
Development of Unsupervised

Image Segmentation Schemes for

Brain MRI using HMRF model

Master of Technology

(Research)

by

Smita Pradhan

(Roll: 607EE003)

Department of Electrical Engineering

National Institute of Technology

Rourkela, Orissa- 769008, India

2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ethesis@nitr

https://core.ac.uk/display/53188098?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Development of Unsupervised Image Segmentation

Schemes for Brain MRI using HMRF model

Thesis

Submitted in Partial Fulfillment of the Requirements

for the degree of

Master of Technology

(Research)

by

Smita Pradhan

Under the guidance

of

Dr. Dipti Patra

Department of Electrical Engineering

National Institute of Technology

Rourkela, Orissa- 769008, India

2010



Department of Electrical Engineering
National Institute of Technology
Rourkela-769008, Orissa, India.

Certificate

This is to certify that the work in this thesis entitledDevelopment of Unsupervised Image

Segmentation Schemes for Brain MRI using HMRF modelby Smita Pradhan, Roll No.

607EE003is a record of an original research work carried out by her under my supervi-

sion and guidance in partial fulfillment of the requirementsfor the award of the degree

of Master of Technology (Research) during the session 2007-2010 in the department of

Electrical Engineering, National Institute of Technology, Rourkela. Neither this thesis nor

any part of it has been submitted for any degree or academic award elsewhere.

Dr. Dipti Patra
Associate Professor
Department of EE, NIT, Rourkela

Place: NIT, Rourkela
Date: 25 Mar 2010



ii

Acknowledgment

I would like to acknowledge my gratitude to a number of peoplewho have helped me in

different ways for the successful completion of my thesis. Iwould like to express my sin-

cerest gratitude to my guide Dr. Dipti Patra, Associate Professor, Department of Electrical

Engineering, National Institute of Technology, Rourkela but for whose deft guidance this

thesis would not have seen the light of the day. Her erudite scholarship, prudent observa-

tions, perceptive critical comments and painstaking efforts to improve the quality of my

work, have been steering me in the proper direction of research, from beginning to end.

Moreover, her deep patience and kind understanding have helped me to overcome same

particularly difficult times, when the odd seemed invincible and insurmountable.

I am also grateful to Prof. Sunil Kumar Sarangi, Director, N.I.T. Rourkela, for his

inspiring words and supports. I humbly acknowledge the creative criticism and construc-

tive suggestions of Prof. B. Majhi, Prof. S. Meher, committee members, while scrutiniz-

ing my research work. I wish to place on record my thanks to Prof. B. D. Subudhi, for his

valuable comments, which helped me to complete my research work.

I ventilate my deep sense of gratitude to Prof. Susmita Das, Prof. and K.R.Subhashini

for their learned advice and constant encouragement. I appreciate immensely the invalu-

able time lent to me by Mrs. Sucheta Panda and sonologist Dr. Hemalata Satapathy for

their long discussion about my research. I am also grateful to all the staff members of the

Department of Electrical Engineering for their co-operations and support throughout this

period.

This work was made thoroughly enjoyable by the friendly and congenial atmo-

sphere of the Image Processing and Computer Vision (IPCV) Laboratory of Electrical

Engineering Department. I express my sincere thanks to all the past and present members

of this Lab.

I am highly indebted to N.I.T. Rourkela for providing me the facilities like library,

computational facility and Internet access, without whichit could not have been com-

pleted in time.

I am thankful to all the staff members of the Department of Electrical Engineering,



iii

N.I.T. Rourkela for their co-operations throughout this period.

Finally, I owe my loving thanks to my parents, brother and sisters. Without their

encouragement and understanding it would have been impossible for me to finish this

work.



iv

Abstract

Image segmentation is a classical problem in computer vision and is of paramount im-

portance to medical imaging. Medical image segmentation isan essential step for most

subsequent image analysis task. The segmentation of anatomic structure in the brain plays

a crucial role in neuro imaging analysis. The study of many brain disorders involves accu-

rate tissue segmentation of brain magnetic resonance (MR) images. Manual segmentation

of the brain tissues, namely white matter (WM), gray matter (GM) and cerebrospinal fluid

(CSF) in MR images by an human expert is tedious for studies involving larger database.

In addition, the lack of clearly defined edges between adjacent tissue classes deteriorates

the significance of the analysis of the resulting segmentation. The segmentation is further

complicated by the overlap of MR intensities of different tissue classes and by the pres-

ence of a spatially and smoothly varying intensity in-homogeneity. The prime objective

of this dissertation is to develop strategies and methodologies for an automated brain MR

image segmentation scheme.

As an initial attempt in this direction, the brain MR image segmentation problem

is addressed in an unsupervised framework and is formulatedas pixel labeling problem.

Stochastic model based approach has been considered for thesame. Hidden Markov Ran-

dom Field (HMRF) models have been used to model the tissue classes of the observed

degraded image. Thea priori class labels are modeled as Markov Random Field (MRF)

model. As the problem is addressed in an unsupervised framework, HMRF model pa-

rameters are assumed to be unknown. It is assumed to have thea priori knowledge of

MRF model parameters which are used to model the unknown class labels, but no knowl-

edge of number of classes and image labels. The problem becomes an incomplete data

problem. To handle this problem, Expectation-Maximization algorithm is used. In or-

der to incorporate a variable spatial characteristics which varies with internal part of the

brain, the energy function associated with thea priori model is modified by an biased

factor. This factor controls the effect of spatial information to avoid identical spatial in-

formation throughout the brain. The proposed modified modelis named as Biased HMRF
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(BHMRF) model. Intensity inhomogeneity or multiplicativebias field in brain MR image

is also corrected in the proposed scheme. The results obtained by the proposed BHMRF-

EM framework are compared with that of HMRF-EM scheme. The proposed scheme is

found to be outperforming the later one and is observed to be an efficient method for brain

MR image segmentation corrupted by biasfield.

In order to address the problem from practical stand point, anew notion of im-

age segmentation is introduced by incorporating the fuzzy clustering approach in HMRF

framework. The proposed approach is formulated using fuzzyc-means (FCM) algorithm

which is facilitated bya priori MRF distribution. In this regard, HMRF oriented mod-

ification of the fuzzy objective function is incorporated. HMRF-EM scheme is found

to be sensitive to the initial set of parameters. This has been overcome by proposing

fuzzy clustering -EM (FCEM) algorithm that does not requireto have a proper choice of

initial parameters. In the proposed HMRF-FCEM scheme, combined strength of fuzzy

clustering approach as well as HMRF model are incorporated.The result obtained by

the proposed FCEM algorithm in HMRF-FCEM scheme are compared with that of ex-

isting schemes and the results are quite comparable to the later ones. The performance

of proposed algorithm could be successfully tested with an arbitrary set of initial model

parameters.

Both BHMRF-EM and HMRF-FCEM schemes could be validated for healthy as

well as diseased brain MR images.
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Chapter 1

Introduction

1.1 Image segmentation

Segmentation is the process of splitting an observed image into its homogeneous or con-

stituent regions. The goal of segmentation is to simplify orchange the representation of

an image into something that is more meaningful and easier toanalyze. It is important in

many computer vision and image processing application. In computer vision, segmenta-

tion refers to the process of partitioning a digital image into multiple regions. There are

basically three different approaches to image segmentation. First is region based, which

relies on the homogeneity of spatially localized features and other pixel statistics, the sec-

ond one is based on the methods of boundary finding relying on the gradient features at

a subset of the spatial positions of an image (near an object boundary), whereas the third

one is pixel classification approach. Additionally, image segmentation has applications

separate from computer vision; it is frequently used to aid in isolating or removing spe-

cific portions of an image. Image segmentation is typically used to locate objects and

boundaries in images. The result of image segmentation is a set of regions that collec-

tively cover the entire image, or a set of contours extractedfrom the image. It provides

additional information about the contents of an image by identifying edges and regions of

similar color, intensity and texture, while simplifying the image from thousands of pixels

to less than a few hundred segments. Each of the pixels in a region are similar with respect

to some characteristic or computed property. The segmentation of 2D and 3D images is an

important first step for a variety of image analysis and visualization tasks. Hence, image

segmentation is one of the early vision problems and has a wide application domain. The
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problem becomes more compound while segmenting noisy images. The segmentation

problem can be categorized as (i) supervised and (ii) unsupervised approach.

1.1.1 Supervised Image Segmentation

In supervised framework, the model parameters are assumed to be knowna priori. These

model parameters are used for estimating the pixel labels insegmentation framework.

The pixel labelling problem, using MRF model has been formulated using Maximum a

Posteriori (MAP) criterion and Bayesian framework [1, 2]. Segmentation of noisy images

including textured images using MRF model could be formulated in supervised manner

successfully. Nandaet al. have proposed a supervised image segmentation method where

the MRF model parameters are estimated using homotopy continuation method and MAP

estimate of image labels are obtained by SA algorithm [8].

1.1.2 Unsupervised Image Segmentation

In unsupervised framework, the number of class labels and the model parameters are

unknown. Estimation of image labels as well as model parameters is required simulta-

neously. Since the image label estimation depends upon the optimal set of parameters,

the unsupervised image segmentation is viewed as an incomplete data problem. To han-

dle such problem, an iterative scheme namely expectation maximization (EM) algorithm

was suggested [11, 16]. Besaget al. estimated the parameters using iterated conditional

mode (ICM) algorithm for restoration [2]. Zhanget al. has suggested an unsupervised

scheme which alleviates the difficulty in computing expectation in EM algorithm for gen-

eral models. In order to accomplish this objective, he has proposed a Monte Carlo aver-

aging scheme and a scheme related to Besag’s ICM algorithm [9].

1.2 Application of Segmentation

1. Medical Imaging:

• Locate tumors

• Measure tissue volumes
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• Computer-guided surgery

• Diagnostic Treatment planning

• Study of anatomical structure

2. Locate objects in satellite images

3. Face recognition

4. Automatic traffic controlling systems

5. Machine vision

1.3 Image models

In recent years, stochastic models have become more popularin image processing. Out

of the various stochastic models, Markov Random Field (MRF)model provides a better

framework for many complex problems in image segmentation.This is due to the fact

that, MRF model is based on the notion of neighborhood structure and therefore, helps in

understanding global interaction through local spatial interactions. Moreover, the global

interaction is governed by Gibbs distribution. Markov Random Field (MRF) based meth-

ods have been widely used by researchers [2, 21, 7, 8, 10].

The extension of an observable Markov Model is the Hidden Markov Model (HMM).

Here the observation is a probabilistic function (discreteor continuous) of a state. All

observations are dependent on the state that generated them, not on the neighboring ob-

servations. HMM is a finite set of states, each of which is associated with a probability

distribution. In a particular state an outcome or observation can be generated, according

to the associated probability distribution. It is only the outcome, not the state visible to

an external observer and therefore states are “hidden” to outside; hence the name Hidden

Markov Model [12]. This model is specifically useful where the data is hidden. A special

case of HMM is that, the underlying stochastic process is considered as MRF instead of a

Markov chain and therefore not restricted to one dimension.This special case is referred

to as Hidden Markov Random Field (HMRF) model.
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The segmentation only relies on the histogram of the data andtherefore is sensitive

to noise and other artifacts or variations. To overcome thislimitation, a hidden Markov

random field (HMRF) is derived. The HMRF model is based on the Markov random

field theory, in which the spatial information is encoded through a neighborhood sys-

tem. Hidden Markov random field (HMRF) model is a stochastic process generated by

a Markov random field whose state sequence cannot be observeddirectly but can be ob-

served through observations. Mathematically, it can be shown that the FM model is a

degenerate version of the HMRF model. Each observation is assumed to be a stochas-

tic function of state sequence. By Markov Random Field the segmentation algorithm

captures three features that are of special importance for MR images, i.e nonparametric

distributions of tissue intensities, neighborhood correlation and signal inhomogeneities.

The advantage of the HMRF model derives from the way in which the spatial information

is encoded through the mutual influences of neighboring pixels [13, 25, 17].

1.4 Brain MR Images

MRI is an advanced medical imaging technique providing richinformation about the

human soft tissue anatomy. It has several advantages over other imaging techniques en-

abling it to provide 3-dimensional data with high contrast between soft tissues. However,

the amount of data is far too much for manual analysis/interpretation, and this has been

one of the biggest obstacles in the effective use of MRI. For this reason, automatic or

semi-automatic techniques of computer-aided image analysis are necessary. Segmenta-

tion of MR images into different tissue classes, especiallygray matter (GM), white matter

(WM) and cerebrospinal fluid (CSF), is an important task. Brain MR images have a num-

ber of features, especially the following: Firstly, they are statistically simple; MR Images

are theoretically piecewise constant with a small number ofclasses. Secondly, they have

relatively high contrast between different tissues. The contrast in an MR image depends

upon the way the image is acquired. By altering radio frequency and gradient pulses and

by carefully choosing relaxation timing, it is possible to highlight different component in

the object being imaged and produce high contrast images. These two features facilitate

segmentation.
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1.4.1 Weighting

MR images can be acquired using different techniques. The resulting images highlight

different properties of the depicted materials. The most common weightings are T1 and

T2, which highlight the properties T1-relaxation and T2-relaxation respectively. Selection

of the most appropriate weighting is important for a successful segmentation. According

to Phamet al. the properties of the tissues that are to be segmented have tobe known to

make a well-founded decision [42].

T1-weighted Images

T1-images show high contrast between tissues having different T1-relaxation times. Tis-

sues with long T1-relaxation time emit little signal and thus they will be dark in the

resulting image. In T1-images air, bone and CSF have low intensity, gray matter is dark

gray, white matter is light gray, and adipose tissue has highintensity. T1-images have

high contrast between white matter and gray matter.

T2-weighted Images

In T2-images, white matter and gray matter are gray and have similar intensities. CSF is

bright, while bone, air, and fat appear dark. As opposed to T1-images, T2-images have

high contrast between CSF and bone. The contrast between white matter and gray matter

is not as good as in T1-images.

Spin Density

Spin density or Photon Density (PD) is the most like ComputedTomography (CT) of all

the MR contrast parameters. The spin density is simply the number of spins in the sample

that can be detected. The observed spin density in medical imaging is always less than

the actual spin density due to the fact that many spins are bound and lose signal before

they can be observed.
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1.4.2 Artifacts

A variety of artifacts may appear in MR images. Since the artifacts change the appearance

of the image they may also affect the performance of a segmentation algorithm. The most

important artifacts in image segmentation are intensity inhomogeneities and the partial

volume effect.

Intensity Inhomogeneities

Intensity inhomogeneities are not always visible to the human eye, but can nonetheless

have negative influence on automatic segmentation. This maymanifest itself by making

intensities in one part of the image brighter or darker than another part. It is often caused

by the radio frequency (RF) coils. Different methods exist to compensate for the inho-

mogeneities. The inhomogeneity is often modeled as a field that varies smoothly over the

image. The inhomogeneity field is often thought to be a multiplicative field, which means

that the true pixel intensity is multiplied by the value of the field in that pixel. There

are methods which extracts the inhomogeneities during segmentation. Wellset. al and

van Li et. al alternate estimation of the inhomogeneity field with classification to obtain

inhomogeneity corrections [19, 41].

The Partial Volume Effect

The partial volume effect occurs when a pixel cannot be accurately assigned to one tissue

type. This is because the intensity in the pixel originates from more than one tissue. It

occurs because one pixel contains many body cells and the signal emitted from these cells

make up the detected intensity in this pixel. The partial volume effect is most apparent

at edges between different tissues. It may deteriorate the sharpness of the edges between

tissues. The partial volume effect can be a significant problem in brain segmentation since

the brain has a complex folded surface [13]. The partial volume effect is caused by the

fact that of limited resolution in the images. Smaller pixelsizes reduce the partial volume

effect since the probability that more than one tissue type is contained in the same pixel

is reduced.



Chapter 1. Introduction 7

1.5 Brain MR Image segmentation

Segmentation of medical imagery is a challenging task due tothe complexity of the im-

ages, as well as to the absence of models of the anatomy that fully capture the possible

deformations in each structure. Brain tissue is a particularly complex structure, and its

segmentation is an important step for derivation of computerized anatomical atlases, as

well as pre- and intra-operative guidance for therapeutic intervention.

MRI segmentation has been proposed for a number of clinical investigations of

varying complexity. Measurements of tumor volume and its response to therapy have used

image gray scale methods as applied to X-ray, Computerized Tomography (CT) or simple

MRI datasets. However, the differentiation of tissues within tumors that have similar

MRI characteristics, such as edema, necrotic, or scar tissue, has proven to be important in

the evaluation of response to therapy. Other applications of MRI segmentation include the

diagnosis of brain trauma where white matter lesions, a signature of traumatic brain injury,

may potentially be identified in moderate and possibly mild cases. These methods, in turn,

may require correlation of anatomical images with functional metrics to provide sensitive

measurements of brain trauma. MRI segmentation methods have also been useful in the

diagnostic imaging of multiple sclerosis, including the detection of lesions.

1.6 Literature Survey

The image segmentation is a challenging problem that has received an enormous amount

of attention by many researchers [1, 2, 3, 4]. Phamet al. and Jameset al. have pre-

sented various techniques used in medical image segmentation and analysis [5, 6]. The

segmentation problem can be categorized as supervised and unsupervised problem. For

appropriate analysis, different image models have been proposed for taking care of spatial

intrinsic characteristics. The popular stochastic model,provides the better framework for

many complex problem in image segmentation is Markov RandomField (MRF) model

[7, 10]. MRF model and its variants have been successfully used for brain MR image

segmentation [12, 13]. Ruanet al. proposed a fuzzy Markovian method for brain tis-

sue segmentation from magnetic resonance images that calculates a fuzzy membership in
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each pixel to indicate the partial volume degree, which is statistically modeled [14].

In unsupervised framework, the number of class labels and the model parameters

are assumed to be unknown. Hence, estimation of image labelsand model parameters

are required simultaneously. Since, the image label estimation depends upon the optimal

set of parameters, the segmentation problem can be viewed asincomplete data problem.

