obtained for
noisy images of SNR 20 dB. The performance of the BHMRF-EM al$ & HMRF-EM
algorithm were with increase in noise strength which cowddobserved from the seg-
mentation results of the noisy image of SNR 18 dB. It is evideym the image metrics
that proposed BHMRF-EM algorithm converges faster thanahelMRF-EM algorithm.
The % of MCE of the segmented image is also less in case of BHMRF-&Mmse. This
is due to the incorporation of baised neighborhood inahgiori energy function. The
identical spatial information used by HMRF model throughitxe image is modified by
assigning an biased parameter to the neighbourhood sy#¢@mincrease in noise, i.e at
18 dB SNR, the performance of the algorithm degraded as seenHig. 3.1 (f), but the
performance of HMRF-EM algorithm degraded more as in Fid.(8).

A five class synthetic image is considered in our simulatiesfaown in Fig. 3.2
(a). The corresponding noisy versions of SNR 20 dB and 18 dBeawively. are shown
in Fig. 3.2 (b) and (e). Fig. 3.2 (c) and (f) show the segmémtatesults obtained by
BHMRF-EM algorithm and the model parameters are tabulatedble 3.2. The priori

model parameter and weighting parameter for each of the noisy images aregalso in
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table 3.2. Itis observed from Fig. 3.2 (c) and (f) that BHMEW algorithm yield proper
segmented images. It is also observed from Fig. 3.2 (d) anithétjthe segmented results
using HMRF-EM algorithm have more number of misclassifiece|s. With increase in
noise, there is more degradation in performance in both theraes. There are many
misclassified pixels five distinct visible classes. In bothteetic images, it is observed
that the no. of misclassified pixels in the segmented imagedeas in our proposed
scheme which signifies the quality of better accuracy. Thevemence of the algorithm
is also faster which is evident from the convergence timegméeed in table 3.1 and 3.2.
This up gradation in performance of the BHMRF-EM scheme @da attributed to the

incorporation of biased neighborhood structure.

Brain MR images:

After testing the developed algorithms with synthetic imaguccessfully, 5 simulated
and 3 real brain MR images are considered in our simulatidtissimulated brain MR
images are obtained from “Department of Radiology, IGH, iRela” and “the whole
brain Atlas”. A simulated brain MR image of siZé28 x 128) degraded witt3% noise
is shown in Fig. 3.3 (a). The “noise percentage” value regmessthe percent ratio of the
standard deviation of the white Gaussian noise versusgmelsior a reference class. The
corresponding ground truth image is presented in Fig. 3.3 The proposed BHMRF-
EM algorithm is applied with varying weighting parameter heTalgorithm starts with
6 number of initial classes. Thee priori parametew is assumed to be.2. The initial
parameterg, ando for each class are assumed from the histogram of the origimade.
It is observed that th& of MCE changes with different weighting parameter . The Emi
study is also done with other brain MR images presented Fi§. Bhe finding of% of
MCE vercus are presented in table 3.3(a) for different bR images. It is observed
that the% of MCE is less with the value gf betweer).3 and0.5. So, for all brain MR
images, the value of is taken @$.

A diseased real brain MR images of siz&5 x 215) degraded witt8% noise is
shown in the Fig. 3.5 (a). The corresponding segmented imattpedifferent values of

biased factor varies fror 1 to 0.9 are shown in Figs. 3.5 (d)-(i) respectively. Sixriori
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classes are assumed for this image and the corresponding=BHvbdel parameters for
four different classes are tabulated in Table 3.6. &lpgiori MRF model parameters for
the two schemes &25. It is observed from Figs. 3.(d)-(f) that four distinct cd@s could
be obtained up tp = 0.5. At high biased value there are visibly four classes withva fe
misclassified pixels. Hence, the performance of the scheaduglly deteriorates with
increase in biased value. The results are compared withxikergy scheme HMRF-EM.
This is evident from the Table 3.6 that the BHMRF-EM schemevegges in 23 secs,
while the HMRF-EM found to be little faster than that of preed scheme. But tHg of
MCE shows the accuracy in the segmentation of the proposed on

Similarly, another two real sacroma diseased and multgdsibns of real brain MR
images of sizg175 x 215) with 3% noise are shown in Fig. 3.7 (a) and 3.8 (a). The
corresponding ground truth images are shown in Fig. 3.71{d)38 (b). The segmented
image using BHMRF-EM framework are shown in Fig. 3.7 (c) an8l @). Fig. 3.7
(d) and 3.8 (d) shows the segmented image of HMRF-EM framlewal the initial
and final model parameters, the a priori parameter and bizaleé for both the images
are tabulated in Table 3.8 and Table 3.9 respectively. Aexeeution time for both the
framework are not varying, from the misclassification eiitocan be observed that the
proposed schemes outperfoms the former one using the brakezp = 0.5.

A simulated brain MR image of sizg28 x 128) degraded witl3% and5% noise
are shown in the Fig. 3.6 (a) and (e). The ground truth imagedsented in Fig. 3.6 (d).
The segmented image using proposed BHMRF-EM frameworkraoersin Fig. 3.6 (b)
and (f). Fig. 3.6 (c) and (g) shows the segmented image of HERHramework. All
the initial and final model parameters are tabulated in Table The% of MCE proves
the efficiency of the proposed scheme.

At last, another two simulated brain MR image of sj2é¢1 x 181) and(256 x 256)
are shown in in Fig. 3.9 (a) and 3.10 (a). The correspondiogiat truth images are
shown in Fig. 3.9 (b) and 3.10 (b). The segmented image ustHigBF-EM framework
are shown in Fig. 3.9 (c) and 3.10 (c). Fig. 3.9 (d) and 3.10s{@ws the segmented
image of HMRF-EM framework. All the initial and final model y@aneters for both the
images are tabulated in Table 3.10 and Table 3.11 resphctimom the table it can be
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observed that thé; of MCE is less in case of proposed BHMRF-EM framework rather
than HMRF-EM framework.

3.11.1 Bias field estimation:

In our simulation for bias field correction using modified BIRA-EM algorithm, one

3-class synthetic image and 3 brain MR images are consid&rexlbias field is ge
Synthetic images:

The 3- class synthetic image of sigze28 x 128) is shown in Fig. 3.11 (a). The gener-
ated circular bias field is shown in Fig. 3.11 (b). The muitgtive bias field corrupted
synthetic image is shown in Fig. 3.11 (c). After validatiohtlee proposed modified
BHMRF-EM algorithm on Fig. 3.11 (c), the extracted bias fisldbtained properly and
presented in Fig. 3.11 (d). Tteepriori model parameter along with the initial and con-
verged sets of model parametersindo are tabulated in Table 3.12. It is observed that
the proposed modified BHMRF-EM algorithm could extract treslield.

Brain MR images:

After testing the developed algorithms with synthetic imagiccessfully, 3 simulated
brain MR images are considered in our simulations. Fig. 3adZhows the simulated
brain MR image of siz€128 x 139). The generated circular bias field and the multi-
plicative bias field corrupted image are shown in Fig. 3.12afid (c) respectively. The
extracted bias field is shown in Fig. 3.12 (d). The initial dim&l model parameters are
tabulated in Table 3.13.