To handle this problem, an iterative scheme, named Expectation-Maximization algorithm

has been proposed [16]. Zhanget al. proposed Hidden Markov Random Field (HMRF)

model to achieve brain MR image segmentation in unsupervised framework [17]. The

segmentation obtained by Zhang’s approach greatly dependsupon the proper choice of

initial model parameters. As Expectation-Maximization algorithm yields solutions at the

cost of high computational burden, in order to overcome thisMarroquinet al. have pro-

posed a new class of probabilistic model, called Hidden Markov Measure Field model,

that solved the complex segmentation problem by minimization of differentiable energy

function [18]. Wellset al. and Bradyet al. have proposed an adaptive brain MR image

segmentation scheme in EM framework [19, 20]. They have alsotaken spatial intensity

in-homogeneity into account and have estimated the bias field. Recently Hunget al. pro-

posed an automatic segmentation method based on a decision tree to classify the brain

tissues in magnetic resonance (MR) images [22]. Guanet al. have proposed an automatic

hot spot detection and segmentation of whole body PET imagesusing threshold and the

Hidden Markov model (HMM). They compare the fixed PET pixel data threshold and

the fixed standard uptake values (SUV) threshold for segmenting hot spots [24]. Nanda

et al proposed a Tabu search based unsupervised scheme using HMRF-EM framework

which could segment the images properly taking arbitrary initial parameter [25]. Anand

et al. transformed an original image in to a multi scale wavelet domain and the wavelet

coefficients are processed by a soft thresholding method. Various wavelet filter based

denoising methods are studied according to different thresholding values and applied to

ultrasound images [23]. Joshiet al. modeled the fused multi spectral (MS) image using a

low spatial resolution MS images as the aliased and corresponding noisy versions as high

spatial resolution. The fused image is obtained for each of the MS bands by estimating the

high spatial resolution and then modeling as separate inhomogeneous Gaussian markov
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random fields (IGMRF) and a maximum a posteriori (MAP) estimation [26].

Now a days, fuzzy image segmentation is increasing popularity because of rapid

extension of fuzzy set theory, the development of various fuzzy set based mathematical

modeling, and its successful application in computer vision system [27]. Ichihashiet al.

showed that the EM algorithm for GMM can be derived from the FCM type clustering,

when considering a regularization by KL information fuzzy objective function, for selec-

tion of the distance metric [28]. Ahmedet al. proposed a bias correction fuzzy c-means

algorithm in which they incorporated a neighborhood regularizer into the FCM objec-

tive function to allow labeling of a pixel to be influenced by the labels in its immediate

neighborhood [29]. The algorithm is realized by incorporating the spatial neighborhood

information into the standard FCM algorithm and modifying the membership weighting

of each cluster. Paruiet al. approached a mixture model suitable for segmentation of the

color images. The certain color space in a pixel is clusteredby employing the K-Means al-

gorithm [30]. A General Reflex Fuzzy Min-Max Neural Network (GRFMN) is proposed

to extract the underlying structure of the data by means of supervised, unsupervised and

partially supervised learning by Biswaset al. [31]. Chenet al. proposed an adaptive

FCM algorithm which is found to be robust in convergence. Theobjective function to

be minimized has regularization terms that ensure the estimated bias field is smooth and

slowly varying [32]. Siyalet al. presented a modified FCM algorithm formulated by

modifying the objective function of the standard FCM and uses a special spread method

for classification of tissues [33]. Wanget al. proposed a modified FCM algorithm, called

mFCM for brain MR image segmentation [34]. Aboulellaet al. proposed a statistical

feature extraction technique for diagnosis of breast cancer mammograms by combining

the fuzzy image processing with rough set theory [35]. Martin et al. described a way

to segment the medical images using an appropriately definedfuzzy clustering based on

a fuzzy relation. The considered relation is defined in termsof Euclidian distance [36].

Kanget al. presented a novel method for segmentation by incorporatingspatial neighbor-

hood information in to the standard FCM. An adaptive weighted averaging filter is given

to indicate the spatial influence of the center pixel [37]. Panaset al. presented the adaptive

fuzzy clustering/ segmentation (AFCS). In AFCS, the nonstationary nature of the image
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taken into account by modifying the prototype vectors as function of sample location in

the image. A multiresolution model is utilized for estimating the spatially varying pro-

totype vectors for different window sizes. The segmentation of different resolutions is

combined using a data fusion process in order to compute the final fuzzy partition matrix.

The results provide segmentation having lower entropy [38]. Mohamedet al. described

the application of fuzzy set theory in medical imaging. A fully automatic technique to

obtain cluster is proposed. A modified fuzzy c-means classification algorithm is used to

provide a fuzzy partition. The method is inspried by Markov random field (MRF) and is

found to be less sensitive to noise as it filters the image while clustering [39]. Kannanet

al. presented a new method called fuzzy membership c-means (FMCM) for segmentation

of Magnetic Resonance Images (MRI). This work develops a specific method to construct

the initial membership matrix to clusters in order to improve the strength of the clusters

[40].

1.7 Motivation

Image segmentation is an essential step in medical images for subsequent image analysis

tasks. Some of the issues that make medical image segmentation difficult, particularly

in brain magnetic resonance images (MRI) are intensity in-homogeneity or bias field and

partial volume problem. Many segmentation techniques havebeen developed by the re-

searchers which help the physicians and neurosurgeons to investigate and diagnose the

structure and function of the brain. Brain consists of threesoft tissues such as gray matter

(GM), white matter (WM) and cerebrospinal fluid (CSF). Any other soft tissue like brain

tumor along with above soft tissues can be imaged using magnetic resonance imaging

(MRI). Ideally, for any given set of MR imaging parameters, the intensity values of the

pixels of any given tissue class should be constant or correspond to a Gaussian distribution

with small standard deviation. In practice, spatial intensity in-homogeneities are often of

sufficient magnitude to cause the distributions of signal intensities associated with the

tissue classes to overlap significantly. In addition, the lack of clearly defined edges be-

tween adjacent tissue classes deteriorates the significance of the analysis of the resulting

segmentation. The segmentation is complicated due to thesefactors. This has motivated
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the need for automatic segmentation techniques that are robust in application involving a

broad range of brain MR images. Hence, the main objective of this thesis is to address

the unsupervised image segmentation schemes for brain MR images.

1.8 Problem Addressed

In this thesis, attempts are made to address the problem of brain MR image segmentation

in unsupervised framework. The observed degraded image is assumed to be corrupted

with white Gaussian noise and bias field. The unsupervised schemes have been proposed

using HMRF model. The research work of this thesis can be broadly categorized as;

(i) unsupervised image segmentation using biased HMRF model and

(ii) fuzzy clustering based image segmentation using HMRF model.

1.9 Summary of the thesis

In this piece of work, attempts are made to address the problem of image segmentation

of brain MRI in unsupervised framework. The observed degraded brain MR image is

assumed to be corrupted with additive white Gaussian noise and multiplicative bias field.

The segmentation problem is casting as pixel labelling problem and the model based

approach is adhered for the same. The unknowna priori class labels for different tissue

classes of brain MR image are modelled as MRF model while the observed degraded

images are modelled as HMRF model. As the problem is formulated in unsupervised

mode, both the model parameters and image labels are assumedto be unknown and are

estimated together. This problem can be viewed as an incomplete data problem and hence

the problem is formulated in EM framework inspired by the work of Zhanget al. [17].

In this thesis, the spatial interaction of pixel labels are encoded through HMRF model.

HMRF model is modified as biased HMRF (BHMRF) model by incorporating the biased

neighborhood in the energy function such that the anatomy ofbrain is encoded through the

proposed scheme. The BHMRF-EM scheme yielded better performance than HMRF-EM

scheme. The scheme is modified to estimate intensity in-homogeneity or bias field along

with model parameters and image class labels. Further it is found that the performance of
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HMRF-EM scheme proposed by Zhanget al. greatly depends upon the selection of initial

model parameters [17]. In order to circumvent that problem fuzzy clustering based HMRF

model is proposed. In this regard HMRF-FCEM algorithm is proposed that does not

require to have proper choice of initial model parameters. The proposed algorithm yielded

satisfactory results with arbitrary initial model parameters. The proposed algorithms are

validated with synthetic images, simulated as well as real brain MR images.

1.10 Thesis Organization

The thesis is organized into the following chapters.

Chapter 1: Introduction

It deals with the formal description of image segmentation,brain MR image and its seg-

mentation, literature review and a brief on thesis contribution.

Chapter 2: HMRF model and Fuzzy clustering based image segmentation

Background on Markov Random field model, Hidden Markov Random Field model and

segmentation methods based on above models are focused in this chapter. Basic notion of

fuzzy c-means (FCM) clustering technique is also included here.

Chapter 3: Unsupervised image segmentation and intensity in-homogeneity

correction using Biased HMRF model

In this chapter, the segmentation of brain MR image is addressed in an unsupervised

framework. The Hidden Markov Random Field (HMRF) model is employed for the ob-

served degraded image. MRF model is employed for the noise free class labels. The

tissue class of brain MR image is modeled as HMRF model with Gaussian emission dis-

tribution and the associated model parameters such asµ andσ for each class are assumed

to be unknown. In order to incorporate a variable spatial characteristics which varies

with internal part of the brain, the energy function associated with thea priori model

is modified by a biased factor. This factor controls the effect of spatial information to

avoid identical spatial information throughout the brain.The proposed modified model is

named as Biased HMRF (BHMRF) model. Expectation-Maximization (EM) algorithm is

used to estimate the model parameters as well as image labelsjointly. This leads to the

development of BHMRF-EM algorithm for unsupervised brain MR image segmentation.
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Intensity in-homogeneity or bias field in brain MR images is inherent due to the presence

of radio-frequency coil during MRI. The slowly varying multiplicative bias field is esti-

mated in various tissue classes of brain MR images based on Expectation-Maximization

(EM) algorithm. This leads to the joint estimation of intensity in-homogeneity, model

parameters and image labels using the proposed modified BHMRF-EM algorithm.

Chapter 4: Unsupervised Image segmentation using HMRF-FCEM algorithm

In this chapter, a new notion of unsupervised brain MR image segmentation scheme is

proposed by hybridizing the benefits of fuzzy clustering technique and HMRF model. In

the proposed approach, HMRF model is incorporated into fuzzy clustering scheme by

modifying the fuzzy objective function with HMRF orientation. In this regard, HMRF

model is regarded as defining a number of fuzzy partitions which is same as number of

class labels. HMRF oriented fuzzy objective function is proposed by considering the

mean field approximation of the MRF probability. This hybridizes the benefits of the

spatial interaction of the HMRF model, and the enhanced flexibility obtained by the fuzzy

clustering algorithm. HMRF-FCEM algorithm is proposed to estimate the image labels

as well as fuzzy membership function jointly. Eventually, the fuzzy objective function is

minimized using the proposed algorithm and an estimate of the HMRF model parameters

are obtained. The proposed algorithm does not depend upon the proper choice of initial

model parameters.

Chapter 5: Conclusions

This chapter presents the concluding remark on unsupervised image segmentation schemes

for brain MR images, with scope for further research work on the related problems.

1.11 Image Metrics

The quality of an image is examined by objective as well as subjective evaluation. The

metrics used for performance comparison of different segmentation schemes are defined

below.

Misclassification error (MCE) is a measure of percentage of misclassified pixels changes

their gray scale values in the segmented image. It measures the difference between two

images. In other words, it measures the efficiency of the proposed schemes with the for-
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mer existed schemes. Hence, the lower value of MCE, better isthe segmentation. The

MCE can be calculated as

MCE =
Number of misclassified pixels in a cluster

Original number of pixels in the cluster
∗ 100

Another image metric used for comparison of different methods is the execution

time. Execution time is defined as the time taken for the simulation of an algorithm. The

less time an algorithm takes for execution, the more efficient it is considered.

Subjective or Qualitative measure:

Subjective assessment is required to measure the image quality. Unavailability of

quantitative performance measure in case of image segmentation, subjective or qualitative

measure is another option for comparison. In a subjective assessment measures charac-

teristics of human perception become paramount, and the image quality is correlated with

the preference of an observer or the performance of an operator for some specific task.

Hence, as an usual case of image segmentation there is no quantitative performance eval-

uation measure because no ideal image can be used as reference. Any reasonable measure

should be tuned to the human visual system. However perceptual quality evaluation is not

a deterministic process. So, subjective evaluation is the way to prove the performance.

Hence, human observer is the only way by which segmented image quality can be ob-

served.

The processor used for simulation of the segmentation problem isPentium IV Intel

core 2 Duo processor, 1.8 Ghz, 1 GB RAM, Fedora-6 version in Linux operating

system.
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Fundamentals of HMRF model Fuzzy
clustering methods

2.1 Introduction

Image Segmentation techniques using spatial interaction models like Markov Random

Field (MRF) to model the image have become very popular. The use of contextual in-

formation is indispensable in low level as well as high levelImage Processing . Markov

Random Field theory provides a convenient and consistent way of modeling the entities

with contextual constraints. This is achieved through characterizing mutual relationship

among such entities such as pixels of an image and other spatially correlated features us-

ing MRF probabilities. MRF forms a probabilistic model for aset of variables that interact

on a lattice structure. This started with the influential work of Geman& Geman [1] who

linked via statistical mechanics between mechanical systems and probability theory. The

distribution for a single variable at a particular site is conditioned on the configuration of

a predefined neighborhood surrounding that site.

Hidden Markov field (HMF) models are widely applied to different problems con-

cerned with image processing. The use of hidden Markov model(HMM) is a powerful

modern statistical technique that has been found to be extremely useful for a wide spec-

trum of applications in ecology, crypt analysis, image understanding, speech and hand-

writing recognition. Formally, a hidden Markov model, is a doubly embedded stochas-

tic process with an underlying process that is not observable but can only be observed

through another set of stochastic process that produce the sequence of observations. It
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is a statistical model where the system being modeled is assumed to be Markov process

with unknown parameters, and the challenge is to determine the hidden parameters, from

the observable parameters, based on the assumption. In these models, the hidden process

is a Markov field and estimated from its observable noisy image. This models are popular

mainly due to the fact that the conditional probability distribution of the hidden layer with

respect to the observed layer remains Markov.

2.2 Markov Random Field

Let consider a collection of random variables{Xij}, that is a random field defined over

a finite discrete rectangular latticeS of size(M × N). The latticeS is defined asS =

{(i, j) : 1 ≤ i ≤ M, 1 ≤ j ≤ N}, where site(i, j) corresponds to each pixel of the

discrete image lattice structure. A neighborhood systemη on this rectangular latticeS

can be defined as follows.

Definition 1 A collection of subsets ofS described asη = {ηi,j : (i, j) ∈ S, ηi,j ⊂ S} is a

neighborhood system onS if and only if ηi,j, the neighborhood of pixel(i, j), is such that

1. a site is not neighboring to itself :(i, j) 6∈ ηij

2. the neighboring relationship is mutual : If(k, l) ∈ ηij , then(i, j) ∈ ηkl for any

(i, j) ∈ S

The neighbor set ofηij is defined as the set of nearby sites within a radiusr such that

ηij = {(k, l) ∈ S | {dist((i, j), (k, l))}2 ≤ r, (i, j) 6= (k, l)}, where dist(A,B) denotes

the Euclidean distance betweenA andB, r takes an integer value. A hierarchically or-

dered sequence of neighborhood systems is shown in Figure 3.1. whereη1, η2, η3.... are

the “first-order”, “second-order”, “third-order”.......neighborhood systems respectively

and are denoted by numbers 1,2,3....as shown in Figure 2.1. Due to the finite lattice used,

the neighborhood of pixels on the boundaries are necessarily smaller unless a toroidal (pe-

riodic) lattice structure is assumed. A nearest neighborhood dependence of pixels on an

image lattice is obtained by going beyond the assumption of statistical independence. The

neighborhood systems that can be defined overS are neither limited to the hierarchically
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Figure 2.1:Hierarchically arranged neighborhood system of Markov Random Field

ordered sequence of neighborhood systems, nor they have to be isotropic or homoge-

neous.

Definition 2 Let η be a neighborhood system defined over latticeS. A random field

X = {Xi,j} defined over latticeS is a Markov Random Field (MRF) with respect to the

neighborhood systemη if and only if

1. All of its realizations have nonzero probabilities:

P (X = x) > 0 for all x (property of Positivity)

2. Its conditional distribution satisfies the following property:

P{Xij = xij | Xkl = xkl, (k, l) ∈ S, (k, l) 6= (i, j)}
= P{Xij = xij | Xkl = xkl, (k, l) ∈ ηij} for all (i, j) ∈ S (property of Markovian-

ity)

wherexij is the configuration corresponding to the random variableXij and so on.When

the positivity condition is satisfied, the joint probability P (X) of any random field is

uniquely determined by its local conditional probabilities [2]. The Markovianity depicts

the local characteristics ofX which is characterized by the conditional distributions. The

Definition 2says that the image value at a pixel does not depend on the image data outside

its neighborhood, when the image data on its neighborhood are given. Hence, the most

attractive feature of MRF is that“images tend to have a degree of cohesiveness: pixels

located near to each other tend to have the same or similar colours” [1]. It does not

constitute a theoretical restriction either, because all random field satisfyDefinition 2,
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Figure 2.2:Cliques associated with first-order neighborhood system
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Figure 2.3:Cliques associated with second-order neighborhood system

with respect to a large enough neighborhood system, e.g.ηi,j = S for all ηi,j ∈ S. On

the other hand, MRF models, even with respect to small neighborhood systems such as

η2 prove to be very flexible and powerful. Let us define thecliqueassociated with(S, η),

a lattice neighborhood system pair:

Definition 3 A clique of the pair(S, η) denoted byc is a subset ofS such that

1. c consists of a single pixel, or

2. for (i, j) 6= (k, l), (i, j) ∈ c and(k, l) ∈ c implies that(i, j) ∈ ηk,l

The collection of all cliques of(S, η) is defined byC(S, η). The clique types associ-

ated with first-order and second-order neighborhood systems are shown in Figure 2.2 and

Figure 2.3 respectively.

2.3 Gibbs Random Field

Gibbs Distribution (GD) or equivalently the Gibbs Random Field (GRF) can be defined

as follows.

Definition 4 Letη be a neighborhood system defined over a finite latticeS. A random field
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X is said to be a Gibbs Random Field (GRF) on latticeS with respect to a neighborhood

systemη if and only if its configuration obey a Gibbs distribution which has the following

form

P (X = x) =
1

Z
e−

1

T
U(x) (2.1)

where,

Z =
∑

x

e−
1

T
U(x) (2.2)

is the partition function.Z is simply a normalizing constant so that the sum of the prob-

abilities of all realizations,x becomes one.T is a constant analogous to temperature

which shall be assumed to be 1 unless otherwise stated andU(x) is the energy function

or Hamiltonian of a Gibbs distribution, which can be expressed as follows

U(x) =
∑

c∈C

Vc(x) (2.3)

Hence, energy is sum of clique potentialsVc(x) over all possible cliquesC. Vc(x) are a set

of potential functions depending on the values ofx at the sites in the cliquec. Thus, the

key functions in determining the properties of the distribution are the potential functions

Vc(x). P (x) measures the probability of the occurrence of a particular configurationx.

The more probable is a particular configuration, has lesser energy. This is so because the

energy is computed as a measure of the distance between the model and the raw image

data. The potential functions are chosen to reflect the desired properties of the image

so that the more likely images have a lower energy and are thusmore probable. The

temperatureT controls the sharpness of the distribution. When the temperature is high,

all configurations tend to be equally distributed and when itgradually decreases to zero,

global energy minima is achieved. Gibbs energy formalism has the added advantage that

if the likelihood term is given by an exponential, and the prior is obtained through a

MRF model, the posterior probability continues to be a Gibbsian. This makes the MAP

estimation problem equivalent to an energy minimization.

2.4 Markov-Gibbs Equivalence

Markov Random Field (MRF) is characterized by its local property (the Markovianity)

whereas Gibbs Random Field (GRF) is characterized by its global property (the Gibbs
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distribution). Hammersley-Clifford’s famous theorem [2](unpublished by the original

authors) states that “given the neighborhood structureη of the model, for any set of sites

within the latticeS, their associated contribution to the Gibbs energy function should

be non zero, if and only if the sites form a clique; a random field’s having the Markov

property is equivalent to its having a Gibbs distribution”. This theorem establishes the

equivalence of these two types of properties and provides a very general basis for the

specification of MRF joint distribution function. Many havebeen used throughout the

literature [10]. The difficulties inherent in the MRF formulation are eliminated by use of

this equivalence which are as follows:

1. Readily availability of joint distribution of random field

2. Obtaining local characteristics regardless of inconsistency

3. Characterizing the Gibbs Distribution model with few parameters

By use of this equivalence MRF theory provides a mathematical foundation for solving

the problem of making a global inference using local information. It follows from the

above equivalence that the local characteristics of the MRFare readily obtained from the

joint distribution in 2.1 as

P (Xi,j = xi,j | Xk,l = xk,l (k, l) ∈ S, (k, l) 6= (i, j))

= P (Xi,j = xi,j | Xk,l = xk,l, (k, l) ∈ ηi,j)

=
e−

P

c∈CVc(x)

∑

xi,j∈S
e−

P

c∈CVc(x)
(2.4)

2.5 Gibbs Sampler

To implement the Relaxation algorithm, Geman and Geman [1] developed the Gibbs Sam-

pler to explore the energy surface. The interpretation of the Theorems derived by them

are as follows.

• The interpretation of theTheorem A is “At a constant temperature, if each site of

an image lattice is visited infinite times, as time to infinity, the configurationX will
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be a sample from the Gibbs distribution and this distribution is independent of the

initial configuration”.

• The interpretation ofTheorem B is “To reach equilibrium state with lowest energy,

the temperature is forced to decrease slowly. As time to infinity, X will be a sam-

ple from the Gibbs distribution at temperature absolute zero degree or the Gibbs

distribution with minimum energy”.

The Gibbs sampler works by updating each random variable individually, but conditional

on the states of the surrounding sites. The sequential implementation corresponding to a

raster scan is used for Gibb’s sampler. The state of image evolves by discrete changes.

So for convenience time is discretized, sayt = 1, 2, 3..... At a given time, each sitexi,j is

represented by a random variableXi,j(t) with values inG = 0, 1, 2...., n− 1. Hence the

total configuration of the image isX(t) = {xi,j(t)}; i, j ∈ S. The starting configuration

X(0) is arbitrary and at any time t, the total configurationX(t) evolves due to state change

of individual site. At any instant of time only one site undergoes (possible) change. So

the state at any two consecutive instant of timet and t − 1 can differ by at most one

coordinate. Ifn1, n2, ... be the sequence in which the sites are visited for replacement;

thusnt ∈ S andXi,j(t) = Xi,j(t − 1), i 6= nt. For replacement at each site a sample is

drawn from its local characteristics. In other words, a statex ∈ Gnt is chosen from the

conditional distribution ofXnt
. Given the observed states of the neighboring sites. All

other sites remaining unchanged, the change in total energyis the changes due to change

at sitent with respect to its neighborhood. LetU(t− 1) is the old energy andU(t) be the

new one. IfU(t) is found to be less thanU(t− 1), then the change is accepted; otherwise

it is accepted with a probability to avoid the sampling to stuck in a local minimum. When

all the sites of the image are visited once, one iteration is said to be completed.

2.6 Hidden Markov Model (HMM)

HMM is a finite set of states, each of which is associated with a(generally multidimen-

sional) probability distribution. Transitions among the states are governed by a set of

probabilities called transition probabilities. In a particular state an outcome or observa-
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tion can be generated, according to the associated probability distribution. It is only the

outcome, not the state visible to an external observer and therefore states are “hidden”

to the outside; hence the name Hidden Markov Model. Basically it is an extension of

observable Markov Model. The observation is a probabilistic function (discrete or contin-

uous) of a state. All observations are dependent on the statethat generated them, not on

the neighboring observations. Hidden Markov models exploit the “locality” of physical

properties of a system. They are often used to construct models of physical systems when

the information about the system is gathered using an apparatus that distorts the physical

reality being observed in some manner. Markov Random Field (MRF) theory provides a

basis for modeling contextual constraints. It is commonly accepted that the pixel inten-

sities in an image exhibit high spatial statistical interdependence, i.e., background pixels

have a high probability of occurring next to other background pixels. Likewise, pixels

generally lie adjacent to other pixel. The key assumption isthat a high spatial interde-

pendence present in the image field can be easily incorporated into a MRF model. A

description of MRF is given in section 2.2 before.

MRF is a multidimensional extension of Markov chain, but thegeneralization is

complicated by the lack of a natural ordering of pixels in multidimensional space. Hid-

den Markov fields are a natural generalization of the HMM thathave proved essential

to the development of modern speech recognition, but again the multidimensional nature

of the signals makes them inherently more complicated to handle. This added complex-

ity contributed to the long time required for the development of successful methods and

applications. Here, the output of the process is the set of states at each instant of time,

when each state corresponds to an observable event and also the output in any given state

is not random (deterministic). The above stochastic process could be called an observ-

able Markov model since the output of the process is the states at each instant of time,

where each state corresponds to a physical (observable ) event. In this section we extend

the concept of Markov models to include the case where the observation is probabilistic

function of the state, i.e. stochastic process with an underlying stochastic process that

is not observable (hidden), but can only be observed throughanother state of stochastic

processes that produce the sequence of observations. Here,an example is produced for an
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better insight into the theory of Hidden Markov model.

2.7 HMRF Image Model

The concept of a hidden Markov random field (HMRF) model is derived from hidden

Markov models (HMM), which are defined as stochastic processes generated by a Markov

chain whose state sequence cannot be observed directly, only through a sequence of ob-

servations. Each observation is assumed to be a stochastic function of the state sequence.

The underlying Markov chain changes its state according to al × l transition probabil-

ity matrix, wherel is the number of states. HMMs have been applied successfullyto

speech recognition and handwritten script recognition. Since original HMMs were de-

signed as 1D Markov chains with first order neighborhood systems, it can not directly be

used in 2D/3D problems such as image segmentation. Here, we consider a special case

of a HMM, in which the underlying stochastic process is a Markov random field (MRF),

instead of a Markov chain, therefore not restricted to 1D. Werefer to this special case as

a hidden Markov random field (HMRF) model [17]. Mathematically, an HMRF model is

characterized by the following:

• Hidden Random Field: The Random fieldX = Xi, iǫS is an underlying MRF

assuming values in a finite state spaceL with probability distribution. The state of

X is unobservable.

• Observable Random Field:Y = Yi, iǫS is a random field with a finite state space

D. Given any particular configuration,xǫX everyYi follows known conditional

probability distributionp(yi|xi) of the same functional formf (yi; θxi
), whereθxi

is

the involved parameter. This distribution is called the emission probability function

andY is also referred to as the emitted random field.

• Conditional Independence:For anyxǫX, the random variablesYi are conditional

independent.

Based on the above, we can write the joint probability of(X, Y ) as

P (y, x) = P (y | x)P (x) = P (x)
∏

i∈S

P (yi | xi) (2.5)
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According to the local characteristics of MRFs, the joint probability of any pair of(Xi, Yi),

givenXi’s neighborhood configurationXNi
, is

P (yi, xi | xNi
) = P (yi | xi)P (xi | xNi

) (2.6)

Thus, we can compute the marginal probability distributionof XNi
, Yi dependent on the

parameter set (in this case, we treat as a random variable) and

p(yi | xNi
, θ) =

∑

l∈L

p(yi, l | xNi
, θ)

=
∑

l∈L

f(yi, θl)P (l | xNi
) (2.7)

whereθ = {θl, l ∈ L}. . This is the hidden Markov random field (HMRF) model. The

concept of an HMRF is different from that of an MRF in the sensethat the former is

defined with respect to a pair of random variable families(X, Y ) while the latter is only

defined with respect toX. More precisely, the HMRF model can be described by the

following:

1. X = Xi, iǫS - hidden MRF, with prior distribution p(x);

2. Y = Yi, iǫS - observable random field, with emission probability distributionp(yi|xi)
for eachyi;

3. θ = {θl, l ∈ L} - the set of parameters involved in the above distributions.

If we assume the random variablesXi are independent of each other, which means that

for ∀lǫL andiǫS, we havep(l | xNi
) = p(l) = wl, then equation reduces to

p(y | θ) =
∑

l∈L

wlf(y; θl) (2.8)

This is the definition of the finite mixture model. Therefore aFM model is a degen-

erate special case of an HMRF model. It is obvious from the above that the fundamental

difference between the FM model and the HMRF model lies in their different spatial prop-

erties. The FM model is spatially independent whereas the HMRF model may be spatially

dependent. Therefore, the HMRF model is more flexible for image modeling in the sense

that it has the ability to encode both the statistical and spatial properties of an image. With
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a Gaussian emission distribution, the FM model is usually known as the finite Gaussian

Mixture (FGM) or finite normal mixture (FNM) model. More specifically, the observable

random variables have the following density function:

p(y | φ) =
∑

l∈L

wlg(y; θl) (2.9)

where

g(y; θl) =
1

√

2πσ2
l

exp

(

−(yi − µl)2

2σ2
l

)

and θl = (µl, σl)
T (2.10)

Similarly, the HMRF model with a Gaussian emission distribution can be specified as:

p(yi | xNi
, θ) =

∑

l∈L

g(yi, θl)P (l | xNi
) (2.11)

whereg andθl are defined as in . This type of HMRF as the Gaussian hidden Markov

random field (GHMRF) model.

2.8 Fuzzy Clustering

2.8.1 Classical Sets

A classical set is a set that has a crisp boundary. For example, a classical set X of real

numbers greater than 6 is expressed as

A = {x | x > 6}
In this set of real numbers there is a clear unambiguous boundary 6 such that if x is

greater than this number. In this case x either belongs to this setA or it does not belong

to this set. These types of sets are called Classical Sets. Classical sets are an important

tool in mathematics and computer science but they do not reflect the nature of human

concepts and thought. In contrast to a classical set, a fuzzyset is a set without crisp

boundaries. That is, the process of an element belongs to a set to does not belong to a set

is gradual. This transition is decided by the membership function of a fuzzy dataset. Real

life problems have data which most of the time has a degree of trueness or falseness that

is the data cannot be expressed in terms of classical set. A good example of this is; the

same setA is a set of tall basketball players. According to the classical set logic a player

6.01 ft tall is considered to be tall whereas a player5.99 ft tall is considered to be short.



Chapter 2. Fundamentals of HMRF model Fuzzy clustering methods 26

2.8.2 Fuzzy Sets and Membership Function

Membership functions give the flexibility in modeling commonly used linguistic terms

such as the water is hot or the temperature is high to fuzzy sets. Zadeh (1965) points out

that, this imprecise data set information plays an important role in human approach to

problem solving. It is important to note that fuzziness in a dataset comes does not come

from the randomness of the elements of the set, but from the uncertain and imprecise

nature of the abstract thoughts and concepts. IfX is a collection of objects denoted byx,

then a fuzzy setAǫX is defined as a set of ordered pairsA = (x, µA(x)) | xǫX, Where

µA(x) is called the membership function (MF) for the fuzzy set A. The membership

function maps each element ofX to a membership grade between 0 and 1. If the value of

the membership function is restricted to either 0 or 1, thenA is reduced to a classical set

andµA(x) is the characteristic function ofA. UsuallyX is referred to as the universe of

discourse and may consist of discrete objects or continuousspace.

2.8.3 Data Clustering Algorithms

Clustering of numerical data forms the basis of various classification and system modeling

algorithms. The purpose of clustering is to identify natural groupings of data from a large

data set to produce a concise representation of a system’s behavior. Clustering algorithms

are not only used to organize and categorize data, but are helpful in data compression and

model construction. Clustering partitions the data set into several groups such that the

similarity within a group is larger than among the groups. Toachieve such partitions it

is essential to have a similarity metrics that takes two input vectors and returns a value

reflecting their similarity. As most of the similarity metrics are sensitive to the range

of elements in the input vectors, each of the input variablesmust be normalized or scaled

down. Clustering techniques are broadly classified as hard clustering and fuzzy clustering.

2.8.4 Fuzzy C-means Clustering Algorithm

Fuzzy C-means clustering (FCM) algorithm, also known as fuzzy Isodata, is a data clus-

tering algorithm in which each data point belongs to a cluster to a degree specified by a

membership grade. Bezdeket al. proposed this algorithm in 1973 as an improvement to
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K-means algorithm also known as the hard C-means algorithm.Hard k-means algorithm

executes a sharp classification, in which each object is either assigned to a class or not.

The application of fuzzy clustering to the dataset functionallows the class membership

to have several classes at the same time but with different degrees of membership func-

tion ranging from 0 to 1. Fuzzy c-means (FCM) is a method of clustering which allows

one piece of data to belong to two or more clusters. It is basedon minimization of the

following objective function

Jm =

N
∑

i=1

C
∑

j=1

umij ‖ xi − cj ‖2 (2.12)

wherem the fuzzy factor, any real number greater than 1,j is the number of cluster de-

cided by the user,uij is the degree of membership ofxi in the clusterj, xi is the ith

of d-dimensional measured data namely throughput, storagelevel and volume,cj is the

d-dimension center of the cluster, and‖ xi − cj ‖2 is any norm expressing the similarity

between the measured data and the center. Fuzzy partitioning is carried out through an

iterative optimization of the objective function shown above, with the update of member-

ship matrixuij and the cluster centerscj by,

uij =
1

∑C
k=1

(

‖xi−cj‖2

‖xi−ck‖2

)
2

m−1

and,

(2.13)

cj =

∑N
i=1 u

m
ijxi

∑N
i=1 u

m
ij

(2.14)

This iteration will stop when maxuij , | u(k+1)
ij − u

(k)
ij |≤ ε whereε is a termination

criterion between 0 and 1 and usually set to 0.02 whereask is the iteration steps. This

procedure converges to a local minimum or a saddle point ofJm. The algorithm is com-

posed of the following steps mentioned below.

The steps of the algorithm are as follows:

1. Fix c, 2 ≤ c ≤ N,m, 1 ≤ m ≤ infty initialize The class prototypes V

2. Compute the partition matrix

u∗ik =
1

∑c
j=1(

d2
ik

d2
ik

)
1

m−1
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3. Compute the fuzzy cluster centers V using

V ∗
i =

∑N
k=1 u

m
ikxk

∑N
k=1 u

m
ik

4. Compute the change in the cluster centers values using a appropriate norm; if the

change is small, stop. Else return to step 2.

2.8.5 Fuzzy Factor and Ideal Number of Clusters

The fuzzy factorm was is also known as fuzzifier. As the value ofm approaches 1 the

clusters formed tend to be hard and as the value ofm tends to infinity the obtained clusters

tend to go in a the fuzziest state. There is no theoretical justification on the value ofm but

is usually set to 2 and in a more generalized form tends to be between 1.5 and 3.

The number of clusters for a certain type of data will vary based on the data partition

desired. The number of clusters can vary between 2 to infinity.

2.8.6 Significance of Membership Function in Cluster Analysis

As discussed in the earlier section, data are bound to each cluster by means of a member-

ship function, which represents the fuzzy behavior of this algorithm. To do that, we build

an appropriate matrix named U whose factors are numbers between 0 and 1, and represent

the degree of membership between data and centers of clusters. In the FCM approach,

instead, the same given datum does not belong exclusively toa well-defined cluster, but

it can be placed in a middle way. In the case of FCM, the membership function follows

a smoother line to indicate that every datum may belong to several clusters with different

values of the membership coefficient.



Chapter 3

Unsupervised image segmentation and
intensity in-homogeneity correction
using Biased HMRF model

3.1 Introduction

Segmentation of brain MR images into different tissue classes, especially gray matter

(GM), white matter (WM) and cerebrospinal fluid (CSF) is an important task for computer-

aided image analysis. The MR image is degraded considerablyby electronic noise, the

bias field (intensity inhomogeneities in the Radio Frequency field) and partial volume ef-

fect during its acquisition. Often, model based approacheshave been adhered to obtain

proper segmentation of degraded MR images. In this regard, the problem is casting as a

pixel labeling problem and the segmentation problem reduces to estimation of pixel labels.

With an aim to develop the automatic segmentation method, the model based problem is

viewed as unsupervised one. In this chapter, Hidden Markov Random field (HMRF)

model proposed by Zhanget al. has been employed to formulate the unsupervised seg-

mentation problem [17]. HMRF models have been used to model the tissue classes of

the observed degraded image. Thea priori class labels are modelled as Markov Random

field (MRF) model. The model parameters, the number of class labels and the image la-

bels are assumed to be unknown. The problem becomes an incomplete data problem and

is formulated in Expectation-Maximization (EM) frameworkmotivated by Dempsteret

al. [11]. Using this HMRF-EM framework proposed by Zhanget al., the segmentation

of brain MR images are obtained without any significant improvement in segmentation
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accuracy and computational time for the cleaner data [17]. In order to overcome this bot-

tleneck, we have proposed the Biased HMRF model with a biasedneighborhood system.

The energy function associated with thea priori model is modified by an biased amount

of internal field. By this modification, the effect of internal structure is incorporated in

the new model. With the BHMRF-EM framework, the image labelsand the model pa-

rameters are estimated recursively in E- step and M-step respectively. MAP estimation of

image are obtained using Iterated Conditional Mode (ICM) algorithm.

In this chapter, we have also extended the BHMRF-EM framework to incorporate

the intensity inhomogeneity correction task. In this regard, we have developed a modified

BHMRF-EM algorithm for estimation of bias field, bias field corrected image labels as

well as model parameters.