The proposed algorithm is also validated with another 2rbMR images of size
(128 x 110) (128 x 147) are shown in Fig. 3.13 (a), Fig. 3.14 (a). The generated laircu
bias field are shown in Fig. 3.13 (b), Fig. 3.14 (b). Fig. 3.8 Fig. 3.14 (c) are the
multiplicative bias field corrupted images. Fig. 3.13 (dddfg.3.14 (d) indicates the
extracted bias field of the brain MR image 3.13 (a), Fig. 3d)4¢spectively. The initial
and converged model parameterand o for the 2 images are tabulated in Table 3.14

and Table 3.15. In all brain MR images, it is observed thaipttogposed algorithm could
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successfully extracted the intensity in-homogeneity asbield, hence could be able to

segment the bias corrected images properly.

3.12 Conclusion

This chapter addressed the segmentation of brain MR imagessupervised framework.
Biased HMRF model is proposed to jointly estimate the mo@ehmeters and the im-
age labels. The energy function of tagriori MRF model is modified in the proposed
BHMRF model which could able to reduce the percentage oflagsdication error and
time complexity. The proposed BHMRF-EM scheme yielded #ggnsentation of syn-
thetic as well as brain MR images with better performance tha result of HMRF-EM
scheme. The proposed BHMRF-EM algorithm does not assumavi® the knowledge
of the number of classes. But, the MRF model paramé&tes assumed to be known.
The proposed algorithm is also exploited to take care of ttenisity inhomogeneity of
the brain MR images. In this regard, modified BHMRF-EM altfun is proposed to
estimate the bias field. The bias field, image labels and nyatteimeters are estimated
jointly. Although the proposed algorithm could yield beterformance than the HMRF-
EM scheme, but the algorithm is very much sensitive to thigainassumption of model
parameters. Another limitation of the algorithm is to seleof the MRF model. Our
segmentation result may be further improved by developisgh@me which is insensitive

to initial model parameters.
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@
(€) (d)
(f) (9)

Figure 3.1:Unsupervised image segmentation of synthetic 3-classdarofgize(128 x
128): (a) Original image (b) and (e) noisy image with 20 db and 183MR respectively
(c) and (f) segmented image using HMRF-EM framework (d) andégmented image
using Biased HMRF-EM framework

(b)

(e)
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Schemes and Parameterslass— 1 2 3 % of | Execu.
MCE time (sec.)
SNR=20dB | u; 0.61 1.48 1.97
6=0.7 or 0.22 0.33 0.44
BHMRF-EM | 1if 0.83 1.81 2.38 1.82 28
p=10.26 oy 0.16 0.17 0.16
HMRF-EM i 0.82 1.84 2.28 2.03 34
or 0.16 0.21 0.27
SNR=18dB | u; 0.42 1.13 1.80
6 =10.65 o 0.35 0.54 0.61
BHMRF-EM | 1if 0.82 1.78 2.32 2.45 28
p=0.23 oy 0.20 0.21 0.23
HMRF-EM iy 0.82 1.81 2.38 2.86 28
oy 0.20 0.22 0.25

Table 3.1:Image model parameters of synthetic 3-class image of($izex 128) with
BHMRF-EM, HMRF-EM schemes of Fig. 3.1

Schemes and Parameterslass | 2 3 4 5 % of | Execu.
—1 MCE time
(sec.)

L 0.02 0.9 2.04 3.10 3.80

0 =0.62 o; 0.37 0.68 0.54 0.60 0.43

BHMRF-EM | if 0.01 0.97 2.0 3.01 3.96 4.47 22

p=0.1 oy 0.02 0.09 0.09 0.10 0.07

HMRF-EM o 0.04 0.99 1.98 2.99 3.98 5.02 23
o 0.07 0.24 0.24 0.23 0.23

SNR=18dB | p; 0.02 1.16 1.96 3.08 3.78

0=0.6 o; 0.37 0.45 0.60 0.59 51

BHMRF-EM | 1if 0.02 1.08 2.30 3.43 3.06 6.94 24

p=03 oy 0.05 0.10 0.15 0.17 0.09

HMRF-EM iy 0.05 0.99 1.98 2.96 3.89 8.68 24
oy 0.09 0.20 0.25 0.29 0.30

Table 3.2:Image model parameters of synthetic 5-class image of($izex 128) with
BHMRF-EM, HMRF-EM schemes of Fig. 3.2
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Figure p 0.2 0.3 0.4 0.5 0.7 0.9
3.3 % of MCE | 12.60 12.5 10.0 6.84 16.57 16.58
Figure p 0.1 0.3 0.5 0.7 0.8 0.9
3.4 % of MCE | 20.17 18.23 18.07 19.38 19.45 22.24
Figure 0 0.1 0.5 0.6 0.7 0.9
3.5 % of MCE | 13.70 13.47 15.76 18.54 19.82

Table 3.3:% of misclassification error with different biased parametarsing proposed

BHMRF-EM framework of Fig. 3.3, 3.4, 3.5

Schemes and Parameterslass— | 2 3 4 % of | Execu.
1 MCE time
(sec.)

0=0.1 Lbi 1.14 1.98 3.02 3.96

o 0.55 0.57 0.67 0.23
BHMRF-EM | 11y 0.28 1.09 2.10 3.04
p=05 of 0.69 0.21 0.12 0.09 6.84 20
HMRF-EM | 1y 0.28 1.34 2.10 3.22

of 0.30 0.20 0.14 0.09 11.35 18

Table 3.4:Image model parameters of brain MR image of iZ28 x 128) segmented
image using BHMRF-EM framework with biased parametesegmented image using

HMRF-EM framework schemes of Fig. 3.3

Schemes and Parameterslass— | 2 3 4 %  of | Execu.
1 MCE time
(sec.)
0=0.2 L 0.74 1.86 3.0 3.96
o 0.66 0.57 0.55 0.73
BHMRF-EM | p 0.96 1.23 1.59 4.03
p=05 of 0.06 0.12 0.29 0.15 18.07 24
HMRF-EM | pf 0.98 1.51 3.07 4.16
of 0.05 0.18 0.28 0.05 19.97 22

Table 3.5:Image model parameters of brain MR image of SiZ28 x 128) segmented
image using BHMRF-EM framework with biased parametesegmented image using

HMRF-EM framework schemes of Fig. 3.4
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Schemes and Parameterslass— | 2 3 4 %  of | Execu.
1 MCE time
(sec.)
0 =0.25 L 0.12 1.16 1.84 2.86
o 0.22 0.51 0.61 0.56
BHMRF-EM | p 0.14 1.48 1.86 2.48
p=05 of 0.08 0.10 0.19 0.14 13.47 23
HMRF-EM | pf 0.14 1.46 1.82 2.46
of 0.05 0.09 0.19 0.14 19.29 20

Table 3.6:Image model parameters of brain MR image of SiFe5 x 215) segmented
image using BHMRF-EM framework , segmented image using HEMHRramework
schemes of Fig. 3.5

Schemes and Parameterslass— | 2 3 4 % of | Execu.
1 MCE time
(sec.)

0=20.3 [bi 0.02 0.9 1.8 2.96

o 0.12 0.57 0.58 0.68
BHMRF-EM | 1 0.28 1.08 0.03 1.86
p=05 of 0.04 0.09 0.01 0.21 5.19 24
HMRF-EM | py 0.10 1.03 1.48 2.62

of 0.02 0.06 0.14 0.22 14.65 22

Table 3.7:lmage model parameters of brain MR image of $iZ& x 128) with BHMRF
EM, HMRF-EM schemes of Fig. 3.6 respectively.

Schemes and Parameterslass— | 2 3 4 %  of | Execu.
1 MCE time
(sec.)