3.2 Image model

LetX denotes the random field associated with the labels of the original image and

x denotes the realization of that. The label processX is assumed to be MRF. We have

already described about MRF model in chapter 2. Hence, the joint distribution can be

expressed as

P (X = x | φ) =
1

Z
e−U(x,φ) (3.1)

whereZ is the partition function,φ denotes the clique parameter vector. LetX is

the unobservable andY denotes the observed random field.Yi denotes the pixel intensity

and i is the individual site inS. It is assumed that for any realizationx, the random

variables are conditionally independent.

P (Y = y | X = x) =
∏

i∈S

P (Yi = yi | Xi = xi) (3.2)

whereS denote the set of all sites of the image. The joint probability of (X, Y ) can be

expressed as

P (Y = y,X = x) = P (Y = y | X = x)P (X = x)

= P (X = x)
∏

i∈S

P (Yi = yi | Xi = xi) (3.3)
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Thus the marginal probability distribution ofYi can be expressed by using the local char-

acteristics of MRF as

P (Yi = yi | Xηi
= xηi

, θ) =
∑

l∈L

P (Yi = yi | Xηi
= xηi

, θ)

=
∑

l∈L

P (yi, l, θl) P (l | xηi
) (3.4)

whereθ = {θl, l ∈ L}, L denotes the number of class labels.θl = [µl, σl] is the model

parameters for each class,µl, σl are the mean and covariance of each class of the image,l

is corresponding class label. (3.4) is referred as the Hidden Markov Random Field model.

With Gaussian distribution, (3.4) can be expressed as

p(Yi = yi | Xηi
= xηi

, θ) =
∑

l∈L

g(yi, θl)P (l | xηi
) (3.5)

where

g(yi; θl) =
1

√

2πσ2
l

exp

(

−(yi − µl)2

2σ2
l

)

and θl = (µl, σl)
T (3.6)

3.3 Proposed Biased HMRF model

As described in chapter 2, the spatial constraint encoded through the HMRF model

aims to solve the data with noise and local variations. The segmentation of brain MR

images using HMRF-EM scheme proposed by Zhanget al. is obtained without any sig-

nificant improvement in segmentation accuracy and time complexity with cleaner data

than a noisy data [17]. To overcome this limitation, a modified model is proposed to im-

prove the neighborhood system of HMRF model by better characterizing the structure of

human brain. While taking different weightings of MR images, several difficulties arises

due to imaging artifacts. In human brain, WM and CSF are only adjacent to each other in

the regions around the ventricles. In most of the T1 weightedbrain regions it is a big task

to differentiate between WM and CSF due to low contrast in intensity. Also in case of

T2 weighted images, the contrast between GM and WM is negligible and CSF has high

contrast. This information is encoded into segmentation framework and BHMRF model

is proposed. In HMRF model, it is considered that a pixel is more likely to be a certain

tissue type if the neighboring pixels are of that type. Basedon this assumption, the energy



Chapter 3. Unsupervised image segmentation and intensity in-homogeneity
correction using Biased HMRF model 32

function is defined asUx =
∑

c∈C Vc(x) and the clique potential is normally defined as

Vc(x) = −δ if |xi − xj | = 0 (3.7)

= δ if |xi − xj | 6= 0

In our proposed BHMRF model, the clique potential is modifiedas

Vc(x) = −δ(xi − xj)− ρ ∗ δ(| xi − xj | −1) (3.8)

whereρ is biased factor. In this way, a CSF pixel in the neighborhoodsystem can also

contribute to the central pixel being a gray matter but not being a white matter, and vicev-

ersa. Therefore, this reduces the probability that WM and CSF are adjacent to each other.

3.4 MAP estimation of image labels

Let X be the random field associated with the noise free class labelandx be the

realization of the same.X is modeled as a MRF.

Let Y denote the observed image random field andy be the realization of it.Y is

modeled as Hidden Markov Random Field (HMRF).

Let θ be the associated model parameters. In the pixel labeling problem, letx∗

denote the true but unknown labeling configuration andx̂ denote the estimate forx∗.

x∗ is the realization of random fieldX, which is modeled as MRF. The observed

imagey is a realization of proposed BHMRF framework. The problem isto recoverx∗

from the observed imagey. The following optimality criterion is adopted,

x̂ = argmax
x

P (X = x | Y = y, θ) (3.9)

whereP (X = x | Y = y, θ), is the posterior probability distribution ofX, the model

parameters for each classθl = [µl, σl] are taken from histogram analysis. SinceX is

unknown, the posteriori probability distributionP (x | y, θ) can not be evaluated. Hence,

using Baye’s rule, (3.9) can be expressed as

x̂ = argmax
x

P (y | x, θ)P (x)

P (y)
(3.10)

SinceY is known, the denominator of (3.10) is a constant. Thus, (3.10) can be written as

x̂ = argmax
x

P (y | x, θ)P (x) (3.11)
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Since,X is MRF, the prior probability distribution in (3.11) is given asP (x) =
1

Z
e−U(x).

It is also assumed that the pixel intensityyi follows a Gaussian distribution with parame-

tersθl = {µl, σl}. Given the class labelxi = l,

P (yi | xi) =
1

√

2πσ2
l

exp

(

−(yi − µl)2

2σ2
l

)

(3.12)

Using the assumption of conditional independence

P (y | x) =
∏

i∈S

P (yi | xi) =
∏

i∈S

[

1√
2π

(

−(yi − µxi
)2

2σ2
xi

− log(σxi
)

)]

(3.13)

(3.13) can be expressed as

P (y | x) =
1

Z ′
exp(−U(y | x))) (3.14)

U(y | x) =
∑

i∈S

U(yi | xi) =
∑

i∈S

[

(yi − µxi
)2

2σ2
xi

+ log(σxi
)

]

andZ ′ = (2π)N/2. Using the above, (3.11) can be expressed as

x̂ = argmax
x

[

1

Z
exp(−U(x))

1

Z ′
exp(−U(y | x))

]

(3.15)

(3.15) is equivalent to minimizing the following

x̂ = argmin
x

[U(y | x) + U(x)]

whereU(y | x) andU(x) are the energy functions corresponding to the conditional dis-

tributionP (Y = y | X = x, θ) and thea priori class distributionP (X = x) respectively.

x̂ = argmin
x

[

∑

i∈S

[

(yi − µxi
)2

2σ2
xi

+ log(σxi
)

]

+
∑

ci∈C

Vc(x, φ)

]

(3.16)

The MAP estimate of̂x in (3.16) is obtained by employing the ICM algorithm.

3.5 Iterated Conditional Mode Algorithm

Since it is difficult to maximize the joint probability of an MRF, Besaget al. pro-

posed a deterministic algorithm called Iterated Conditional Modes (ICM) which maxi-

mizes local conditional probabilities sequentially. The ICM algorithm uses the greedy



Chapter 3. Unsupervised image segmentation and intensity in-homogeneity
correction using Biased HMRF model 34

strategy in the iterative local maximization. Given the data y and the other labelsx(k)
S−i,

the algorithm sequentially updates eachx(k)
i into x(k+1)

i by maximizingP (xi | y, xS−i),
the conditional probability, with respect toxi. Two assumptions are made in calculating

P (xi | y, xS−i):
1. The observation componentsy1, y2, y3... ym are conditionally independent givenx

and eachyi has the same known conditional density functionp(yi | xi) dependent

only onxi. Thus

p(y | x) =
∏

i

p(yi | xi) (3.17)

2. The second assumption is thatx depends on the labels in the local neighborhood,

which is the Markovianity.

From the two assumptions and the Bayes theorem, it follows that

P (xi | y, xS−i) ∝ p(yi | xi)P (xi | xNi
) (3.18)

Obviously,P (xi | yi, xkNi
) is much easier to maximize thanP (x | y), which is the point

of ICM. Maximizing 3.18 is equivalent to minimizing the corresponding posterior energy

using the following rule.

xk+1
i ← arg max

xi

U(xi | yi, f (k)
Ni

) (3.19)

The result obtained by ICM depends very much on the initial estimatorx(0) and the ICM
is locally convergent [10].

3.6 Parameter estimation

The problem of parameter estimation is regarded as an incomplete-data problem

in this scheme. Expectation-Maximization (EM) algorithm is a potential tool to handle

the incomplete data problem. It solves the Maximum-Likelihood (ML) estimation of the

model parameter.

E- step estimates the expected value of unknown variables, given the current pa-

rameter estimate. The MAP estimates of the image labels are obtained by the Iterated

Conditional Model (ICM) algorithm.
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M- step re-estimates the distribution parameters to maximize the likelihood of the

data, given the expected estimates of the unknown variables.

The E and M steps are iterated recursively till the parameters converge to the op-

timal solution. Experiments on both real and synthetic brain MR images show that the

segmentation results of proposed BHMRF-EM scheme outperforms the existing HMRF-

EM scheme.

3.7 Expectation-Maximization algorithm

To perform unsupervised segmentation of image data, where both the class labels

and model parameters are unknown, a method of concurrently estimating the underlying

class labels of the image and associated model parameters isrequired. Alternately, the

problem may be viewed as an incomplete data problem. Following this approach, the

complete data comprisesZ = {X, Y }, whereY is observed andX is the underlying

or hidden component. Applying this to image segmentation,Y comprises the observed

noisy image andX is a lattice on which the segmentation of the image is defined.With

the complete data setZ = {X, Y }, a joint density functionP (Z | θ) = P (X, Y | θ) =

£(θ | X, Y ) is specified, which is the complete-data likelihood function and£(θ | Y ) is

the incomplete-data likelihood function,θ is the set of parameters governing the observed

data.

The Expectation-Maximization (EM) algorithm was first proposed by Dempsteret

al. as an iterative maximum likelihood procedure for parameterestimation from incom-

plete data [11]. The methodology has been extensively applied to the problem of image

segmentation and specifically to brain MR image segmentation [17]. Since the EM algo-

rithm yields maximum-likelihood estimate for the hidden data, the unsupervised segmen-

tation problem is solved using the following steps.

• Obtain an initial parameter estimateθt=0 using an initial guess.

• Use the EM algorithm to find the maximum-likelihood parameter estimatêθ.

• Use a supervised algorithm to obtain the maximum-likelihood or maximuma pos-

teriori estimate for the hidden data.
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The EM algorithm is an iterative process, where each iteration consists of two steps. The

first of these finds an expression for the expected value of thecomplete data log-likelihood

logP (X, Y | θ) with respect to the hidden dataX, given the observed dataY and the

current parameter estimates. The second step maximizes this expectation to estimate the

parameters.

Expectation Step:

TheE-stepcalculates the conditional expectation

Q(θ | θt) = E{logP (X, Y | θ) | Y, θt} =
∑

x∈X

P (X | Y, θt) logP (X, Y | θ) (3.20)

where the parameter setθ = {µl, σl | l ∈ L} is the new parameter that is optimized to

increaseQ andθt is the current parameter estimate that is used to evaluate the expectation.

For a givenX,Q function is formulated as

Q(θ | θt) =
∑

i∈S P (xi | yi, θt) logP (xi, yi | θ)

=
∑

i∈S

∑

l∈L P
t(l | yi) log{P (yi | xi) P (xi | xηi, θ)}

=
∑

i∈S

∑

l∈L P
t(l | yi){ logP (yi | li) + logP (l | xηi, θ)}

=
∑

i∈S

∑

l∈L P
t(l | yi){log(

1
√

2πσ2
l

exp(−(yi − µl)2

2σ2
l

)) + logP (l | xηi, θ)}

=
∑

i∈S

∑

l∈L P
t(l | yi){−

(yi − µl)2

2σ2
l

− log σl − 0.5 log 2π}+ logP (l | xηi, θ)

=
∑

i∈S

∑

l∈L P
t(l | yi){−

(yi − µl)2

2σ2
l

− log σl + logP (l | xηi, θ)}

+P t(l | yi)(−0.5 log 2π)

=
∑

i∈S

∑

l∈L P
t(l | yi)(W + C)

whereW = −(yi − µl)2

2σ2
l

− log σl + logP (l | xηi, θ)} andC = −0.5 log 2π

Maximization Step:
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The M-stepmaximizesQ(θ | θt) to obtain the next estimate with respect to the first

argument of theQ function which is the conditioner of the complete data likelihood.

θt+1 =
arg max

θ Q(θ | θt) (3.21)

• MaximizingQ-function with respect toµl :

∂Q(θ | θt)
∂µl

= 0 or
∂

∂µl
{P t(l | yi)(−

(yi − µl)2

2σ2
l

)} = 0

or P t(l | yi)yi = P t(l | yi)µl

or µt+1
l =

∑

i∈S P
t(l | yi) yi

∑

i∈S P
t(l | yi)

• MaximizingQ-function with respect toσ2
l :

∂Q(θ | θt)
∂σ2

l

= 0

or
∂

∂σ2
l

{P t(l | yi)(−
(yi − µl)2

2σ2
l

)− log σl} = 0

or P t(l | yi)(yi − µl)2 = P t(l | yi)σ2
l

or σ2
l
t+1

=

∑

i∈S P
t(l | yi)(yi − µl)2

∑

i∈S P
t(l | yi)

The EM algorithm consists of choosing an initial parameterθ(t=0), then iterates the E-step

and M-step successively until the parameterθ converges tôθ.

3.8 Joint estimation of image labels and model parame-
ters using Biased HMRF-EM framework

In the EM framework, image labels as well as the model parameters are estimated recur-

sively until the model parameters converge to the optimal ones. The image label estimates
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x0 are obtained by computing the MAP estimation using the initial model parameters that

are taken from histogram of the noisy images. The MAP estimate is obtained by ICM

algorithm described in section 3.5. Using the label estimatesx0 and the degraded im-

ageY , the model parametersθ1 is estimated by maximizing theQ(θ, θt). This recursive

process is repeated till the parameters converge to optimalvalues. The optimal values of

the parameters are used to obtain the desired segmentation result. The image labels and

model parameters are obtained by the BHMRF-EM algorithm. The salient steps of the

proposed BHMRF-EM algorithm is described below.

BHMRF-EM Algorithm:

1. Perform the initial parameter estimation and segmentation.

2. Calculate the likelihood distribution

p(t) (yi|xi) = g(t) (yi; θ (xi))

3. Estimate the class labels by MRF-MAP estimation

x(t) = argmax
x∈X

P (y | x, θt + P (x))

ICM algorithm is used to estimate the class labels.

4. Calculate the posterior distribution

p(t) (l | yi) =
g(t) (yi; θl) p

(t) (l | xNi
)

p(yi)

5. Update parameters by

µ
(t+1)
l =

∑

i∈s p
(t) (l | yi) yi

∑

i∈s p
(t) (l | yi)

σ
(t+1)2

l =

∑

i∈s p
(t) (l | yi) (yi − µl)2

∑

i∈s p
(t) (l | yi)

6. t← t+ 1 and repeat from 2 until enough iterations have been performed.
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3.9 Bias Field estimation

In this chapter, we have taken the bias field model proposed byWells et al. [19].

Let the observed intensity of the given image isI = (I1, ....., IN) and

the true intensity of the given image isI = (I∗1 , ....., I
∗
N )

The degradation effect of the bias field at pixeli, 1 ≤ i ≤ N can be expressed as

Ii = I∗i × bi (3.22)

The bias field effect is treated as an additive artifact afterlogarithmic transformation.

Let the observed log transformed intensity isY and the true log transformed in-

tensity isY ∗. ThenY = Y ∗ + B. The bias fieldB is modelled with Gaussian prior

probability densityp (B) = GψB
(B) whereψB is theN ×N covariance matrix. Assum-

ing the true intensity value at pixel i following the Gaussian distribution with parameter

θ (xi) = (µxi
, σxi

) with given class labels x is

p (y∗i |xi) = g (y∗i ; θ (xi)) (3.23)

With bias fieldbi, the distribution can be written in terms of the observed intensityyi as,

p (yi|xi, B) = g (yi − bi; θ (xi)) (3.24)

Thus, the intensity distribution in terms of Gaussian mixture model is

p (yi|B) =
∑

j∈L

g (yi − bi; θ (j)P (j)) (3.25)

The optimal estimate of the bias field is obtained using the MAP principle as

B̂ = argmax
B

P (Y | B)p(B) (3.26)

A zero gradient condition is to assess this maximum as

Wij =
p (yi|xi, β) p (xi = j)

p (yi|β)
(3.27)

bi =
[FR]i

[Fψ−11]i
, with 1 = (1, 1, , 1)T
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where R is the mean residual for pixeli

Ri =
∑

j∈L

Wij (yi − µj)
σ2
j

(3.28)

ψ is the mean inverse covariance

ψ−1
ik =

∑

j∈L

Wijσ
2
j , if i = k

0 otherwise (3.29)

and F is the low-pass filter.Wij is the posterior probability that pixeli belongs to classj

given the bias field estimate. The E step assumes that the biasfield is known and calculates

the posterior tissue class probabilityWij . In the M step, the bias field B is estimated given

the estimatedWij in the E step. Once the bias field is obtained, the original intensityI∗

is restored by dividingI by the inverse log of B. Initially, the bias field is assumed tobe

zero.

3.10 Joint estimation of bias field, image labels and model
parameters using modified Biased HMRF-EM frame-
work

In the EM framework, the bias field and class labels as well as the model parameters

are estimated recursively until the model parameters converge to the optimal ones. The

bias fieldB0 and the image class label estimatesx0 are obtained by computing the MAP

estimation using the initial model parameters. Using the label estimatesx0 and the bias

fieldB0, the model parametersθ1 is estimated by maximizing theQ(θ, Bt). This recursive

process is repeated till the parameters converge to optimalvalues. To estimate the class

labels and model parameters along with bias field, a modified BHMRF-EM algorithm is

proposed. The salient steps of the proposed BHMRF-EM algorithm is as follows.
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Modified BHMRF-EM Algorithm:

1. Perform the initial parameter estimation and segmentation.

2. Estimate the bias field

b
(t)
i =

[FR]i
[Fψ−11]i

, with1 = (1, 1, , 1)T

3. Calculate the likelihood distribution

p(t) (y∗i |xi, B) = g(t) (yi − bi; θ (xi))

4. Estimate the class labels by MRF-MAP estimation

x(t) = argmax
x∈X

P (y | x, θt + P (x))

5. Calculate the posterior distribution

p(t) (l | yi) =
g(t) (yi; θl) p

(t) (l | xNi
)

p(yi)

6. Update parameters by

µ
(t+1)
l =

∑

i∈s p
(t) (l | yi) yi

∑

i∈s p
(t) (l | yi)

σ
(t+1)2

l =

∑

i∈s p
(t) (l | yi) (yi − µl)2

∑

i∈s p
(t) (l | yi)

7. t← t+ 1 and repeat from 2 until enough iterations have been performed.