0=0.3 L4 1.18 1.84 3.0 3.86

o; 0.50 0.57 0.52 0.67
BHMRF-EM | 1 0.14 1.62 1.93 2.36
p=0.5 of 0.10 0.09 0.13 0.20 16.89 26
HMRF-EM ff 0.12 1.25 1.72 2.24

of 0.16 0.08 0.09 0.05 18.06 26

Table 3.8:Image model parameters of brain MR image of SiZ28 x 128) segmented
image using BHMRF-EM framework , segmented image using HERRramework
schemes of Fig. 3.7
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Schemes and Parameterslass— | 2 3 4 %  of | Execu.
1 MCE time
(sec.)
0=0.1 L4 1.34 2.14 3.16 4.08
o 0.28 0.31 0.33 0.34
BHMRF-EM | p 1.36 1.83 2.74 3.52
p=05 of 0.60 0.12 0.19 0.25 15.32 28
HMRF-EM | pf 1.35 1.79 2.64 3.44
of 0.05 0.08 0.19 0.12 19.22 29

Table 3.9:Image model parameters of brain MR image of SiZ28 x 128) segmented
image using BHMRF-EM framework with different valueppfsegmented image using
HMRF-EM framework schemes of Fig. 3.8

Schemes and Parameterslass— | 2 3 4 %  of | Execu.
1 MCE time
(sec.)
o = 0.08 L 0.03 1.0 1.86 2.86
o 0.32 0.65 0.52 0.48
BHMRF-EM | p 0.01 1.41 1.67 2.14
p=05 of 0.09 0.21 0.08 0.08 19.01 25
HMRF-EM | pf 0.02 1.01 1.78 2.26
of 0.10 0.22 0.09 0.08 21.09 26

Table 3.10:1mage model parameters of brain MR image of $izd x 181) with BHMRF-
EM, HMRF-EM schemes of Fig. 3.9 respectively.
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(f) (9)

Figure 3.2:Unsupervised image segmentation of synthetic 5-classdrofgize(128 x
128): (a) Original image (b) and (e) noisy image with 20 db and 183MR respectively
(c) and (f) segmented image using HMRF-EM framework (d) andégmented image
using Biased HMRF-EM framework
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(f)

(9) (h) (i)

Figure 3.3:Unsupervised image segmentation of Brain MR image of($2&x 128) (a)
Original image with 3% of noise (b) Ground Truth (c) segmented image using HMRF-EM
framework (d)-(i) segmented image using Biased HMRF-EMhé&aork withp= 0.2, 0.3,

0.4,05,0.7,0.9



Chapter 3. Unsupervised image segmentation and intemsitpimogeneity

correction using Biased HMRF model 54

Figure 3.4:Unsupervised image segmentation of Brain MR image of($&x 128) (a)
Original image with 3% of noise (b) Ground Truth (c) segmented image using HMRF-EM
framework (d)-(i) Biased segmented image using HMRF-EMé&aork withp= 0.1, 0.3,

0.5,0.7,0.8,0.9
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Figure 3.5:Unsupervised image segmentation of tumor from a Brain MRye& size
(175 x 215) (a) Real image with 3 of noise (b) Ground Truth (c) segmented image using
HMRF-EM framework (d)-(h) segmented image using Biased AR framework with
p=0.1,0.5,0.6,0.7,0.9
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Figure 3.6:Unsupervised image segmentation of Brain MR image of($2&x 128) (a)
and (e) Original image with 3 and 5% of noise (d) Ground Truth (b) and (f) segmented
image using Biased HMRF-EM framework (c) and (g) segmentedé using HMRF-EM

framework
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(d)

Figure 3.7:Unsupervised image segmentation of Sarcoma diseased BiRiimage of
size(175 x 215) (a) Real image with 3% of noise (b) Ground Truth (c) segmented image
using HMRF-EM and framework (d) segmented image using BiedRF-EM frame-

work
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(d)

Figure 3.8:Unsupervised image segmentation of Multiple sclerosis faBrain MR im-
age of siz€175 x 215) (a) Real image with 3¢ of noise (b) Ground Truth (c) segmented
image using HMRF-EM framework (d) segmented image usinge8islMRF-EM frame-

work



Chapter 3. Unsupervised image segmentation and intemsitpimogeneity
correction using Biased HMRF model 59

(d)

Figure 3.9:Unsupervised image segmentation of Brain MR image of(SiZex 181) (a)
Original image with 3% of noise (b) Ground Truth (c) segmented image using Biased
HMRF-EM framework (d)segmented image using HMRF-EM fraonlew

Figure 3.10:Unsupervised image segmentation of Brain MR image of (8 x 255)
(a) Original image with 3% of noise (b) Ground Truth (c) segmented image using Biased
HMRF-EM framework (d)segmented image using HMRF-EM fraonlew
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Schemes and Parameterslass— | 2 3 4 %  of | Execu.
1 MCE time
(sec.)
6 =0.01 L 0.08 0.78 1.96 2.96
o 0.30 0.65 0.55 0.76
BHMRF-EM | pf 0.01 1.05 1.55 2.83
p=05 of 0.01 0.09 0.12 0.21 11.56 28
HMRF-EM | pf 0.10 1.09 1.48 2.46
of 0.02 0.06 0.14 0.13 16.70 22

Table 3.11:1mage model parameters of brain MR image of iz x 128) with BHMRF
EM, HMRF-EM schemes of Fig. 3.10 respectively.

(a) (b)
(c) (d)
Figure 3.11:Synthetic 3-class image of sig28 x 128) with : (a) Original image (b)

slowly varying circular bias field (c) multiplicative biasefd corrupted image (d) ex-
tracted bias field using modified BHMRF-EM algorithm
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| Parameters | class— 1| 2 [E |
i 0.875 1.85 2.00
SNR=25dB | o; 0.55 0.38 0.4
b=12 fy 0.99 1.99 2.06
or 0.24 0.23 0.12

Table 3.12:1mage model parameters of synthetic 3- class image of $28ex 128) using
modified BHMRF-EM algorithm of fig 3.11

() (d)

Figure 3.12:Brain MR image of sizé128 x 139) with : (a) Original image (b) slowly
varying circular bias field (c) multiplicative bias field aapted image (d) extracted bias
field using modified BHMRF-EM algorithm
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Parameters | class— 1 ]2 [E | 4
i 0.013 1.43 2.83 2.00
SNR=25dB| o; 0.32 0.60 0.66 0.50
0=1.2 [f 0.0 3.11 3.12 2.475
of 0.0 0.198 0.197 0.054

Table 3.131mage model parameters of brain MR image of $iz8 x 139) with SNR 25
dB using modified BHMRF-EM algorithm of fig 3.12

(©) (d)

Figure 3.13:Brain MR image of sizé128 x 110) with : (a) Original image (b) slowly
varying circular bias field (c) multiplicative bias field capted image (d) extracted bias
field using modified BHMRF-EM algorithm

| Parameters | class— 1 ]2 [E | 4 |
1 0.96 2.13 2.88 0.1
SNR=25dB| o; 0.57 0.55 0.6 1.50
6=1.2 [y 1.2 2.06 3.07 3.65
of 0.12 0.2 0.89 0.57

Table 3.141mage model parameters of brain MR image of $iz8 x 110) with SNR 25
dB using modified BHMRF-EM algorithm of fig 3.13
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(c) (d)

Figure 3.14:Brain MR image of sizé128 x 147) with : (a) Original image (b) slowly
varying circular bias field (c) multiplicative bias field aupted image (d) extracted bias
field using modified BHMRF-EM algorithm

| Parameters | class— 1] 2 [E | 4 |
m 0.2 1.01 1.39 3.28
SNR=25dB| o; 0.34 0.60 0.62 0.65
60=0.5 ff 0.35 0.36 1.92 4.19
of 0.06 0.08 0.19 0.06

Table 3.151mage model parameters of brain MR image of $iZ8 x 147) with SNR 25
dB using modified BHMRF-EM algorithm of fig 3.14



Chapter 4

Unsupervised image segmentation using
HMRF-FCEM algorithm

4.1 Introduction

In this chapter, a new concept of unsupervised brain MR insgggnentation method
is introduced by incorporating the HMRF model into fuzzy stkring procedure. As
explained in chapter 3, the proposed BHMRF-EM scheme fanlveR image segmen-
tation is sensitive to initial assumption of model paranmeet&his scheme leads to biased
parameter estimates due to the conduction of the M-stepedE kh algorithm considering
the pixel labels are known quantities. In order to overcome difficulty, an attempt has
been made to incorporate fuzzy clustering approach and HkRé&el together in one
scheme. Fuzzy clustering methods are widely popular to wcindnsupervised image
segmentation effectively [43, 44]. These methods are ngtsensitive to initial assump-
tion of cluster parameters, though obtain poor segmemtagisults with images corrupted
by noise and other artifacts. The reason is that these mettmdot take into account the
spatial dependencies between the cluster data. To adtieesdove issues, the assump-
tions of the HMRF model is incorporated effectively in to Zyzclustering procedure. In
the proposed scheme, HMRF model is used to model the degodidedved image and
is regarded as defining fuzzy partition of the observed spaotvated by the work of
Celeuxet al. [45]. The proposed approach is formulated by employing amiiedd like
approximation of thea priori MRF distribution. HMRF-FCEM algorithm is proposed
to conduct the fuzzy clustering type treatment of the HMRFRglaising the fuzzy ob-
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jective function. The use of the proposed algorithm evdhtumnverge to the optimal
set of clusters and model parameters. Hence proper segmertébrain MR image is

obtained.

4.2 Problem Statement

Let S is the set of sites.X denotes the random field associated with the labels of the
original image andr denotes the realization of that. Legtdenotes the neighborhood
system on Sp(z) is the probability distribution and can be modeled as a MRE wi

respect to the neighborhood system if

p(xi | =) = p(a; | 2y,)

Let Y denote the observed image random field gnlge the realization of it.Y
is modeled as Hidden Markov Random Field (HMRF). Dependimghe conditional in

dependency, the joint probability can be defined as

p(y, ) =ply | z)p(x) (4.1)

where,

S

p(y ) =] p | =)

=1
HMRF model associated with the computation of the postgmiobabilitiesp(z;|y) and
p(z|y), which are obtained by means of Bayesian sampling. Thisnesja large amount
of computations. In order to overcome this problem, mean fgproximation of MRF
is considered motivated by Celeex al. [45]. Under this approximation, the joint prior

of the Markov random field can be expressed as

M@ZHM%MM

Let each state of the L-state HMRF model be a cluster in thergbble spacé’.

Thea posterioriprobability of observation; associated with thé" site is

plei =11 yi) = plai = 1] yi, &y,) (4.2)
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Considering each state of the model as a cluster in the adislergpace’, it holds
that

0<plx;=1|y) <1, Zp i=ily) =

wherel = 1,....,Landi = 1, ....,s. On this ba3|s of observation, the considered HMRF
model can be regarded as a fuzzy L-partition of the obsematpaceY. The fuzzy
partition can be denoted as

R = {r;} (4.3)

wherer;; (I = 1,....,L,i = 1,...., s) represents the degree of observable vegtan the

['" state of the HMRF model;; is the fuzzy membership function having the properties:

L s
0<m <1, > rm=10<> ri<s (4.4)

In this regard, HMRF model is treated as fuzzy clusteringetyymder mean field like

approximation of the MRF probability.

4.3 HMRF oriented fuzzy objective function

Motivated by the work of Ichihashet al, the fuzzy objective function is obtained by
means of a regularization technique, where an FCM variarggslarized by KL infor-
mation [28]. This new FCM variant is introduced into the fyzbjective function. The

modified fuzzy objective function becomes

L s
J = Z 7 dy + A Z Z r; log (Wz) (4.5)
=1

=1 =1 =1
where
ry; » fuzzy membership function
dy; - dissimilarity function
. prior probability of/*” cluster
A : degree of fuzziness
l=1,...,L: cluster

i=1,...,s:site
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In our proposed formulation, HMRF oriented modification bé tfuzzy objective
function is done by defining the dissimilarity functialy as the negative log-likelihood

of the*” model state with respect {6 site observation of the observed image.

di;i(0,) = —log p(y; | x;i =1;6)) (4.6)

m, can be considered ag which represents the pointwise prior probabilities of tHdRIF
model states. It is obtained on the basis of the mean-fielcbappation of the MRF as

follows.

__ exp (=2 s Ve (213))
25:1 exp <_ Demi Ve (xhz))

Eventually, the HMRF model is introduced into the fuzzy tdusig procedure by the

following modified fuzzy objective function.

L s

L s
I) == rulogP (yi | wi =1:6) +A) Y 1 log (;—ZZ) (4.8)

=1 i=1 I=1 i=1

wherey = {R, 0} and

plyi |z =1,0) = 21 ~exp <—M) (4.9)

o, 20'12
Fuzzy clustering type treatment of the HMRF model is conelditty using this modified

fuzzy objective function as given by (4.8).

4.4 Image label estimation

The image label estimation is formulated by defuzzificatudrthe fuzzy membership

functionr;;. The following optimality criterion for each site is adogte

&; = argmaz Ty (4.10)

4.5 Estimation of fuzzy membership function

The fuzzy membership function can be attained by minimithegfuzzy objective func-
tion J,(v)) overry; under the constraint

ZlL:1 Tl = 1, Vi = 1, ey S
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Introducing a Lagrange multipligx; for each data point to enforce the constraint,
the minimization of fuzzy objective function becomes
a s L
— |J, = G; =1 =0 4.11
o [ 2 (E ) 1

solving the (4.8), the fuzzy membership function becomes

1
T, exp <_Xdli)

T = 1 (4.12)
Zizl T €XP (_Xdli)
where, the dissimilarity function can be defined as
w 1 1 T .
dl(f) = 5109(%) + élog\az(k)\ + D) <yz - Ml(k)> Jl(k) <yl - ul(k)> (4.13)

4.6 Estimation of HMRF model parameters

The fuzzy objective function, (i) described in (4.8) is minimized to obtain an estimate
of the HMRF model parameters given a data set. The mininoatf .J,(v) is done
iteratively using the proposed HMRF-fuzzy clustering EMMRF-FCEM) algorithm.
Putting (4.9) in (4.8), the fuzzy objective function in tesrof model parameteys ando

becomes

() = — ZZ% [—%(?Ji — ) oy — ) — %ZOQ | o | —%109(%)} (4.14)

L s
+A Z Z rilog <%)
=1 i=1 li

minimizing the.J, function with respect tg;, and ignoring the terms not containing is

equal to
(yi — ) oy H(yy — ) = i oy il o) i — 2yl o)
Since,
Ouio ' _ ="
Op :
Lo
yz Ul H — 20-;1:% (415)

Oy
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(@)

the solution ofa A
O
Hence, the model parameferbecomes,

=0

s k
(k+1) _ Zi:l rl(i )yi

l o s k
Zi:l /rl(i )

Similarly, minimizing (4.15) with respect to,,

dlog |ov|
doy b
and
0 i TO';1 P
e = R0 Q1) (g, g ) 416
As the solution o ;A(_zf) = 0, the model parameter; becomes,
o.