3.11 Results and Discussions

In simulation, both synthetic as well as brain MR images are considered to validate the

proposed algorithm. Synthetic images consisting of 3 and 5 classes are considered for

the simulations. Besides, 5 simulated and 3 real brain MR images (healthy as well as

diseased) are considered. The degraded images are obtainedby adding white Gaussian

noise of varying strength to the original image. The simulated brain MR images are

obtained from “bicadmin@bic.mni.mcgill.ca” and “macampbell@davidson.edu“ . The

real brain MR images are obtained from “Department of Radiology, IGH, Rourkela” and

“the whole brain Atlas”.
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Synthetic images:

Synthetic image of three class is considered as shown in Fig.3.1 (a). The corresponding

noisy version of SNRs 20 dB and 18 dB are shown in Fig. 3.1 (b) and 3.1 (e) respectively.

The noisy images are modelled as Biased HMRF model and initial model parameters

µ andσ considered for each class are selected from the histogram ofrespective noisy

images. Proposed BHMRF-EM algorithm is used to obtain the segmented image of re-

spective noisy images. Thea priori MRF model parameterδ and the biased parameter

are selected on the trial basis The performance of the algorithm is compared with Zhang’s

HMRF-EM algorithm [17]. The initial and converged parameters are tabulated in table

3.1. The results obtained by BHMRF-EM algorithm are shown inFig. 3.1 (c) and (f)

for SNR 20 dB and 18 dB respectively. Similarly the simulation and results obtained

by HMRF-EM algorithm are shown in Fig 3.1 (d) and (g) respectively. As the number

of classes is assumed to be unknown, the algorithm is run fromhigher number of initial

classes and the algorithm converged to three classes. Here we have assumed 5 no. of ini-

tial classes. It is clear from the result that proper labelling of pixel could be obtained for

noisy images of SNR 20 dB. The performance of the BHMRF-EM as well as HMRF-EM

algorithm were with increase in noise strength which could be observed from the seg-

mentation results of the noisy image of SNR 18 dB. It is evident from the image metrics

that proposed BHMRF-EM algorithm converges faster than that of HMRF-EM algorithm.

The% of MCE of the segmented image is also less in case of BHMRF-EM scheme. This

is due to the incorporation of baised neighborhood in thea priori energy function. The

identical spatial information used by HMRF model throughout the image is modified by

assigning an biased parameter to the neighbourhood system.With increase in noise, i.e at

18 dB SNR, the performance of the algorithm degraded as seen from Fig. 3.1 (f), but the

performance of HMRF-EM algorithm degraded more as in Fig. 3.1 (g).

A five class synthetic image is considered in our simulation as shown in Fig. 3.2

(a). The corresponding noisy versions of SNR 20 dB and 18 dB respectively. are shown

in Fig. 3.2 (b) and (e). Fig. 3.2 (c) and (f) show the segmentation results obtained by

BHMRF-EM algorithm and the model parameters are tabulated in table 3.2. Thea priori

model parameterδ and weighting parameter for each of the noisy images are alsogiven in
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table 3.2. It is observed from Fig. 3.2 (c) and (f) that BHMRF-EM algorithm yield proper

segmented images. It is also observed from Fig. 3.2 (d) and (g) that the segmented results

using HMRF-EM algorithm have more number of misclassified pixels. With increase in

noise, there is more degradation in performance in both the schemes. There are many

misclassified pixels five distinct visible classes. In both synthetic images, it is observed

that the no. of misclassified pixels in the segmented images are less in our proposed

scheme which signifies the quality of better accuracy. The convergence of the algorithm

is also faster which is evident from the convergence time presented in table 3.1 and 3.2.

This up gradation in performance of the BHMRF-EM scheme could be attributed to the

incorporation of biased neighborhood structure.

Brain MR images:

After testing the developed algorithms with synthetic images successfully, 5 simulated

and 3 real brain MR images are considered in our simulations.All simulated brain MR

images are obtained from “Department of Radiology, IGH, Rourkela” and “the whole

brain Atlas”. A simulated brain MR image of size(128 × 128) degraded with3% noise

is shown in Fig. 3.3 (a). The “noise percentage” value represents the percent ratio of the

standard deviation of the white Gaussian noise versus the signal for a reference class. The

corresponding ground truth image is presented in Fig. 3.3 (b). The proposed BHMRF-

EM algorithm is applied with varying weighting parameter . The algorithm starts with

6 number of initial classes. Thea priori parameterδ is assumed to be0.2. The initial

parametersµ andσ for each class are assumed from the histogram of the originalimage.

It is observed that the% of MCE changes with different weighting parameter . The similar

study is also done with other brain MR images presented Fig. 3.4. The finding of% of

MCE vercus are presented in table 3.3(a) for different brainMR images. It is observed

that the% of MCE is less with the value ofρ between0.3 and0.5. So, for all brain MR

images, the value of is taken as0.5.

A diseased real brain MR images of size(175 × 215) degraded with3% noise is

shown in the Fig. 3.5 (a). The corresponding segmented imagewith different values of

biased factor varies from0.1 to 0.9 are shown in Figs. 3.5 (d)-(i) respectively. Sixa priori
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classes are assumed for this image and the corresponding BHMRF model parameters for

four different classes are tabulated in Table 3.6. Thea priori MRF model parameters for

the two schemes is0.25. It is observed from Figs. 3.(d)-(f) that four distinct classes could

be obtained up toρ = 0.5. At high biased value there are visibly four classes with a few

misclassified pixels. Hence, the performance of the scheme gradually deteriorates with

increase in biased value. The results are compared with the existing scheme HMRF-EM.

This is evident from the Table 3.6 that the BHMRF-EM scheme converges in 23 secs,

while the HMRF-EM found to be little faster than that of proposed scheme. But the% of

MCE shows the accuracy in the segmentation of the proposed one.

Similarly, another two real sacroma diseased and multiple lessions of real brain MR

images of size(175 × 215) with 3% noise are shown in Fig. 3.7 (a) and 3.8 (a). The

corresponding ground truth images are shown in Fig. 3.7 (b) and 3.8 (b). The segmented

image using BHMRF-EM framework are shown in Fig. 3.7 (c) and 3.8 (c). Fig. 3.7

(d) and 3.8 (d) shows the segmented image of HMRF-EM framework. All the initial

and final model parameters, the a priori parameter and biasedvalue for both the images

are tabulated in Table 3.8 and Table 3.9 respectively. As theexecution time for both the

framework are not varying, from the misclassification errorit can be observed that the

proposed schemes outperfoms the former one using the biasedvalueρ = 0.5.

A simulated brain MR image of size(128× 128) degraded with3% and5% noise

are shown in the Fig. 3.6 (a) and (e). The ground truth image ispresented in Fig. 3.6 (d).

The segmented image using proposed BHMRF-EM framework are shown in Fig. 3.6 (b)

and (f). Fig. 3.6 (c) and (g) shows the segmented image of HMRF-EM framework. All

the initial and final model parameters are tabulated in Table3.7. The% of MCE proves

the efficiency of the proposed scheme.

At last, another two simulated brain MR image of size(241×181) and(256×256)

are shown in in Fig. 3.9 (a) and 3.10 (a). The corresponding ground truth images are

shown in Fig. 3.9 (b) and 3.10 (b). The segmented image using BHMRF-EM framework

are shown in Fig. 3.9 (c) and 3.10 (c). Fig. 3.9 (d) and 3.10 (d)shows the segmented

image of HMRF-EM framework. All the initial and final model parameters for both the

images are tabulated in Table 3.10 and Table 3.11 respectively. From the table it can be
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observed that the% of MCE is less in case of proposed BHMRF-EM framework rather

than HMRF-EM framework.

3.11.1 Bias field estimation:

In our simulation for bias field correction using modified BHMRF-EM algorithm, one

3-class synthetic image and 3 brain MR images are considered. The bias field is ge

Synthetic images:

The 3- class synthetic image of size(128 × 128) is shown in Fig. 3.11 (a). The gener-

ated circular bias field is shown in Fig. 3.11 (b). The multiplicative bias field corrupted

synthetic image is shown in Fig. 3.11 (c). After validation of the proposed modified

BHMRF-EM algorithm on Fig. 3.11 (c), the extracted bias fieldis obtained properly and

presented in Fig. 3.11 (d). Thea priori model parameter along with the initial and con-

verged sets of model parametersµ andσ are tabulated in Table 3.12. It is observed that

the proposed modified BHMRF-EM algorithm could extract the bias field.

Brain MR images:

After testing the developed algorithms with synthetic image successfully, 3 simulated

brain MR images are considered in our simulations. Fig. 3.12(a) shows the simulated

brain MR image of size(128 × 139). The generated circular bias field and the multi-

plicative bias field corrupted image are shown in Fig. 3.12 (b) and (c) respectively. The

extracted bias field is shown in Fig. 3.12 (d). The initial andfinal model parameters are

tabulated in Table 3.13.

The proposed algorithm is also validated with another 2 brain MR images of size

(128× 110) (128× 147) are shown in Fig. 3.13 (a), Fig. 3.14 (a). The generated circular

bias field are shown in Fig. 3.13 (b), Fig. 3.14 (b). Fig. 3.13 (c), Fig. 3.14 (c) are the

multiplicative bias field corrupted images. Fig. 3.13 (d) and Fig.3.14 (d) indicates the

extracted bias field of the brain MR image 3.13 (a), Fig. 3.14 (a) respectively. The initial

and converged model parametersµ andσ for the 2 images are tabulated in Table 3.14

and Table 3.15. In all brain MR images, it is observed that theproposed algorithm could
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successfully extracted the intensity in-homogeneity or bias field, hence could be able to

segment the bias corrected images properly.

3.12 Conclusion

This chapter addressed the segmentation of brain MR images in unsupervised framework.

Biased HMRF model is proposed to jointly estimate the model parameters and the im-

age labels. The energy function of thea priori MRF model is modified in the proposed

BHMRF model which could able to reduce the percentage of misclassification error and

time complexity. The proposed BHMRF-EM scheme yielded the segmentation of syn-

thetic as well as brain MR images with better performance than the result of HMRF-EM

scheme. The proposed BHMRF-EM algorithm does not assume to have the knowledge

of the number of classes. But, the MRF model parameterδ, is assumed to be known.

The proposed algorithm is also exploited to take care of the intensity inhomogeneity of

the brain MR images. In this regard, modified BHMRF-EM algorithm is proposed to

estimate the bias field. The bias field, image labels and modelparameters are estimated

jointly. Although the proposed algorithm could yield better performance than the HMRF-

EM scheme, but the algorithm is very much sensitive to the initial assumption of model

parameters. Another limitation of the algorithm is to select δ of the MRF model. Our

segmentation result may be further improved by developing ascheme which is insensitive

to initial model parameters.
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 3.1:Unsupervised image segmentation of synthetic 3-class image of size(128 ×
128): (a) Original image (b) and (e) noisy image with 20 db and 18 dbSNR respectively
(c) and (f) segmented image using HMRF-EM framework (d) and (g) segmented image
using Biased HMRF-EM framework
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Schemes and Parametersclass→ 1 2 3 % of
MCE

Execu.
time (sec.)

SNR= 20 dB µi 0.61 1.48 1.97
δ = 0.7 σi 0.22 0.33 0.44
BHMRF-EM µf 0.83 1.81 2.38 1.82 28
ρ = 0.26 σf 0.16 0.17 0.16
HMRF-EM µf 0.82 1.84 2.28 2.03 34

σf 0.16 0.21 0.27

SNR= 18 dB µi 0.42 1.13 1.80
δ = 0.65 σi 0.35 0.54 0.61
BHMRF-EM µf 0.82 1.78 2.32 2.45 28
ρ = 0.23 σf 0.20 0.21 0.23
HMRF-EM µf 0.82 1.81 2.38 2.86 28

σf 0.20 0.22 0.25

Table 3.1:Image model parameters of synthetic 3-class image of size(128 × 128) with
BHMRF-EM, HMRF-EM schemes of Fig. 3.1

Schemes and Parametersclass
→ 1

2 3 4 5 % of
MCE

Execu.
time
(sec.)

µi 0.02 0.9 2.04 3.10 3.80
δ = 0.62 σi 0.37 0.68 0.54 0.60 0.43
BHMRF-EM µf 0.01 0.97 2.0 3.01 3.96 4.47 22
ρ = 0.1 σf 0.02 0.09 0.09 0.10 0.07
HMRF-EM µf 0.04 0.99 1.98 2.99 3.98 5.02 23

σf 0.07 0.24 0.24 0.23 0.23

SNR= 18 dB µi 0.02 1.16 1.96 3.08 3.78
δ = 0.6 σi 0.37 0.45 0.60 0.59 51
BHMRF-EM µf 0.02 1.08 2.30 3.43 3.06 6.94 24
ρ = 0.3 σf 0.05 0.10 0.15 0.17 0.09
HMRF-EM µf 0.05 0.99 1.98 2.96 3.89 8.68 24

σf 0.09 0.20 0.25 0.29 0.30

Table 3.2:Image model parameters of synthetic 5-class image of size(128 × 128) with
BHMRF-EM, HMRF-EM schemes of Fig. 3.2
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Figure ρ 0.2 0.3 0.4 0.5 0.7 0.9

3.3 % of MCE 12.60 12.5 10.0 6.84 16.57 16.58

Figure ρ 0.1 0.3 0.5 0.7 0.8 0.9

3.4 % of MCE 20.17 18.23 18.07 19.38 19.45 22.24

Figure ρ 0.1 0.5 0.6 0.7 0.9

3.5 % of MCE 13.70 13.47 15.76 18.54 19.82

Table 3.3:% of misclassification error with different biased parameterρ using proposed
BHMRF-EM framework of Fig. 3.3, 3.4, 3.5

Schemes and Parametersclass→
1

2 3 4 % of
MCE

Execu.
time
(sec.)

δ = 0.1 µi 1.14 1.98 3.02 3.96
σi 0.55 0.57 0.67 0.23

BHMRF-EM µf 0.28 1.09 2.10 3.04
ρ = 0.5 σf 0.69 0.21 0.12 0.09 6.84 20
HMRF-EM µf 0.28 1.34 2.10 3.22

σf 0.30 0.20 0.14 0.09 11.35 18

Table 3.4: Image model parameters of brain MR image of size(128 × 128) segmented
image using BHMRF-EM framework with biased parameterρ, segmented image using
HMRF-EM framework schemes of Fig. 3.3

Schemes and Parametersclass→
1

2 3 4 % of
MCE

Execu.
time
(sec.)

δ = 0.2 µi 0.74 1.86 3.0 3.96
σi 0.66 0.57 0.55 0.73

BHMRF-EM µf 0.96 1.23 1.59 4.03
ρ = 0.5 σf 0.06 0.12 0.29 0.15 18.07 24
HMRF-EM µf 0.98 1.51 3.07 4.16

σf 0.05 0.18 0.28 0.05 19.97 22

Table 3.5: Image model parameters of brain MR image of size(128 × 128) segmented
image using BHMRF-EM framework with biased parameterρ, segmented image using
HMRF-EM framework schemes of Fig. 3.4
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Schemes and Parametersclass→
1

2 3 4 % of
MCE

Execu.
time
(sec.)

δ = 0.25 µi 0.12 1.16 1.84 2.86
σi 0.22 0.51 0.61 0.56

BHMRF-EM µf 0.14 1.48 1.86 2.48
ρ = 0.5 σf 0.08 0.10 0.19 0.14 13.47 23
HMRF-EM µf 0.14 1.46 1.82 2.46

σf 0.05 0.09 0.19 0.14 19.29 20

Table 3.6: Image model parameters of brain MR image of size(175 × 215) segmented
image using BHMRF-EM framework , segmented image using HMRF-EM framework
schemes of Fig. 3.5

Schemes and Parametersclass→
1

2 3 4 % of
MCE

Execu.
time
(sec.)

δ = 0.3 µi 0.02 0.9 1.8 2.96
σi 0.12 0.57 0.58 0.68

BHMRF-EM µf 0.28 1.08 0.03 1.86
ρ = 0.5 σf 0.04 0.09 0.01 0.21 5.19 24
HMRF-EM µf 0.10 1.03 1.48 2.62

σf 0.02 0.06 0.14 0.22 14.65 22

Table 3.7:Image model parameters of brain MR image of size(128× 128) with BHMRF
EM, HMRF-EM schemes of Fig. 3.6 respectively.

Schemes and Parametersclass→
1

2 3 4 % of
MCE

Execu.
time
(sec.)

δ = 0.3 µi 1.18 1.84 3.0 3.86
σi 0.50 0.57 0.52 0.67

BHMRF-EM µf 0.14 1.62 1.93 2.36
ρ = 0.5 σf 0.10 0.09 0.13 0.20 16.89 26
HMRF-EM µf 0.12 1.25 1.72 2.24

σf 0.16 0.08 0.09 0.05 18.06 26

Table 3.8: Image model parameters of brain MR image of size(128 × 128) segmented
image using BHMRF-EM framework , segmented image using HMRF-EM framework
schemes of Fig. 3.7
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Schemes and Parametersclass→
1

2 3 4 % of
MCE

Execu.
time
(sec.)

δ = 0.1 µi 1.34 2.14 3.16 4.08
σi 0.28 0.31 0.33 0.34

BHMRF-EM µf 1.36 1.83 2.74 3.52
ρ = 0.5 σf 0.60 0.12 0.19 0.25 15.32 28
HMRF-EM µf 1.35 1.79 2.64 3.44

σf 0.05 0.08 0.19 0.12 19.22 29

Table 3.9: Image model parameters of brain MR image of size(128 × 128) segmented
image using BHMRF-EM framework with different value ofρ, segmented image using
HMRF-EM framework schemes of Fig. 3.8

Schemes and Parametersclass→
1

2 3 4 % of
MCE

Execu.
time
(sec.)