7

T
s k k k
a1y izt i (y — i )) (yz- — iy )>
ot = (4.17)

s k
Zi:l rl(i :

4.7 Joint estimation of image labels and model parame-
ters using fuzzy clustering type EM framework

The image label estimate$ are obtained by defuzzification of the fuzzy membership
function. The prior probabilities of the MRF is computed be basis of mean field like
approximation. The image labels as well as the fuzzy merhijefgnctions are estimated
recursively until the model parameters converge to thenogdtones. The optimal values
of the parameters are used to obtain the desired segmentasiolt. For joint estimation
of the image labels as well as model parameters the HMRF-F@&lgbtithm is proposed.

The salient steps of the algorithm is as follows.

4.7.1 HMRF-FCEM Algorithm

1. Initialize the number of class labels to random valuessabelct an arbitrary param-

eter set.

2. Estimate the image class label8 by maximizing the fuzzy membership function

o argmaxlerl(f) (4.18)

(2
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3. Compute the fuzzy membership functio@ 5

7Tz
Tl(Zk:H) o — (4.19)
St Ty €D <_Xdlz )
4. Update the parameter$ " ando "
s k
o) _ Zia i
s k
D i1 /rl(i )
T
s k k k
(k+1) Zz 1 Tl(z) <y’b - /’Lg )) <y2 - ,LL; )>
) _ s (4.20)
Zz 17

5. Step 2-4 are repeated until a stopping criterion is metke Jtopping criterion for
our algorithm is:
[ HA@ED) = K@) | <e (4.21)

wheree is the convergence threshold.

4.8 HMRF-EM-SA algorithm

The performance of the proposed HMRF-FCEM algorithm is carag with that of exist-
ing HMRF-EM algorithm. As presented in Chapter 3, in E-stepBRF-EM algorithm,
Iterated Conditional Mode (ICM) algorithm is used. To avdie difficulty of initial
model parameter assumption from histograms of the degraxagdes, globally conver-

gent Simulated Annealing (SA) algorithm is used to estinla¢amage labels in E- step.

4.8.1 Simulated Annealing Algorithm

Bayesian methods coupled with Markovian modelization gwasult in a non-convex
energy function. To find an estimate, one has to optimizeftmstion. Unfortunately,
this is a very hard computational problem known as combnmtoptimization. For
example, considering an image 16 x 16 with only two possibtels at each pixel, we
get a configuration space @f*® elements But it is impossible to find the optimum by
computing the possible values of the cost function. Hereavenot use classical gradient

descent methods because they stuck in a local minimum. Iteedized in the early 80’s
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by Kirkpatrick et al [15] that there is an analogy between minimizing the costfiomn
of a combinatorial optimization problem and finding energypima of thermodynamical
systems by slowly cooling a solid until equilibrium is reach They have substituted the
energy function of the solid by the cost function and exetthe Metropolis algorithm at
a sequence of slowly decreasing temperature. The so defamebicatorial optimization
algorithm was named Simulated Annealing (SA).

SA algorithm is based on the analogy between the simulatidheoannealing of
solids and the solving of combinatorial optimization pebks. It is inspired by an anal-
ogy between the physical annealing of solids (crystals) @rdbinatorial optimization
problems. In the physical annealing process a solid if firstted and then cooled very
slowly, spending a long time at low temperatures, to obtaieréect lattice structure corre-
sponding to a minimum energy state. SA transfers this psotekcal search algorithms
for combinatorial optimization problem. It does so by asatieg the set of solutions of
the problem attacked with the states of the physical systieenpbjective function with

the physical energy of the solid, and the optimal solutiotihwhe minimum energy states.

Metropolis in the earliest days of scientific computingyacfuced a simple algo-
rithm that can be used to provide an efficient simulation obléection of atoms in equi-
librium at a given temperature. In each step of this algaritan atom is given a small
random displacement and the resulting chaidgé in the energy of the system is com-
puted. IfAU < 0, the displacement is accepted, and the configuration wéthligplaced
atom is used as the starting point of the next step. The &d48e> 0 is treated proba-
bilistically: the probability that the configuration is apted isP(AU) = exp(—é—%).
Random numbers uniformly distributed in the intery@l 1) are a convenient means of
implementing the random part of the algorithm. One such remidbselected and com-
pared withP(AU). If it is less thanP(AU), the new configuration is retained , if not ,
the original configuration is used to start the next step. &yeating the basic step many
times, one simulates the thermal motion of atoms in therroatact with a heat bath at
temperaturd’. The choice ofP(AU) has the consequence that the system evolves into a

Boltzman distribution [15].
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Using the cost function in place of the energy and definingigaration by a set
of parameters, it is straightforward with the Metropolipedure to generate a popu-
lation of configurations of a given optimization problem atee effective temperature.
This temperature is simply a control parameter in the sanits @s the cost function.
The simulated annealing process consists of firsltingthe system being optimized at a
high effective temperature, then lowering the temperastiidow stages until the system
freezes and no further changes occur. At each temperah#esjmulation must proceed
long enough for the system to reach a steady state. The ssmoétemperature and the
number of rearrangements of the parameters attempteddb espuilibrium at each tem-

perature is known as amnealing schedulg5].

The SA algorithm used to obtain the MAP estimate is descriiztdw.
1. Initialize the temperaturg;,,.
2. Compute the energy of the configuration.
3. Perturb the system slightly with suitable Gaussian distuce.

4. Compute the new enerdy of the perturbed system and evaluate the change in

energyAU =U —U.

5. If (AU < 0), accept the perturbed system as the new configuration.
Else accept the perturbed system as the new configuratibrevatobability

exp (—AU)/kgT.
6. Decrease the temperature according to the cooling stdhedu

7. Repeat steps 2-7 till the stopping criterion is met. Tlo@ging criterion used here

is the energy.
The steps of the HMRF-EM-SA algorithm are as follows.

1. Perform the initial parameter estimation and segmemntati
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2. Calculate the likelihood distribution
P (wilz:) = 9 (yi; 0 (1)
3. Estimate the class labels by MRF-MAP estimation
2 = arg max P(y | z,0"+ P(z))
SA algorithm is used to estimate the class labels.

4. Calculate the posterior distribution

O (y5;0) p® (1| 2,
p(t)(l\yi):g (yi; 0h) (I'zn,)

p(yi)
5. Update parameters by
’u(t+1) _ Dics P (1] i) i oD Dics PO (1] i) (yi — Ml)2
: Zies p(t) (l ‘ yl) : Zies p(t) (l ‘ yl)

6. t — t + 1 and repeat from 2 until enough iterations have been perfdrme

4.9 Results and Discussions

The proposed HMRF-FCEM algorithm is validated with one &ssl synthetic im-
age. Besides, 4 simulated and 3 real diseased brain MR insagesonsidered. The
degraded images are obtained by adding white Gaussian oloiseying strength to the
original image. Brain MR images are obtained from the soaiedescribed in chapter

3.
4.9.1 Synthetic Images:

The 5-class synthetic image considered for the simulas@hown in Fig. 4.1 (a). The
corresponding noisy version of SNR 20 dB is shown in Fig. #)1 The initial model
parameters: and o taken for each class are selected from the histogram of tisy no
image and another set of parameter is on arbitrary basis.patemeter\, which is the
degree of fuzziness is selected on adhoc basis. The proptd&F-FCEM algorithm is

used to obtain the segmented image of respective noisy imHye results obtained by



Chapter 4. Unsupervised image segmentation using HMRFNF@Ilgorithm 74

the proposed algorithm is shown in Fig. 4.1 (c) with paramsetaken from histogram
of the noisy image and Fig. 4.1 (d) with arbitrary set of paetens. As the number
of clusters or classes are unknown, the algorithm start® finigher number of initial
classes and eventually the algorithm converged to 5 classbe performance of the
proposed HMRF-FCEM algorithm is compared with that of HMRM-SA algorithm.
Fig. 4.1 (e) shows the segmented image using HMRF-EM-SAridgo. The initial and
converged parameters of the two schemes are tabulatedlm4db It is observed that the
segmented image obtained using HMRF-EM-SA algorithm haswaboer of misclassified
pixels denoted by, of MCE to be 4.28. However, the segmented image obtainedjusin
proposed scheme with arbitrary model parameters has lesbenof misclassified pixels
with % of MCE of 2.04 only. It is clear from the Table that even thoubga algorithm
starts from two different initial conditions, the paranmsteonverge to values that are vary
close to each other. For exampleof the third class starts from two different values and
convergences to 2.51 and 2.27 which are very close to eaeh. diimilar observations
are also made for other parameters of other classes. Camgpte performance based
on convergence time in sec., it is found that proposed scloeme&rges much faster than
the HMRF-EM-SA scheme. Visually, the results obtained lgppsed scheme are also

found satisfactory.

4.9.2 Brain MR Images:

After successful implementation on the synthetic 5-classge, the proposed scheme is
applied to 3 real and 4 simulated brain MR images. A simuldtedn MR image of
size (128 x 128) degraded witl8% noise is shown in Fig. 4.2 (a). The corresponding
ground truth image is shown in Fig. 4.2 (b). After validatioiithe proposed algorithm
with 2 different set of initial model parametersando, the segmented images are shown
in Fig. 4.2 (c) and (d). The algorithm run with 6 number of ialitclass labels, but
finally it converged to 4 number of class labels in both setsial parameters. The
degree of fuzziness is taken as 0.5 for both the cases. Fig. 4.2 (e) shows the sggdhe
image using HMRF-EM-SA algorithm. The priori model parametef is considered

on adhoc basis and for this image the value is taken as 0.1l.initred and final model
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parameters along with the performance results consisti@gtof misclassification error
and convergence time are tabulated in Table. 4.2. From bie itais observed that thg
of MCE of results obtained by proposed algorithm is 4.18 a®d for Fig. 4.2 (c) and (d)
respectively. The algorithm converges in 12 sec. and 15respectively for the same. In
case of HMRF-EM-SA, th&, of MCE is 5.09 with convergence time of 56 sec.

Similarly, another simulated MR image of siZE28 x 128) degraded witl3% noise
is shown in Fig. 4.3 (a). The corresponding ground truth ienegshown in Fig. 4.3
(b). The segmented images using the proposed HMRF-FCEMitdgowith both sets
of initial model parameters gf ando, are shown in Fig. 4.3 (c) and (d). The degree of
fuzziness) is considered as 0.5 for both the cases. The segmented irsageHMRF-
EM-SA algorithm is presented in Fig. 4.3 (e). Tagriori model parametes is taken
as 0.3. The initial and final model parameters along with’thef misclassification error
and convergence time are tabulated in Table. 4.3. From tile tcan be seen that the
% of misclassification error of proposed algorithm is 2.92ha20 secs. of convergence
timing where as in case of HMRF-EM-SA it is 12.30 with 35 seafsconvergence time.
It is observed from the table that the parameters conveé#uetvalues which are close
to each other with two different set of initial parametersisTovercomes the difficulty
of choice of initial model parameters in the proposed BHMRW-scheme presented in
chapter 3.

The algorithm is validated with a sarcoma diseased reahldvdR image of size
(175 x 215) degraded witl8% noise is shown in Fig. 4.4 (a). The corresponding ground
truth image is shown in Fig. 4.4 (b). Fig. 4.4 (c) and (d) aedbgmented images of the
proposed HMRF-FCEM algorithm with two defferent set ofiaitnodel parameters of
ando. The degree of fuzzinessis considered as 0.3 for both the cases. The segmented
image using HMRF-EM-SA algorithm is presented in Fig. 4.8 (Ehea priori model
parameter is taken as 0.3. The le$s of MCE is the accuracy in the segmentation,
which can be observed from the table 4.4. Thef MCE of proposed algorithm is 3.80
with 28 sec. of convergence time but in case of HMRF-EM-SA 1%.09 with 52 sec. of
convergence time. Visually it is observed that the diseased is clearly defined in the

result obtained by the proposed algorithm rather than theiMRF-EM-SA algorithm.
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Another real brain MR image of size75 x 215) degraded witt8% noise with
multiple sclerosis is shown in Fig. 4.5 (a). The correspogdyround truth image is
shown in Fig. 4.5 (b). The number of sclerosis present in &aimage is successfully
segmented to a different class label which can be visualisedthe Fig. 4.5, where Fig.
4.5 (c) and (d) are the segmented images of the proposed HMHEM algorithm. The
degree of fuzziness is considered as 1.0 for both the cases. The segmented imsuge u
HMRF-EM-SA algorithm is presented in Fig. 4.5 (e). Ta@riori model parametey is
taken as 0.01. Th& of MCE of proposed algorithm is 3.23 with 18 secs. of conveoge
timing. The misclassified pixels in case of HMRF-EM-SA is14% and the convergence
time is 36 secs.

Similarly, 2 more diseased brain MR images of s{z&5 x 215) and (128 x 128)
degraded witt8% noise are shown in Fig. 4.6 (a) and 4.7 (a). The corresporgtiognd
truth images are shown in Fig. 4.6 (b) and 4.7 (b). The segedeimbages using pro-
posed HMRF-FCEM algorithm are shown in Fig. 4.6 (c) and 4) A HMRF-EM-SA
algorithm are shown in Fig. 4.6 (d) and 4.7 (d). The initiatidimal model parameters,
the value of degree of fuzziness, th@riori MRF model parameter along with tfi¢ of
MCE and convergence time are tabulated in Table 4.6 and Bableespectively. From
Fig. 4.6 (c) the tumor along with the swelling area is segréstuccessfully assignig it
as different class labels. In the same way, from Fig. 4.7t disease in the ventricle is
viewed clearly but in Fig. 4.7 (d) it is not cleared.

The last brain MR image considered is shown in Fig. 4.8 (a). #i8 (b) represents
the ground truth image. The segmented image using HMRF-F@Igekithm is shown
in Fig.4.8 (c). From this it can be seen that the lateral angedal horn of left and right
ventricle are clearly segmented. In case of HMRF-EM-SA algm the above is not
visible and the algorithm converges to less number of cissl$. The segmented image
using HMRF-EM-SA algorithm is shown in Fig.4.8 (d). The mbparameters and other
performance results are tabulated in Table 4.8.