δ = 0.08 µi 0.03 1.0 1.86 2.86
σi 0.32 0.65 0.52 0.48

BHMRF-EM µf 0.01 1.41 1.67 2.14
ρ = 0.5 σf 0.09 0.21 0.08 0.08 19.01 25
HMRF-EM µf 0.02 1.01 1.78 2.26

σf 0.10 0.22 0.09 0.08 21.09 26

Table 3.10:Image model parameters of brain MR image of size(241×181) with BHMRF-
EM, HMRF-EM schemes of Fig. 3.9 respectively.
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 3.2:Unsupervised image segmentation of synthetic 5-class image of size(128 ×
128): (a) Original image (b) and (e) noisy image with 20 db and 18 dbSNR respectively
(c) and (f) segmented image using HMRF-EM framework (d) and (g) segmented image
using Biased HMRF-EM framework
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.3:Unsupervised image segmentation of Brain MR image of size(128× 128) (a)
Original image with 3% of noise (b) Ground Truth (c) segmented image using HMRF-EM
framework (d)-(i) segmented image using Biased HMRF-EM framework withρ= 0.2, 0.3,
0.4, 0.5, 0.7, 0.9
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.4:Unsupervised image segmentation of Brain MR image of size(128× 128) (a)
Original image with 3% of noise (b) Ground Truth (c) segmented image using HMRF-EM
framework (d)-(i) Biased segmented image using HMRF-EM framework withρ= 0.1, 0.3,
0.5, 0.7, 0.8, 0.9
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(a) (b) (c)

(d) (e)

(f) (g) (h)

Figure 3.5:Unsupervised image segmentation of tumor from a Brain MR image of size
(175×215) (a) Real image with 3% of noise (b) Ground Truth (c) segmented image using
HMRF-EM framework (d)-(h) segmented image using Biased HMRF-EM framework with
ρ= 0.1, 0.5, 0.6, 0.7, 0.9
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(a) (b) (c)

(d)

(e) (f) (g)

Figure 3.6:Unsupervised image segmentation of Brain MR image of size(128× 128) (a)
and (e) Original image with 3% and 5% of noise (d) Ground Truth (b) and (f) segmented
image using Biased HMRF-EM framework (c) and (g) segmented image using HMRF-EM
framework
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(a) (b)

(c) (d)

Figure 3.7:Unsupervised image segmentation of Sarcoma diseased BrainMR image of
size(175× 215) (a) Real image with 3% of noise (b) Ground Truth (c) segmented image
using HMRF-EM and framework (d) segmented image using Biased HMRF-EM frame-
work
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(a) (b)

(c) (d)

Figure 3.8:Unsupervised image segmentation of Multiple sclerosis from a Brain MR im-
age of size(175× 215) (a) Real image with 3% of noise (b) Ground Truth (c) segmented
image using HMRF-EM framework (d) segmented image using Biased HMRF-EM frame-
work
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(a) (b)

(c) (d)

Figure 3.9:Unsupervised image segmentation of Brain MR image of size(241× 181) (a)
Original image with 3% of noise (b) Ground Truth (c) segmented image using Biased
HMRF-EM framework (d)segmented image using HMRF-EM framework

(a) (b)

(c) (d)

Figure 3.10:Unsupervised image segmentation of Brain MR image of size(255 × 255)
(a) Original image with 3% of noise (b) Ground Truth (c) segmented image using Biased
HMRF-EM framework (d)segmented image using HMRF-EM framework
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Schemes and Parametersclass→
1

2 3 4 % of
MCE

Execu.
time
(sec.)

δ = 0.01 µi 0.08 0.78 1.96 2.96
σi 0.30 0.65 0.55 0.76

BHMRF-EM µf 0.01 1.05 1.55 2.83
ρ = 0.5 σf 0.01 0.09 0.12 0.21 11.56 28
HMRF-EM µf 0.10 1.09 1.48 2.46

σf 0.02 0.06 0.14 0.13 16.70 22

Table 3.11:Image model parameters of brain MR image of size(128×128) with BHMRF
EM, HMRF-EM schemes of Fig. 3.10 respectively.

(a) (b)

(c) (d)

Figure 3.11:Synthetic 3-class image of size(128 × 128) with : (a) Original image (b)
slowly varying circular bias field (c) multiplicative bias field corrupted image (d) ex-
tracted bias field using modified BHMRF-EM algorithm
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Parameters class→ 1 2 3

µi 0.875 1.85 2.00
SNR= 25 dB σi 0.55 0.38 0.4
δ = 1.2 µf 0.99 1.99 2.06

σf 0.24 0.23 0.12

Table 3.12:Image model parameters of synthetic 3- class image of size(128×128) using
modified BHMRF-EM algorithm of fig 3.11

(a) (b)

(c) (d)

Figure 3.12:Brain MR image of size(128 × 139) with : (a) Original image (b) slowly
varying circular bias field (c) multiplicative bias field corrupted image (d) extracted bias
field using modified BHMRF-EM algorithm
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Parameters class→ 1 2 3 4

µi 0.013 1.43 2.83 2.00
SNR= 25 dB σi 0.32 0.60 0.66 0.50
δ = 1.2 µf 0.0 3.11 3.12 2.475

σf 0.0 0.198 0.197 0.054

Table 3.13:Image model parameters of brain MR image of size(128× 139) with SNR 25
dB using modified BHMRF-EM algorithm of fig 3.12

(a) (b)

(c) (d)

Figure 3.13:Brain MR image of size(128 × 110) with : (a) Original image (b) slowly
varying circular bias field (c) multiplicative bias field corrupted image (d) extracted bias
field using modified BHMRF-EM algorithm

Parameters class→ 1 2 3 4

µi 0.96 2.13 2.88 0.1
SNR= 25 dB σi 0.57 0.55 0.6 1.50
δ = 1.2 µf 1.2 2.06 3.07 3.65

σf 0.12 0.2 0.89 0.57

Table 3.14:Image model parameters of brain MR image of size(128× 110) with SNR 25
dB using modified BHMRF-EM algorithm of fig 3.13
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(a) (b)

(c) (d)

Figure 3.14:Brain MR image of size(128 × 147) with : (a) Original image (b) slowly
varying circular bias field (c) multiplicative bias field corrupted image (d) extracted bias
field using modified BHMRF-EM algorithm

Parameters class→ 1 2 3 4

µi 0.2 1.01 1.39 3.28
SNR= 25 dB σi 0.34 0.60 0.62 0.65
δ = 0.5 µf 0.35 0.36 1.92 4.19

σf 0.06 0.08 0.19 0.06

Table 3.15:Image model parameters of brain MR image of size(128× 147) with SNR 25
dB using modified BHMRF-EM algorithm of fig 3.14



Chapter 4

Unsupervised image segmentation using
HMRF-FCEM algorithm

4.1 Introduction

In this chapter, a new concept of unsupervised brain MR imagesegmentation method

is introduced by incorporating the HMRF model into fuzzy clustering procedure. As

explained in chapter 3, the proposed BHMRF-EM scheme for brain MR image segmen-

tation is sensitive to initial assumption of model parameters. This scheme leads to biased

parameter estimates due to the conduction of the M-step of the EM algorithm considering

the pixel labels are known quantities. In order to overcome this difficulty, an attempt has

been made to incorporate fuzzy clustering approach and HMRFmodel together in one

scheme. Fuzzy clustering methods are widely popular to conduct unsupervised image

segmentation effectively [43, 44]. These methods are not very sensitive to initial assump-

tion of cluster parameters, though obtain poor segmentation results with images corrupted

by noise and other artifacts. The reason is that these methods do not take into account the

spatial dependencies between the cluster data. To address the above issues, the assump-

tions of the HMRF model is incorporated effectively in to fuzzy clustering procedure. In

the proposed scheme, HMRF model is used to model the degradedobserved image and

is regarded as defining fuzzy partition of the observed spacemotivated by the work of

Celeuxet al. [45]. The proposed approach is formulated by employing a mean field like

approximation of thea priori MRF distribution. HMRF-FCEM algorithm is proposed

to conduct the fuzzy clustering type treatment of the HMRF model using the fuzzy ob-
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jective function. The use of the proposed algorithm eventually converge to the optimal

set of clusters and model parameters. Hence proper segmentation of brain MR image is

obtained.

4.2 Problem Statement

Let S is the set of sites.X denotes the random field associated with the labels of the

original image andx denotes the realization of that. Letη denotes the neighborhood

system on S.p(x) is the probability distribution and can be modeled as a MRF with

respect to the neighborhood system if

p(xi | xs−i) = p(xi | xηi
)

Let Y denote the observed image random field andy be the realization of it.Y

is modeled as Hidden Markov Random Field (HMRF). Depending on the conditional in

dependency, the joint probability can be defined as

p(y, x) = p(y | x)p(x) (4.1)

where,

p(y | x) =

s
∏

i=1

p(yi | xi)

HMRF model associated with the computation of the posteriorprobabilitiesp(xi|y) and

p(x|y), which are obtained by means of Bayesian sampling. This requires a large amount

of computations. In order to overcome this problem, mean field approximation of MRF

is considered motivated by Celeuxet al. [45]. Under this approximation, the joint prior

of the Markov random field can be expressed as

p(x) =

s
∏

i=1

p(xi | xηi
)

Let each state of the L-state HMRF model be a cluster in the observable spaceY .

Thea posterioriprobability of observationyi associated with theith site is

p(xi = l | yi) ≡ p(xi = l | yi, x̂ηi
) (4.2)
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Considering each state of the model as a cluster in the observable spaceY , it holds

that

0 ≤ p(xi = l | yi) ≤ 1,

L
∑

l=1

p(xi = i | yi) = 1

wherel = 1, ...., L andi = 1, ...., s. On this basis of observation, the considered HMRF

model can be regarded as a fuzzy L-partition of the observation spaceY . The fuzzy

partition can be denoted as

R = {rli} (4.3)

whererli(l = 1, ...., L, i = 1, ...., s) represents the degree of observable vectoryi in the

lth state of the HMRF model.rli is the fuzzy membership function having the properties:

0 ≤ rli ≤ 1,

L
∑

l=1

rli = 1, 0 <

s
∑

i=1

rli < s (4.4)

In this regard, HMRF model is treated as fuzzy clustering type under mean field like

approximation of the MRF probability.

4.3 HMRF oriented fuzzy objective function

Motivated by the work of Ichihashiet al., the fuzzy objective function is obtained by

means of a regularization technique, where an FCM variant isregularized by KL infor-

mation [28]. This new FCM variant is introduced into the fuzzy objective function. The

modified fuzzy objective function becomes

J =
L
∑

l=1

s
∑

i=1

rli dli + λ
L
∑

l=1

s
∑

i=1

rli log

(

rli
πl

)

(4.5)

where

rli : fuzzy membership function

dli : dissimilarity function

πl: prior probability oflth cluster

λ : degree of fuzziness

l = 1, ...., L : cluster

i = 1, ...., s :site
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In our proposed formulation, HMRF oriented modification of the fuzzy objective

function is done by defining the dissimilarity functiondli as the negative log-likelihood

of thelth model state with respect toith site observation of the observed image.

dli(θl) ≡ −log p(yi | xi = l; θl) (4.6)

πl can be considered asπli which represents the pointwise prior probabilities of the HMRF

model states. It is obtained on the basis of the mean-field approximation of the MRF as

follows.

πli = P (xi = l | x̂ηi
) =

exp
(

−∑c∋i Vc (xli)
)

∑L
h=1 exp

(

−
∑

c∋i Vc (xhi)
) (4.7)

Eventually, the HMRF model is introduced into the fuzzy clustering procedure by the

following modified fuzzy objective function.

Jλ(ψ) = −
L
∑

l=1

s
∑

i=1

rli logP (yi | xi = l; θl) + λ
L
∑

l=1

s
∑

i=1

rli log

(

rli
πli

)

(4.8)

whereψ = {R, θ} and

p(yi | xi = l, θl) =
1

√

2πσ2
l

exp

(

−(yi − µl)2

2σ2
l

)

(4.9)

Fuzzy clustering type treatment of the HMRF model is conducted by using this modified

fuzzy objective function as given by (4.8).

4.4 Image label estimation

The image label estimation is formulated by defuzzificationof the fuzzy membership

functionrli. The following optimality criterion for each site is adopted,

x̂i = argmaxLl=1rli (4.10)

4.5 Estimation of fuzzy membership function

The fuzzy membership function can be attained by minimizingthe fuzzy objective func-

tion Jλ(ψ) overrli under the constraint
∑L

l=1 rli = 1, ∀i = 1, ..., s
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Introducing a Lagrange multiplierGi for each data point to enforce the constraint,

the minimization of fuzzy objective function becomes

∂

∂rli

[

Jλ −
s
∑

i=1

Gi

(

L
∑

h=1

rli − 1

)]

= 0 (4.11)

solving the (4.8), the fuzzy membership function becomes

rli =

πli exp

(

−1

λ
dli

)

∑L
h=1 πli exp

(

−1

λ
dli

) (4.12)

where, the dissimilarity function can be defined as

d
(k)
li =

w

2
log(2π) +

1

2
log|σ(k)

l |+
1

2

(

yi − µ(k)
l

)T

σ
(k)−1

l

(

yi − µ(k)
l

)

(4.13)

4.6 Estimation of HMRF model parameters

The fuzzy objective functionJλ(ψ) described in (4.8) is minimized to obtain an estimate

of the HMRF model parameters given a data set. The minimization of Jλ(ψ) is done

iteratively using the proposed HMRF-fuzzy clustering EM (HMRF-FCEM) algorithm.

Putting (4.9) in (4.8), the fuzzy objective function in terms of model parametersµ andσ

becomes

Jλ(ψ) = −
L
∑

l=1

s
∑

i=1

rli

[

−1

2
(yi − µl)Tσ−1

l (yi − µl)−
1

2
log | σl | −

w

2
log(2π)

]

(4.14)

+λ
L
∑

l=1

s
∑

i=1

rlilog

(

rli
πli

)

minimizing theJλ function with respect toµl and ignoring the terms not containingµl, is

equal to

(yi − µl)Tσ−1
l (yj − µl) = yTi σ

−1
l yiµ

T
l σ

−1
l µl − 2yTi σ

−1
l µl

Since,
∂µTl σ

−1
l µl

∂µl
= 2σ−1

l µl

∂yTi σ
−1
l µl

∂µl
= 2σ−1

l yi (4.15)
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the solution of
∂Jλ(ψ)

∂µi
= 0

Hence, the model parameterµl becomes,

µ
(k+1)
l =

∑s
i=1 r

(k)
li yi

∑s
i=1 r

(k)
li

Similarly, minimizing (4.15) with respect toσl,

∂log | σl |
∂σ−1

l

= −σl

and
∂(yi − µl)Tσ−1

i (yi − µl)
∂σ−1

i

= (yi − µl)(yi − µl)T (4.16)

As the solution of
∂Jλ(ψ)

∂σ−1
i

= 0, the model parameterσl becomes,

σ
(k+1)
l =

∑s
i=1 r

(k)
li

(

yi − µ(k)
l

)(

yi − µ(k)
l

)T

∑s
i=1 r

(k)
li

(4.17)

4.7 Joint estimation of image labels and model parame-
ters using fuzzy clustering type EM framework

The image label estimatesx0 are obtained by defuzzification of the fuzzy membership

function. The prior probabilities of the MRF is computed on the basis of mean field like

approximation. The image labels as well as the fuzzy membership functions are estimated

recursively until the model parameters converge to the optimal ones. The optimal values

of the parameters are used to obtain the desired segmentation result. For joint estimation

of the image labels as well as model parameters the HMRF-FCEMalgorithm is proposed.

The salient steps of the algorithm is as follows.

4.7.1 HMRF-FCEM Algorithm

1. Initialize the number of class labels to random values andselect an arbitrary param-

eter set.

2. Estimate the image class labelsx(k) by maximizing the fuzzy membership function

x̂
(k)
i = argmaxLl=1r

(k)
li (4.18)
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3. Compute the fuzzy membership functionsr(k+1)
li

r
(k+1)
li =

π
(k)
li exp

(

− 1
λ
d

(k)
li

)

∑L
h=1 π

(k)
li exp

(

− 1
λ
d

(k)
li

) (4.19)

4. Update the parametersµ(k+1)
l andσ(k+1)

l

µ
(k+1)
l =

∑s
i=1 r

(k)
li yi

∑s
i=1 r

(k)
li

σ
(k+1)
l =

∑s
i=1 r

(k)
li

(

yi − µ(k)
l

)(

yi − µ(k)
l

)T

∑s
i=1 r

(k)
li

(4.20)

5. Step 2-4 are repeated until a stopping criterion is met. The stopping criterion for

our algorithm is:

| Jλ(ψ(k+1))− Jλ(ψ(k)) | ≤ ε (4.21)

whereε is the convergence threshold.

4.8 HMRF-EM-SA algorithm

The performance of the proposed HMRF-FCEM algorithm is compared with that of exist-

ing HMRF-EM algorithm. As presented in Chapter 3, in E-step of HMRF-EM algorithm,

Iterated Conditional Mode (ICM) algorithm is used. To avoidthe difficulty of initial

model parameter assumption from histograms of the degradedimages, globally conver-

gent Simulated Annealing (SA) algorithm is used to estimatethe image labels in E- step.

4.8.1 Simulated Annealing Algorithm

Bayesian methods coupled with Markovian modelization usually result in a non-convex

energy function. To find an estimate, one has to optimize thisfunction. Unfortunately,

this is a very hard computational problem known as combinatorial optimization. For

example, considering an image 16 x 16 with only two possible labels at each pixel, we

get a configuration space of2256 elements But it is impossible to find the optimum by

computing the possible values of the cost function. Here we can not use classical gradient

descent methods because they stuck in a local minimum. It wasrealized in the early 80’s
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by Kirkpatrick et al [15] that there is an analogy between minimizing the cost function

of a combinatorial optimization problem and finding energy minima of thermodynamical

systems by slowly cooling a solid until equilibrium is reached. They have substituted the

energy function of the solid by the cost function and executed the Metropolis algorithm at

a sequence of slowly decreasing temperature. The so defined combinatorial optimization

algorithm was named Simulated Annealing (SA).

SA algorithm is based on the analogy between the simulation of the annealing of

solids and the solving of combinatorial optimization problems. It is inspired by an anal-

ogy between the physical annealing of solids (crystals) andcombinatorial optimization

problems. In the physical annealing process a solid if first melted and then cooled very

slowly, spending a long time at low temperatures, to obtain aperfect lattice structure corre-

sponding to a minimum energy state. SA transfers this process to local search algorithms

for combinatorial optimization problem. It does so by associating the set of solutions of

the problem attacked with the states of the physical system,the objective function with

the physical energy of the solid, and the optimal solution with the minimum energy states.

Metropolis in the earliest days of scientific computing, introduced a simple algo-

rithm that can be used to provide an efficient simulation of a collection of atoms in equi-

librium at a given temperature. In each step of this algorithm, an atom is given a small

random displacement and the resulting change∆U , in the energy of the system is com-

puted. If∆U ≤ 0, the displacement is accepted, and the configuration with the displaced

atom is used as the starting point of the next step. The case∆U > 0 is treated proba-

bilistically: the probability that the configuration is accepted isP (∆U) = exp(− ∆U
kBT

).