All segmentation results of brain MR images using our preploschemes are con-
sulted with Dr. Hemalata Satapathy, sonologist and radist@f CWS Hospital, Rourkela

and found to be satisfactory.
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4.10 Conclusion

In this chapter fuzzy clustering approach is effectivelgarporated in HMRF model to
hybridized the benefits of both for brain MR image segmeatatHMRF-FCEM algo-
rithm is proposed to formulate the above problem where taeyfwbjective function is
optimized by employing a mean-field-like approximation loé & priori MRF distribu-
tion. The proposed algorithm could estimate the image tahetl model parameters re-
cursively. The algorithm does not assume to have the knaelefithe number of classes.
It could yield satisfactory results even with arbitrarytiai condition. The phenomena is
consistently observed in simulated as well as real brain MRges. The proposed algo-
rithms performance is compared with that of HMRF-EM schenita global convergent
Simulated Annealing algorithm. It is observed that the lssabtained with the proposed
algorithm outperformed the other one. The potentialitynaf &lgorithm is that it does not
need to hava priori proper set of model parameters. Our results may be furthemwed
by estimating the bias field to take care of the intensity mbgeneity of the brain MR

images.
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©) () ©

Figure 4.1:Unsupervised image segmentation of synthetic 5-classdrofgize(128 x
128): (a) Original image (b) noisy image with 20 db SNR (c) and (gjreented image
using HMRF-FCEM framework with histogram based initial @areters and arbitrary
initial parameters (e) segmented image using HMRF-EM-&/éwork
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Schemes and Parametersclass | 2 3 4 5 % of | Convrge.

—1 MCE | time
(sec.)

Histogram based ; 0.0 0.9 2.04 3.10 3.80

initial parameters o; 0.37 068 |054 |0.60 |0.43

HMRF-FCEM iy 0.25 154 | 251 |335 |4.07

A=1.0 of 0.16 |0.48 |0.29 |0.09 0.07 1.37 15

HMRF-EM-SA | 1y 0.07 099 |201 |314 |4.01

0 =0.62 of 0.10 |[0.26 |0.28 |0.39 0.25 |4.28 |48

Arbitrary L 1.16 196 |3.08 |378 |251

initial parameters o; 037 |046 |062 |052 |0.57

HMRF-FCEM iy 0.19 1.02 | 227 |337 |431

A=0.5 of 0.67 084 | 059 |0.08 |0.12 |2.04 18

Table 4.1:Image model parameters of synthetic 5-class image of($2&x 128) using
HMRF-FCEM framework with histogram based initial paramstand arbitrary initial
parameters, HMRF-EM-SA framework of Fig. 4.1

(€) (d) (€)

Figure 4.2: Unsupervised image segmentation of Brain MR image of (3@ x 128)

(@) Original image with 3% of noise (b) Ground Truth (c),(d) segmented image using
HMRF-FCEM framework with histogram based initial paramstand arbitrary initial
parameters, (e) segmented image using HMRF-EM-SA frankewor
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Schemes and Parameters class— | 2 3 4 %  of | Conver.
1 MCE time
(sec.)

Histogram based ; 1.14 1.98 3.02 3.96

initial parametersg o; 0.55 0.57 0.67 0.23

HMRF-FCEM [f 0.80 3.53 2.61 2.43

A=0.5 of 0.48 3.32 1.52 0.88 4.18 12
HMRF-EM-SA | puy 0.09 1.26 1.89 2.99

0=0.1 of 0.03 0.19 0.10 0.09 5.09 56
Arbitrary L 0.09 1.80 2.96 4.08

initial parametersg o; 0.12 0.68 0.58 0.40

HMRF-FCEM [f 2.35 2.93 2.71 4.04

A=0.5 of 0.89 2.84 1.89 0.08 4.94 15

Table 4.2:lmage model parameters of brain MR image of $iZ28 x 128) using HMRF-
FCEM framework with histogram based initial parameters anbitrary initial parame-
ters, HMRF-EM-SA framework of Fig. 4.2

Figure 4.3: Unsupervised image segmentation of Brain MR image of (3@ x 128)

(@) simulated image with % of noise (b) Ground Truth (c)-(d) segmented image using
HMRF-FCEM framework with histogram based initial paramstand arbitrary initial
parameters (e) segmented image using HMRF-EM-SA framework
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Schemes and Parameters class— | 2 3 4 %  of | Conver.
1 MCE time
(sec.)

Histogram based ; 0.0 0.9 1.8 2.96

initial parameters o; 0.12 0.57 0.68 0.58

HMRF-FCEM oy 0.62 2.67 2.90 3.03

A=0.5 of 0.50 2.94 2.21 1.45 2.92 20
HMRF-EM-SA | 1y 0.07 1.05 1.56 2.73

0=20.3 of 0.01 0.07 0.16 0.22 12.30 35
Arbitrary Lbi 1.0 1.86 2.86 4.08

initial parameters o; 0.65 0.52 0.48 0.10

HMRF-FCEM iy 1.76 1.73 2.58 3.95

A=0.5 of 0.35 1.35 2.19 1.38 3.45 24

Table 4.3:lmage model parameters of brain MR image of iiz28 x 128) using HMRF-
FCEM framework with histogram based initial parameters anblitrary initial parame-
ters, HMRF-EM-SA framework of Fig. 4.3

Figure 4.4:Unsupervised image segmentation of Sarcoma diseased BiRiimage of
size(175 x 215) (a) Real image with 3% of noise (b) Ground Truth (c)-(d) segmented
image using HMRF-FCEM framework with histogram basedahpiarameters and arbi-
trary initial parameters (e) segmented image using HMRF-EMframework
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Schemes and Parameters class— | 2 3 4 %  of | Conver.
1 MCE time
(sec.)

Histogram based ; 0.50 0.57 0.52 0.67

initial parameters o; 1.18 1.84 3.0 3.86

HMRF-FCEM oy 2.74 2.63 2.88 3.07

A=0.3 of 1.91 1.05 1.27 2.23 3.80 28
HMRF-EM-SA | 1y 1.60 1.95 2.39 3.38

0=0.3 of 0.08 0.10 0.12 0.23 15.09 52
Arbitrary L 0.14 1.02 1.98 2.09

initial parameters o; 0.38 0.54 0.58 0.69

HMRF-FCEM iy 0.78 2.90 2.86 3.09

A=0.3 of 0.23 1.29 0.83 1.91 4.04 25

Table 4.4:Image model parameters of Real brain MR image of 6176 x 215) using
HMRF-FCEM framework with histogram based initial parametand arbitrary initial

parameters, HMRF-EM-SA framework of Fig. 4.4

Schemes and Parameters class— | 2 3 4 %  of | Conver.
1 MCE time
(sec.)
Histogram based ; 1.34 2.14 3.16 4.08
initial parameters o; 0.28 0.31 0.33 0.34
HMRF-FCEM iy 1.11 2.0 2.34 4.13
A=1.0 of 0.69 3.08 2.46 0.36 3.23 18
HMRF-EM-SA | 1y 1.35 1.81 2.62 3.42
0 =0.01 of 0.05 0.11 0.20 0.12 14.14 36
Arbitrary L 0.24 1.08 1.72 3.04
initial parameters o; 0.29 0.60 0.54 0.67
HMRF-FCEM iy 2.18 2.70 3.22 2.64
A=1.0 of 0.39 1.32 1.68 3.28 5.39 25

Table 4.5:lmage model parameters of brain MR image of §iZ& x 215) using HMRF-

FCEM framework, HMRF-EM-SA framework of Fig. 4.5
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Figure 4.5:Unsupervised image segmentation of Multiple sclerosim fadBrain MR im-
age of siz¢175 x 215) (a) Real image with 8¢ of noise (b) Ground Truth (c) and (d) seg-
mented image using HMRF-FCEM framework with histogram #asgial parameters
and arbitrary initial parameters (e) segmented image usthRF-EM-SA framework