Random numbers uniformly distributed in the interval(0, 1) are a convenient means of

implementing the random part of the algorithm. One such number is selected and com-

pared withP (∆U). If it is less thanP (∆U), the new configuration is retained , if not ,

the original configuration is used to start the next step. By repeating the basic step many

times, one simulates the thermal motion of atoms in thermal contact with a heat bath at

temperatureT . The choice ofP (∆U) has the consequence that the system evolves into a

Boltzman distribution [15].
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Using the cost function in place of the energy and defining configuration by a set

of parameters, it is straightforward with the Metropolis procedure to generate a popu-

lation of configurations of a given optimization problem at some effective temperature.

This temperature is simply a control parameter in the same units as the cost function.

The simulated annealing process consists of firstmeltingthe system being optimized at a

high effective temperature, then lowering the temperatureat slow stages until the system

freezes and no further changes occur. At each temperature, the simulation must proceed

long enough for the system to reach a steady state. The sequence of temperature and the

number of rearrangements of the parameters attempted to reach equilibrium at each tem-

perature is known as anannealing schedule[15].

The SA algorithm used to obtain the MAP estimate is describedbelow.

1. Initialize the temperatureTin.

2. Compute the energyU of the configuration.

3. Perturb the system slightly with suitable Gaussian disturbance.

4. Compute the new energyU
′

of the perturbed system and evaluate the change in

energy∆U = U
′ − U .

5. If (∆U < 0), accept the perturbed system as the new configuration.

Else accept the perturbed system as the new configuration with a probability

exp (−∆U)/kBT .

6. Decrease the temperature according to the cooling schedule.

7. Repeat steps 2-7 till the stopping criterion is met. The stopping criterion used here

is the energy.

The steps of the HMRF-EM-SA algorithm are as follows.

1. Perform the initial parameter estimation and segmentation.
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2. Calculate the likelihood distribution

p(t) (yi|xi) = g(t) (yi; θ (xi))

3. Estimate the class labels by MRF-MAP estimation

x(t) = argmax
x∈X

P (y | x, θt + P (x))

SA algorithm is used to estimate the class labels.

4. Calculate the posterior distribution

p(t) (l | yi) =
g(t) (yi; θl) p

(t) (l | xNi
)

p(yi)

5. Update parameters by

µ
(t+1)
l =

∑

i∈s p
(t) (l | yi) yi

∑

i∈s p
(t) (l | yi)

σ
(t+1)2

l =

∑

i∈s p
(t) (l | yi) (yi − µl)2

∑

i∈s p
(t) (l | yi)

6. t← t+ 1 and repeat from 2 until enough iterations have been performed.

4.9 Results and Discussions

The proposed HMRF-FCEM algorithm is validated with one 5-class synthetic im-

age. Besides, 4 simulated and 3 real diseased brain MR imagesare considered. The

degraded images are obtained by adding white Gaussian noiseof varying strength to the

original image. Brain MR images are obtained from the sources as described in chapter

3.

4.9.1 Synthetic Images:

The 5-class synthetic image considered for the simulation is shown in Fig. 4.1 (a). The

corresponding noisy version of SNR 20 dB is shown in Fig. 4.1 (b). The initial model

parametersµ andσ taken for each class are selected from the histogram of the noisy

image and another set of parameter is on arbitrary basis. Theparameterλ, which is the

degree of fuzziness is selected on adhoc basis. The proposedHMRF-FCEM algorithm is

used to obtain the segmented image of respective noisy image. The results obtained by
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the proposed algorithm is shown in Fig. 4.1 (c) with parameters taken from histogram

of the noisy image and Fig. 4.1 (d) with arbitrary set of parameters. As the number

of clusters or classes are unknown, the algorithm starts from higher number of initial

classes and eventually the algorithm converged to 5 classes. The performance of the

proposed HMRF-FCEM algorithm is compared with that of HMRF-EM-SA algorithm.

Fig. 4.1 (e) shows the segmented image using HMRF-EM-SA algorithm. The initial and

converged parameters of the two schemes are tabulated in Table 4.1. It is observed that the

segmented image obtained using HMRF-EM-SA algorithm has a number of misclassified

pixels denoted by% of MCE to be 4.28. However, the segmented image obtained using

proposed scheme with arbitrary model parameters has less number of misclassified pixels

with % of MCE of 2.04 only. It is clear from the Table that even thoughthe algorithm

starts from two different initial conditions, the parameters converge to values that are vary

close to each other. For example,µ of the third class starts from two different values and

convergences to 2.51 and 2.27 which are very close to each other. Similar observations

are also made for other parameters of other classes. Comparing the performance based

on convergence time in sec., it is found that proposed schemeconverges much faster than

the HMRF-EM-SA scheme. Visually, the results obtained by proposed scheme are also

found satisfactory.

4.9.2 Brain MR Images:

After successful implementation on the synthetic 5-class image, the proposed scheme is

applied to 3 real and 4 simulated brain MR images. A simulatedbrain MR image of

size(128 × 128) degraded with3% noise is shown in Fig. 4.2 (a). The corresponding

ground truth image is shown in Fig. 4.2 (b). After validationof the proposed algorithm

with 2 different set of initial model parametersµ andσ, the segmented images are shown

in Fig. 4.2 (c) and (d). The algorithm run with 6 number of initial class labels, but

finally it converged to 4 number of class labels in both sets ofinitial parameters. The

degree of fuzzinessλ is taken as 0.5 for both the cases. Fig. 4.2 (e) shows the segmented

image using HMRF-EM-SA algorithm. Thea priori model parameterδ is considered

on adhoc basis and for this image the value is taken as 0.1. Theinitial and final model
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parameters along with the performance results consisting the% of misclassification error

and convergence time are tabulated in Table. 4.2. From the table it is observed that the%

of MCE of results obtained by proposed algorithm is 4.18 and 4.94 for Fig. 4.2 (c) and (d)

respectively. The algorithm converges in 12 sec. and 15 sec.respectively for the same. In

case of HMRF-EM-SA, the% of MCE is 5.09 with convergence time of 56 sec.

Similarly, another simulated MR image of size(128×128) degraded with3% noise

is shown in Fig. 4.3 (a). The corresponding ground truth image is shown in Fig. 4.3

(b). The segmented images using the proposed HMRF-FCEM algorithm with both sets

of initial model parameters ofµ andσ, are shown in Fig. 4.3 (c) and (d). The degree of

fuzzinessλ is considered as 0.5 for both the cases. The segmented image using HMRF-

EM-SA algorithm is presented in Fig. 4.3 (e). Thea priori model parameterδ is taken

as 0.3. The initial and final model parameters along with the% of misclassification error

and convergence time are tabulated in Table. 4.3. From the table it can be seen that the

% of misclassification error of proposed algorithm is 2.92 with 20 secs. of convergence

timing where as in case of HMRF-EM-SA it is 12.30 with 35 secs.of convergence time.

It is observed from the table that the parameters converged to the values which are close

to each other with two different set of initial parameters. This overcomes the difficulty

of choice of initial model parameters in the proposed BHMRF-EM scheme presented in

chapter 3.

The algorithm is validated with a sarcoma diseased real brain MR image of size

(175× 215) degraded with3% noise is shown in Fig. 4.4 (a). The corresponding ground

truth image is shown in Fig. 4.4 (b). Fig. 4.4 (c) and (d) are the segmented images of the

proposed HMRF-FCEM algorithm with two defferent set of initial model parameters ofµ

andσ. The degree of fuzzinessλ is considered as 0.3 for both the cases. The segmented

image using HMRF-EM-SA algorithm is presented in Fig. 4.3 (e). Thea priori model

parameterδ is taken as 0.3. The less% of MCE is the accuracy in the segmentation,

which can be observed from the table 4.4. The% of MCE of proposed algorithm is 3.80

with 28 sec. of convergence time but in case of HMRF-EM-SA it is 15.09 with 52 sec. of

convergence time. Visually it is observed that the diseasedarea is clearly defined in the

result obtained by the proposed algorithm rather than that of HMRF-EM-SA algorithm.
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Another real brain MR image of size(175 × 215) degraded with3% noise with

multiple sclerosis is shown in Fig. 4.5 (a). The corresponding ground truth image is

shown in Fig. 4.5 (b). The number of sclerosis present in the real image is successfully

segmented to a different class label which can be visualisedfrom the Fig. 4.5, where Fig.

4.5 (c) and (d) are the segmented images of the proposed HMRF-FCEM algorithm. The

degree of fuzzinessλ is considered as 1.0 for both the cases. The segmented image using

HMRF-EM-SA algorithm is presented in Fig. 4.5 (e). Thea priori model parameterδ is

taken as 0.01. The% of MCE of proposed algorithm is 3.23 with 18 secs. of convergence

timing. The misclassified pixels in case of HMRF-EM-SA is14.14% and the convergence

time is 36 secs.

Similarly, 2 more diseased brain MR images of size(175× 215) and(128 × 128)

degraded with3% noise are shown in Fig. 4.6 (a) and 4.7 (a). The correspondingground

truth images are shown in Fig. 4.6 (b) and 4.7 (b). The segmented images using pro-

posed HMRF-FCEM algorithm are shown in Fig. 4.6 (c) and 4.7 (c) and HMRF-EM-SA

algorithm are shown in Fig. 4.6 (d) and 4.7 (d). The initial and final model parameters,

the value of degree of fuzziness, thea priori MRF model parameter along with the% of

MCE and convergence time are tabulated in Table 4.6 and Table4.7 respectively. From

Fig. 4.6 (c) the tumor along with the swelling area is segmented successfully assignig it

as different class labels. In the same way, from Fig. 4.7 (c),the disease in the ventricle is

viewed clearly but in Fig. 4.7 (d) it is not cleared.

The last brain MR image considered is shown in Fig. 4.8 (a). Fig. 4.8 (b) represents

the ground truth image. The segmented image using HMRF-FCEMalgorithm is shown

in Fig.4.8 (c). From this it can be seen that the lateral and oxipetal horn of left and right

ventricle are clearly segmented. In case of HMRF-EM-SA algorithm the above is not

visible and the algorithm converges to less number of class labels. The segmented image

using HMRF-EM-SA algorithm is shown in Fig.4.8 (d). The model parameters and other

performance results are tabulated in Table 4.8.

All segmentation results of brain MR images using our proposed schemes are con-

sulted with Dr. Hemalata Satapathy, sonologist and radiologist of CWS Hospital, Rourkela

and found to be satisfactory.
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4.10 Conclusion

In this chapter fuzzy clustering approach is effectively incorporated in HMRF model to

hybridized the benefits of both for brain MR image segmentation. HMRF-FCEM algo-

rithm is proposed to formulate the above problem where the fuzzy objective function is

optimized by employing a mean-field-like approximation of the a priori MRF distribu-

tion. The proposed algorithm could estimate the image labels and model parameters re-

cursively. The algorithm does not assume to have the knowledge of the number of classes.

It could yield satisfactory results even with arbitrary initial condition. The phenomena is

consistently observed in simulated as well as real brain MR images. The proposed algo-

rithms performance is compared with that of HMRF-EM scheme with global convergent

Simulated Annealing algorithm. It is observed that the results obtained with the proposed

algorithm outperformed the other one. The potentiality of the algorithm is that it does not

need to havea priori proper set of model parameters. Our results may be further improved

by estimating the bias field to take care of the intensity inhomogeneity of the brain MR

images.
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(a) (b)

(c) (d) (e)

Figure 4.1:Unsupervised image segmentation of synthetic 5-class image of size(128 ×
128): (a) Original image (b) noisy image with 20 db SNR (c) and (d) segmented image
using HMRF-FCEM framework with histogram based initial parameters and arbitrary
initial parameters (e) segmented image using HMRF-EM-SA framework
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Schemes and Parametersclass
→ 1

2 3 4 5 % of
MCE

Convrge.
time
(sec.)

Histogram based µi 0.0 0.9 2.04 3.10 3.80
initial parameters σi 0.37 0.68 0.54 0.60 0.43
HMRF-FCEM µf 0.25 1.54 2.51 3.35 4.07
λ = 1.0 σf 0.16 0.48 0.29 0.09 0.07 1.37 15
HMRF-EM-SA µf 0.07 0.99 2.01 3.14 4.01
δ = 0.62 σf 0.10 0.26 0.28 0.39 0.25 4.28 48

Arbitrary µi 1.16 1.96 3.08 3.78 2.51
initial parameters σi 0.37 0.46 0.62 0.52 0.57
HMRF-FCEM µf 0.19 1.02 2.27 3.37 4.31
λ = 0.5 σf 0.67 0.84 0.59 0.08 0.12 2.04 18

Table 4.1:Image model parameters of synthetic 5-class image of size(128× 128) using
HMRF-FCEM framework with histogram based initial parameters and arbitrary initial
parameters, HMRF-EM-SA framework of Fig. 4.1

(a) (b)

(c) (d) (e)

Figure 4.2: Unsupervised image segmentation of Brain MR image of size(128 × 128)
(a) Original image with 3% of noise (b) Ground Truth (c),(d) segmented image using
HMRF-FCEM framework with histogram based initial parameters and arbitrary initial
parameters, (e) segmented image using HMRF-EM-SA framework
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Schemes and Parameters class→
1

2 3 4 % of
MCE

Conver.
time
(sec.)

Histogram based µi 1.14 1.98 3.02 3.96
initial parameters σi 0.55 0.57 0.67 0.23
HMRF-FCEM µf 0.80 3.53 2.61 2.43
λ = 0.5 σf 0.48 3.32 1.52 0.88 4.18 12
HMRF-EM-SA µf 0.09 1.26 1.89 2.99
δ = 0.1 σf 0.03 0.19 0.10 0.09 5.09 56

Arbitrary µi 0.09 1.80 2.96 4.08
initial parameters σi 0.12 0.68 0.58 0.40
HMRF-FCEM µf 2.35 2.93 2.71 4.04
λ = 0.5 σf 0.89 2.84 1.89 0.08 4.94 15

Table 4.2:Image model parameters of brain MR image of size(128× 128) using HMRF-
FCEM framework with histogram based initial parameters andarbitrary initial parame-
ters, HMRF-EM-SA framework of Fig. 4.2

(a) (b)

(c) (d) (e)

Figure 4.3: Unsupervised image segmentation of Brain MR image of size(128 × 128)
(a) simulated image with 3% of noise (b) Ground Truth (c)-(d) segmented image using
HMRF-FCEM framework with histogram based initial parameters and arbitrary initial
parameters (e) segmented image using HMRF-EM-SA framework
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Schemes and Parameters class→
1

2 3 4 % of
MCE

Conver.
time
(sec.)

Histogram based µi 0.0 0.9 1.8 2.96
initial parameters σi 0.12 0.57 0.68 0.58
HMRF-FCEM µf 0.62 2.67 2.90 3.03
λ = 0.5 σf 0.50 2.94 2.21 1.45 2.92 20
HMRF-EM-SA µf 0.07 1.05 1.56 2.73
δ = 0.3 σf 0.01 0.07 0.16 0.22 12.30 35

Arbitrary µi 1.0 1.86 2.86 4.08
initial parameters σi 0.65 0.52 0.48 0.10
HMRF-FCEM µf 1.76 1.73 2.58 3.95
λ = 0.5 σf 0.35 1.35 2.19 1.38 3.45 24

Table 4.3:Image model parameters of brain MR image of size(128× 128) using HMRF-
FCEM framework with histogram based initial parameters andarbitrary initial parame-
ters, HMRF-EM-SA framework of Fig. 4.3

(a) (b)

(c) (d) (e)

Figure 4.4:Unsupervised image segmentation of Sarcoma diseased BrainMR image of
size(175 × 215) (a) Real image with 3% of noise (b) Ground Truth (c)-(d) segmented
image using HMRF-FCEM framework with histogram based initial parameters and arbi-
trary initial parameters (e) segmented image using HMRF-EM-SA framework
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Schemes and Parameters class→
1

2 3 4 % of
MCE

Conver.
time
(sec.)

Histogram based µi 0.50 0.57 0.52 0.67
initial parameters σi 1.18 1.84 3.0 3.86
HMRF-FCEM µf 2.74 2.63 2.88 3.07
λ = 0.3 σf 1.91 1.05 1.27 2.23 3.80 28
HMRF-EM-SA µf 1.60 1.95 2.39 3.38
δ = 0.3 σf 0.08 0.10 0.12 0.23 15.09 52

Arbitrary µi 0.14 1.02 1.98 2.09
initial parameters σi 0.38 0.54 0.58 0.69
HMRF-FCEM µf 0.78 2.90 2.86 3.09
λ = 0.3 σf 0.23 1.29 0.83 1.91 4.04 25

Table 4.4:Image model parameters of Real brain MR image of size(175 × 215) using
HMRF-FCEM framework with histogram based initial parameters and arbitrary initial
parameters, HMRF-EM-SA framework of Fig. 4.4

Schemes and Parameters class→
1

2 3 4 % of
MCE

Conver.
time
(sec.)

Histogram based µi 1.34 2.14 3.16 4.08
initial parameters σi 0.28 0.31 0.33 0.34
HMRF-FCEM µf 1.11 2.0 2.34 4.13
λ = 1.0 σf 0.69 3.08 2.46 0.36 3.23 18
HMRF-EM-SA µf 1.35 1.81 2.62 3.42
δ = 0.01 σf 0.05 0.11 0.20 0.12 14.14 36

Arbitrary µi 0.24 1.08 1.72 3.04
initial parameters σi 0.29 0.60 0.54 0.67
HMRF-FCEM µf 2.18 2.70 3.22 2.64
λ = 1.0 σf 0.39 1.32 1.68 3.28 5.39 25

Table 4.5:Image model parameters of brain MR image of size(175× 215) using HMRF-
FCEM framework, HMRF-EM-SA framework of Fig. 4.5
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(a) (b)

(c) (d) (e)

Figure 4.5:Unsupervised image segmentation of Multiple sclerosis from a Brain MR im-
age of size(175×215) (a) Real image with 3% of noise (b) Ground Truth (c) and (d) seg-
mented image using HMRF-FCEM framework with histogram based initial parameters
and arbitrary initial parameters (e) segmented image usingHMRF-EM-SA framework

Schemes and Parameters class→
1

2 3 4 % of
MCE

Conver.
time
(sec.)