Schemes and Parameters class— | 2 3 4 %  of | Conver.
1 MCE time
(sec.)
Histogram based ; 0.12 1.16 1.84 2.86
initial parameters o; 0.22 0.51 0.61 0.56
HMRF-FCEM iy 0.14 2.01 2.93 3.15
A=1.0 of 0.02 0.32 1.96 0.74 3.50 20
HMRF-EM-SA | 1y 0.16 1.52 1.82 2.36
0=0.25 of 0.01 0.09 0.07 0.19 18.09 42

Table 4.6:Image model parameters of Real brain MR image of 6176 x 215) using
HMRF-FCEM framework, HMRF-EM-SA framework of Fig. 4.6
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Figure 4.6:Unsupervised image segmentation of tumor from a Brain MRye& size
(175 x 215) (a) Real image with 3 of noise (b) Ground Truth (c) segmented image using
HMRF-FCEM framework (d) segmented image using HMRF-EMr&Adwork

Schemes and Parameters class— | 2 3 4 % of | Conver.
1 MCE time
(sec.)
Histogram based ; 0.74 1.86 3.0 3.96
initial parameters o; 0.66 0.56 0.57 0.73
HMRF-FCEM oy 0.64 2.29 2.92 3.17
A=20 of 0.52 1.71 1.87 2.50 2.41 28
HMRF-EM-SA | 1y 0.04 0.96 1.59 3.04
6=0.2 of 0.09 0.05 0.18 0.31 10.97 40

Table 4.7:lmage model parameters of diseased brain MR image of $28ex 128) using
HMRF-FCEM framework, HMRF-EM-SA framework of Fig. 4.7
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()

Figure 4.7:Unsupervised image segmentation of diseased Brain MR iofagiee( 128 x
128) (a) Original image with 3% of noise (b) Ground Truth (c) segmented image using
HMRF-FCEM framework (d) segmented image using HMRF-EMr&Adwork

Schemes and Parameters class— | 2 3 4 % of | Conver.
1 MCE time
(sec.)

Histogram based ; 0.01 1.10 1.73 3.0

initial parameters o; 0.25 0.69 0.41 0.34

HMRF-FCEM [f 1.24 2.15 3.29 3.72

A=1.0 of 0.27 2.88 1.03 1.87 2.67 40
HMRF-EM-SA | puy 1.34 1.92 2.97 2.57

0=0.3 of 0.17 0.08 0.07 0.02 14.40 84

Table 4.8:Image model parameters of brain MR image of 28 x 128) with HMRF-
FCEM, HMRF-EM-SA framework of Fig. 4.8
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(b)

(€) (d)

Figure 4.8:Unsupervised image segmentation of Brain MR image of($2&x 128) (a)
Original image with 3% of noise (b) Ground Truth (c) segmented image using HMRF-
FCEM framework (d)segmented image using HMRF-EM-SA frariew



Chapter 5

Conclusions

The objective of this dissertation is to devise methods daradegjies for segmentation of
brain MR images in unsupervised framework. This work attetmplevelop unsupervised
brain MR image segmentation schemes that would facilitagectinical experts for an
automatic segmentation and accurate diagnosis.

The initial portion of this thesis provides a background oMRF, MRF models
and fuzzy clustering methods for image segmentation. Theseovered in Chapter 2.
Standard fuzzy c-means algorithm is also included here.

The initial part of the research work is dedicated towardgsieg unsupervised
brain MR image segmentation scheme using HMRF model whiafclsded in Chap-
ter 3. In this framework, the problem is cast as a pixel latgepproblem, and MRF and
HMRF models are employed to model th@riori unknown class labels and the observed
degraded image respectively. HMRF model parameters) for each tissue class are
assumed to be unknown. The MRF model parametessassumed on an adhoc basis.
HMRF model is modified as BHMRF model, where the energy faamctf thea priori
model is modified by incorporating the biased neighborhdogcture. This proposed
modified BHMRF model is formulated in EM framework to jointhstimate the model
parameters as well as image labels. Image label estimaebtained by ICM algorithm
in the E- step of the EM algorithm. It is observed that the psgd BHMRF-EM algo-
rithm outperformed HMRF-EM algorithm. The algorithm yieldl satisfactory results in
both synthetic as well as brain MR images. Both algorithnescampared with respect

to two performance measure, i.e. percentage of misclassdicerror and execution time
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in sec. Itis observed that due to incorporation of biasedhi®rhood interaction in the
energy function of tha priori MRF model, natural structures of brain could be taken
care of in the model. This could able to reduce the misclassifin error in cleaner data
which was the bottleneck in HMRF-EM scheme. The percenthgaszlassification er-
ror is also found to be less in case of noisier data in our pegd@cheme with comparable
execution time.

This proposed BHMRF-EM algorithm is modified and exploitedake care of the
intensity in-homogeneity are the bias field in the brain MRages. The proposed mod-
ified BHMRF-EM algorithm could jointly estimate the imagd&s, model parameters
as well as bias field. This is indeed a step towards making tonaied brain MR im-
age segmentation scheme. Our algorithm starts with asgumore number of classes
than that of actual ones and converges to the required nuohiskasses. Since the actual
number of classes are unknown, the selected number of icldisses are also on trial and
error basis. The initial model parameters are assumed tognén based strategy. It will
be worth pursuing in future to develop strategies to overetmese problems.

Segmentation of brain MR images based on a new notion wherBHModel is
incorporated in to fuzzy clustering scheme is introducedhapter 4. In the proposed
scheme, benefits of both HMRF model and fuzzy clusteringgmore are combined to-
gether. Motivated by Celeut al, in our proposed approach, MRF model is used to
model thea priori unknown class labels by employing a mean-field-like appnation.
This assumption of MRF yields good estimates of the Markostgroors with less com-
putational costs. HMRF oriented fuzzy objective functierfarmulated by considering
HMRF model to be defining as a fuzzy HMRF model to be defining fagay partitions
of the observation space. The dissimilarity function beedhe negative log-likelyhood
of the model state in the modified fuzzy objective functiorhisTmodified function is
minimized by the proposed HMRF-fuzzy clustering EM (HMREHEM) algorithm. The
problem of selection of initial model parameters is overedmy our proposed algorithm.
The image labels and fuzzy membership function is optimiZéds proposed algorithm
is an alternative to EM- type treatments of the HMRF modegedaon the mean-field-

like approximation of the MRF prior. The algorithm perfordhgatisfactory when starting
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from arbitrary initial model parameters. this algorithmedonot need to have proper
choice of initial model parameters. This is indeed a stefatd& making a complete au-
tomated brain MR image segmentation scheme. Since thel axtodber of classes are
unknown, the selected number of initial classes are onardlerror basis. Large number
of initial classes means estimation of large number of patams which in turn increases
computational burden. It will be worth persuing in futuredevelop strategies to over-
come these problems. However, the proposed algorithm dmikliccessfully tested for
synthetic as well as real brain MR images with better pertoroe than the estimating
HMRF-EM algorithm. In E-step, the image labels are estimhatging global convergent
simulated annealing (SA) algorithm in stead of ICM alganthrhough this HMRF-EM-

SA algorithm overcomes the initial assumption of model peeters, but the computa-
tional burden is very high. In our proposed HMRF-FCEM algum, the performance
is tested on percentage of misclassification error and éxgctime in sec. Both per-

formance measures show better scales in HMRF-FCEM algorittan HMRF-EM-SA

algorithm. Joint estimation of bias field would enhance tloetivof the work.
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