Histogram based µi 0.12 1.16 1.84 2.86
initial parameters σi 0.22 0.51 0.61 0.56
HMRF-FCEM µf 0.14 2.01 2.93 3.15
λ = 1.0 σf 0.02 0.32 1.96 0.74 3.50 20
HMRF-EM-SA µf 0.16 1.52 1.82 2.36
δ = 0.25 σf 0.01 0.09 0.07 0.19 18.09 42

Table 4.6:Image model parameters of Real brain MR image of size(175 × 215) using
HMRF-FCEM framework, HMRF-EM-SA framework of Fig. 4.6
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(a) (b)

(c) (d)

Figure 4.6:Unsupervised image segmentation of tumor from a Brain MR image of size
(175×215) (a) Real image with 3% of noise (b) Ground Truth (c) segmented image using
HMRF-FCEM framework (d) segmented image using HMRF-EM-SA framework

Schemes and Parameters class→
1

2 3 4 % of
MCE

Conver.
time
(sec.)

Histogram based µi 0.74 1.86 3.0 3.96
initial parameters σi 0.66 0.56 0.57 0.73
HMRF-FCEM µf 0.64 2.29 2.92 3.17
λ = 2.0 σf 0.52 1.71 1.87 2.50 2.41 28
HMRF-EM-SA µf 0.04 0.96 1.59 3.04
δ = 0.2 σf 0.09 0.05 0.18 0.31 10.97 40

Table 4.7:Image model parameters of diseased brain MR image of size(128×128) using
HMRF-FCEM framework, HMRF-EM-SA framework of Fig. 4.7
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(a) (b)

(c) (d)

Figure 4.7:Unsupervised image segmentation of diseased Brain MR imageof size(128×
128) (a) Original image with 3% of noise (b) Ground Truth (c) segmented image using
HMRF-FCEM framework (d) segmented image using HMRF-EM-SA framework

Schemes and Parameters class→
1

2 3 4 % of
MCE

Conver.
time
(sec.)

Histogram based µi 0.01 1.10 1.73 3.0
initial parameters σi 0.25 0.69 0.41 0.34
HMRF-FCEM µf 1.24 2.15 3.29 3.72
λ = 1.0 σf 0.27 2.88 1.03 1.87 2.67 40
HMRF-EM-SA µf 1.34 1.92 2.97 2.57
δ = 0.3 σf 0.17 0.08 0.07 0.02 14.40 84

Table 4.8:Image model parameters of brain MR image of size(128× 128) with HMRF-
FCEM, HMRF-EM-SA framework of Fig. 4.8
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(a) (b)

(c) (d)

Figure 4.8:Unsupervised image segmentation of Brain MR image of size(128× 128) (a)
Original image with 3% of noise (b) Ground Truth (c) segmented image using HMRF-
FCEM framework (d)segmented image using HMRF-EM-SA framework



Chapter 5

Conclusions

The objective of this dissertation is to devise methods and strategies for segmentation of

brain MR images in unsupervised framework. This work attempt to develop unsupervised

brain MR image segmentation schemes that would facilitate the clinical experts for an

automatic segmentation and accurate diagnosis.

The initial portion of this thesis provides a background on HMRF, MRF models

and fuzzy clustering methods for image segmentation. Theseare covered in Chapter 2.

Standard fuzzy c-means algorithm is also included here.

The initial part of the research work is dedicated towards devising unsupervised

brain MR image segmentation scheme using HMRF model which isincluded in Chap-

ter 3. In this framework, the problem is cast as a pixel labeling problem, and MRF and

HMRF models are employed to model thea priori unknown class labels and the observed

degraded image respectively. HMRF model parameters(µ, σ) for each tissue class are

assumed to be unknown. The MRF model parametersδ is assumed on an adhoc basis.

HMRF model is modified as BHMRF model, where the energy function of thea priori

model is modified by incorporating the biased neighborhood structure. This proposed

modified BHMRF model is formulated in EM framework to jointlyestimate the model

parameters as well as image labels. Image label estimates are obtained by ICM algorithm

in the E- step of the EM algorithm. It is observed that the proposed BHMRF-EM algo-

rithm outperformed HMRF-EM algorithm. The algorithm yielded satisfactory results in

both synthetic as well as brain MR images. Both algorithms are compared with respect

to two performance measure, i.e. percentage of misclassification error and execution time
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in sec. It is observed that due to incorporation of biased neighborhood interaction in the

energy function of thea priori MRF model, natural structures of brain could be taken

care of in the model. This could able to reduce the misclassification error in cleaner data

which was the bottleneck in HMRF-EM scheme. The percentage of misclassification er-

ror is also found to be less in case of noisier data in our proposed scheme with comparable

execution time.

This proposed BHMRF-EM algorithm is modified and exploited to take care of the

intensity in-homogeneity are the bias field in the brain MR images. The proposed mod-

ified BHMRF-EM algorithm could jointly estimate the image labels, model parameters

as well as bias field. This is indeed a step towards making an automated brain MR im-

age segmentation scheme. Our algorithm starts with assuming more number of classes

than that of actual ones and converges to the required numberof classes. Since the actual

number of classes are unknown, the selected number of initial classes are also on trial and

error basis. The initial model parameters are assumed on histogram based strategy. It will

be worth pursuing in future to develop strategies to overcome these problems.

Segmentation of brain MR images based on a new notion where HMRF model is

incorporated in to fuzzy clustering scheme is introduced inchapter 4. In the proposed

scheme, benefits of both HMRF model and fuzzy clustering procedure are combined to-

gether. Motivated by Celeuxet al., in our proposed approach, MRF model is used to

model thea priori unknown class labels by employing a mean-field-like approximation.

This assumption of MRF yields good estimates of the Markov posteriors with less com-

putational costs. HMRF oriented fuzzy objective function is formulated by considering

HMRF model to be defining as a fuzzy HMRF model to be defining as afuzzy partitions

of the observation space. The dissimilarity function become the negative log-likelyhood

of the model state in the modified fuzzy objective function. This modified function is

minimized by the proposed HMRF-fuzzy clustering EM (HMRF-FCEM) algorithm. The

problem of selection of initial model parameters is overcome by our proposed algorithm.

The image labels and fuzzy membership function is optimized. This proposed algorithm

is an alternative to EM- type treatments of the HMRF model, based on the mean-field-

like approximation of the MRF prior. The algorithm performed satisfactory when starting
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from arbitrary initial model parameters. this algorithm does not need to have proper

choice of initial model parameters. This is indeed a step towards making a complete au-

tomated brain MR image segmentation scheme. Since the actual number of classes are

unknown, the selected number of initial classes are on trialand error basis. Large number

of initial classes means estimation of large number of parameters which in turn increases

computational burden. It will be worth persuing in future todevelop strategies to over-

come these problems. However, the proposed algorithm couldbe successfully tested for

synthetic as well as real brain MR images with better performance than the estimating

HMRF-EM algorithm. In E-step, the image labels are estimated using global convergent

simulated annealing (SA) algorithm in stead of ICM algorithm. Though this HMRF-EM-

SA algorithm overcomes the initial assumption of model parameters, but the computa-

tional burden is very high. In our proposed HMRF-FCEM algorithm, the performance

is tested on percentage of misclassification error and execution time in sec. Both per-

formance measures show better scales in HMRF-FCEM algorithm than HMRF-EM-SA

algorithm. Joint estimation of bias field would enhance the worth of the work.



Bibliography

[1] S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions, and the
bayesian restoration of images,”IEEE Trans. Pattern Analysis and Machine Intel-
ligence, vol.6, no. 6, pp 721-741,1984.

[2] Julian Besag, “On the statistical Analysis of Dirty pictures,”Royal Statistical Society,
48, no. 3, pp. 259-302, 1986.

[3] Nikhil R. Pal and Sankar K. Pal, “A review on image segmentation tech-
niques,”Pattern Recognition, vol. 26, no. 9, pp. 1277-1294, Sept. 1993.

[4] Todd R. Reed and J. M. Hans Du Buf, “A review of recent texture segmentation and
feature extraction techniques,”CVGIP: Image Understanding, vol.57, no.3, pp.359-
372, 1993.

[5] D. L. Pham, C. Xu, and J. L. Prince. “Current methods in medical image segmenta-
tion,” Annual Review of Biomedical Engineering,vol.2 pp. 315-337, 2000.

[6] James S. Duncan and Nicholas Ayache, “Medical Image Analysis: Progress over
Two Decades and the challenges Ahead,”IEEE Trans. Pattern Analysis and Machine
Intelligence, vol.22, no.1, pp. 85-106, 2000.

[7] S.A.Barker and P.J.W.Rayner, “Unsupervised image segmentation using Markov
random field models,”Pattern Recognitionvol. 33, no. 4, pp. 587-602, April. 2000.

[8] P. K. Nanda, “MRF model learning and application to imagerestoration and seg-
mentation,”Ph.D Dissertation, IIT Bombay, 1995.

[9] J.Zhang, J.W.Modestino and D.A.Langan, “Maximum Likelihood parameter esti-
mation for unsupervised stochastic model-based image segmentation,”IEEE Trans.
Image Processing, vol.3, no. 4, pp. 404-420, 1994.

[10] Stan Z. Li, “Markov Random Field Modelling in Image Analysis,” Springer-Verlag,
2001.

[11] A. P. Dempster, N. M. Laird and D. B. Rubin, “Maximum Likelihood from Incom-
plete Data via the EM algorithm,”J.Royal Statistical Society, vol. 39, pp. 1-38, 1977.

[12] Padhraic Smyth, “Belief networks, hidden Markov models and Markov random
fields:A unifying view,”Pattern Recognition Letters, vol. 18, no. 11, pp. 1261-1268,
Nov. 1997.

[13] Yongyue Zhang, Michael Brady and Stephen Smith, “A hidden markov random field
model for partial volume classification,”Neuro Image, vol. 13, no. 6, pp.291, June
2001.

[14] S. Ruan, B. Moretti, J. Fadili and D. Bloyet,“Fuzzy Markovian segmentation in ap-
plication of magnetic resonance images,”Computer Vision and Image Understand-
ing. vol. 85, pp. 54-69, 2002.



BIBLIOGRAPHY 91

[15] A. Kirkpatrick, “Optimization by Simulated Annealing: Quantitative studies,”Sta-
tistical physics, vol. 34, pp. 975-986, 1984.

[16] Todd K.Moon, “The Expectation-Maximization Algorithm,” IEEE Signal Process-
ing, pp. 47-59, Nov. 1996.

[17] Youngyue Zhang, Michael Brady and Stephen Smith, “Segmentation of Brain
MR Images Through a Hidden Markov random Field Model and the Expectation-
Maximization Algorithm,”IEEE Trans. Medical Imaging, vol.20, no.1, pp. 45-57,
2001.

[18] J. L. Marroquin, E. A. Santana and S. Botello, “Hidden Markov Measure Field
Models for Image segmentation,”IEEE Trans. Pattern Analysis and Machine In-
telligence, vol.25, no.11, 1380-1387, 2003.

[19] W. M. Wells, W. E. L. Grimson, R. Kikinis, F. A. Jolesz, “Adaptive Segmentation of
MRI Data,”IEEE Trans. Medical Imaging, vol. 15, pp. 429-442, Aug. 1996.

[20] R.Guillemaud and Michael Brady, “Estimating the Bias Field of MR Images,”IEEE
Trans. Medical Imaging, vol. 16, pp. 238-251, June. 1997.

[21] K. Held, E. R. Kops, B. J. Krause, W. M. Wells and R. Kikinis, H. W. M. Gartner,
“Markov Random Field Segmentation of Brain MR Images,”IEEE Trans. Medical
Imaging, vol. 16, pp. 878-886, Dec. 1997.

[22] Wen-Hung Chaoa,b, You-Yin Chena, Sheng-Huang Linc, Yen Yu I. Shihd, Siny
Tsange , “Automatic segmentation of magnetic resonance images using a decision
tree with spatial information,”Computerized Medical Imaging and Graphicsvol.
33, pp. 111-121, 2009.

[23] Thakur A. and R.S. Anand, “Image Quality Based Comparative Evaluation of
Wavelet Filters in Ultrasound Speckle Reduction,”Digital Signal Processing,
Vol.15, No.5, pp 455-465, 2005.

[24] H. Guan, T. Kubota, X. Huang, X. S. Zhou, and M. Turk. “Automatic hot spot de-
tection and segmentation in whole body fdg-pet images,”Proceedings of IEEE In-
ternational Conference on Image Processing (ICIP), 2006.

[25] P. K. Nanda, D. Patra and A. Pradhan, “Brain MR Image Segmentation using Tabu
Search and hidden Markov random field model,”Proc. of 2nd Indian International
conference on Artificial Intelligence, pp. 3143-3160, 2005.

[26] M. Joshi and A. Jalobeanu, “Multiresolution fusion in remotely sensed images using
an IGMRF prior and MAP estimation,”IEEE Trans. on Geoscience and remote
sensing, vol. 48, no. 3, pp.1245-1255, Mar. 2010.

[27] J. Suckling, T. Sigmundsson, K. Greenwood and E.T.Bullmore, “A modified fuzzy
clustering algorithm for operator independent brain tissue classification of Dual
Echo MR images,”Magnetic Resonance Imaging, vol. 17, No. 7, pp. 1065-1076,
1999.

[28] H.Ichihashi, k. Honda, and N. Tani,“Gaussian mixture pdf approximation and fuzzy
c-means clustering with entropy regularization,”Proceedings of 4th Symp. on Asian
Fuzzy system, pp.217-221, 2000.

[29] M.N.Ahmed, S.M.Yamany, Nevin Mohamed, A.A.Farag and T.Moriarty, “A mod-
ified fuzzy C-means algorithm for bias-field estimation and segmentation of MRI
data,”IEEE Trans. Medical Imaging, vol. 21, No. 3, pp. 193-199, Mar. 2002.

[30] A. Roy, S. K. Parui, A. Paul, U. Roy, “A Color Based Image Segmentation and its
Application to Text Segmentation,”IEEE Conference on Computer Vision, Graphics
and Image Processing, pp. 313-319, Mar. 2008.



BIBLIOGRAPHY 92

[31] A.V. Nandedkar, P.K. Biswas, “A General Reflex Fuzzy Min-Max Neural Network,”
International Conference on Pattern Recognition, pp. 650-653 , Aug. 2006.

[32] W. Chen, M. L. Giger , “A Fuzzy C-means (FCM) based algorithm for intensity
inhomogeneity correction and Segmentation,”IEEE Trans. on Biomedical Imaging,
vol.2, pp.1307-1310, April 2004.

[33] M.Y. Siyal and Lin Yu, “An intelligent modified fuzzy c-means based algorithm for
bias estimation and segmentation of brain MRI,”Pattern Recognition letters, vol.
26, pp. 2052-2062, 2005.

[34] Ping Wang, HongLei Wang, “A modified FCM algorithm for MRI brain image seg-
mentation,”IEEE Trans. on Future Bio-Medical Information Engineering, pp.26-29,
Dec.2008.

[35] AboulElla Hassanien, “Fuzzy rough sets hybrid scheme for breast cancer detection,”
Image and Vision Computing, vol.25, pp. 172-183, 2007.

[36] Tabakov Martin, “A fuzzy clustering technique for medical image segmentation,”
Proceedings of internal symposium on evolving fuzzy systems, pp. 118-122, sept.
2006.

[37] K. Jiayin, Min Lequan, “Novel modified fuzzy c-means algorithm with applica-
tions,” Digital signal processing, vol. 19, no.2, pp. 309-319, Mar, 2009.

[38] Tolias Yannis A. and Panas Stavros M., “Image segmentation by a fuzzy cluster-
ing algorithm using adaptive spatially constrained functions,”IEEE Transactions on
systems, Man, and Cyberneticsvol.28, issue.3, pp. 359-369, May, 1998.

[39] Mohamed N. A.,Ahmed M. N., “Modified fuzzy c-means in medical image seg-
mentation,”Proceedings of IEEE intenational conference on Acoustics,speech, and
signal processing, vol. 6, pp. 3429-3432, 1999.

[40] Kannan S.R., “A new segmentation system for MR images based on fuzzy tech-
niques,”Applied soft computing, vol. 8, issue. 4, pp. 1599-1606, Sept. 2008.

[41] X. Li, L. Li, H. Lu, D. Chen, and Z. Liang, “Inhomogeneitycorrection for magnetic
resonance images with fuzzy c-means algorithm,”Proc. SPIE2003.

[42] D.L. Pham, J. L. Prince, “Adaptive fuzzy segmentation of magnetic resonance im-
ages,IEEE Trans. Medical Imaging, vol. 18, 1999.

[43] Chuang Keh-shih, T. H. Long, “Fuzzy C-means clusteringwith spatial information
for image segmentation,”Computerized Medical imaging and graphics, 2006.

[44] Yang Zhang, Chung Fu-Lai, “Robust fuzzy clustering based image segmentation,”
Applied soft computing, pp.80-84, Jan, 09.

[45] G. Celeux, F. Forbes and N. Peyrard, “EM procedures using mean field like approxi-
mations for Markov model based image segmentation,”Pattern recognition, vol. 36,
no. 1, pp. 131-144, 2003.



BIBLIOGRAPHY 93

List of Publications

Communicated:-
• D. Patra and S. Pradhan, “Development of Unsupervised brainMR Image Segmen-

tation using fuzzy clustering based Hidden Markov Random Field Model,” submit-
ted toSPCON-10.

Published:-
1. T. Haribabu, Smita Pradhan and Dipti Patra, “Tissue Classification of Brain MR Im-

ages using Adaptive Fuzzy C-Means Algorithm,” In Proceeding of National Con-
ference onComputational intelligence, control and computer vision in robotics and
automation, pp.162-166, Mar 2008, NIT, Rourkela.

2. Dipti Patra, and Smita Pradhan, “Intensity Inhomogeneity correction of Brain MRI
using EM Algorithm,” In Proceeding of National Conference on Computational
intelligence, control and computer vision in robotics and automation, pp.194-198,
Mar 2008, NIT, Rourkela.

3. Smita Pradhan and Dipti Patra, “Brain MR Image Segmentation using Biased Hid-
den Markov Random Field Model,” In Proceeding of National Conference onAd-
vancement in Wireless Technologies and its Applications, pp. 130-134, Dec 2008,
NIT,Surat.

4. Smita Pradhan and Dipti Patra, “Unsupervised Brain MR Image Segmentation us-
ing Biased Hidden Markov Random Field Model,”Indian International Conference
on Artificial Intelligence (IICAI), pp. 1519-1530, Dec 2009, SIT,Banglore.

5. Smita Pradhan and Dipti Patra, “Unsupervised Brain MR Image Segmentation us-
ing HMRF-FCM framework,”IEEE Indian International Conference, pp. 93-96,
Dec 2009, DAIICT,Gandhinagar.


