594 research outputs found

    Digital Color Imaging

    Full text link
    This paper surveys current technology and research in the area of digital color imaging. In order to establish the background and lay down terminology, fundamental concepts of color perception and measurement are first presented us-ing vector-space notation and terminology. Present-day color recording and reproduction systems are reviewed along with the common mathematical models used for representing these devices. Algorithms for processing color images for display and communication are surveyed, and a forecast of research trends is attempted. An extensive bibliography is provided

    Modelling, Measuring and Compensating Color Weak Vision

    Full text link
    We use methods from Riemann geometry to investigate transformations between the color spaces of color-normal and color weak observers. The two main applications are the simulation of the perception of a color weak observer for a color normal observer and the compensation of color images in a way that a color weak observer has approximately the same perception as a color normal observer. The metrics in the color spaces of interest are characterized with the help of ellipsoids defined by the just-noticable-differences between color which are measured with the help of color-matching experiments. The constructed mappings are isometries of Riemann spaces that preserve the perceived color-differences for both observers. Among the two approaches to build such an isometry, we introduce normal coordinates in Riemann spaces as a tool to construct a global color-weak compensation map. Compared to previously used methods this method is free from approximation errors due to local linearizations and it avoids the problem of shifting locations of the origin of the local coordinate system. We analyse the variations of the Riemann metrics for different observers obtained from new color matching experiments and describe three variations of the basic method. The performance of the methods is evaluated with the help of semantic differential (SD) tests.Comment: Full resolution color pictures are available from the author

    Color image quality measures and retrieval

    Get PDF
    The focus of this dissertation is mainly on color image, especially on the images with lossy compression. Issues related to color quantization, color correction, color image retrieval and color image quality evaluation are addressed. A no-reference color image quality index is proposed. A novel color correction method applied to low bit-rate JPEG image is developed. A novel method for content-based image retrieval based upon combined feature vectors of shape, texture, and color similarities has been suggested. In addition, an image specific color reduction method has been introduced, which allows a 24-bit JPEG image to be shown in the 8-bit color monitor with 256-color display. The reduction in download and decode time mainly comes from the smart encoder incorporating with the proposed color reduction method after color space conversion stage. To summarize, the methods that have been developed can be divided into two categories: one is visual representation, and the other is image quality measure. Three algorithms are designed for visual representation: (1) An image-based visual representation for color correction on low bit-rate JPEG images. Previous studies on color correction are mainly on color image calibration among devices. Little attention was paid to the compressed image whose color distortion is evident in low bit-rate JPEG images. In this dissertation, a lookup table algorithm is designed based on the loss of PSNR in different compression ratio. (2) A feature-based representation for content-based image retrieval. It is a concatenated vector of color, shape, and texture features from region of interest (ROI). (3) An image-specific 256 colors (8 bits) reproduction for color reduction from 16 millions colors (24 bits). By inserting the proposed color reduction method into a JPEG encoder, the image size could be further reduced and the transmission time is also reduced. This smart encoder enables its decoder using less time in decoding. Three algorithms are designed for image quality measure (IQM): (1) A referenced IQM based upon image representation in very low-dimension. Previous studies on IQMs are based on high-dimensional domain including spatial and frequency domains. In this dissertation, a low-dimensional domain IQM based on random projection is designed, with preservation of the IQM accuracy in high-dimensional domain. (2) A no-reference image blurring metric. Based on the edge gradient, the degree of image blur can be measured. (3) A no-reference color IQM based upon colorfulness, contrast and sharpness

    Gamut extension algorithm development and evaluation for the mapping of standard image content to wide-gamut displays

    Get PDF
    Wide-gamut display technology has provided an excellent opportunity to produce visually pleasing images, more so than in the past. However, through several studies, including Laird and Heynderick, 2008, it was shown that linearly mapping the standard sRGB content to the gamut boundary of a given wide-gamut display may not result in optimal results. Therefore, several algorithms were developed and evaluated for observer preference, including both linear and sigmoidal expansion algorithms, in an effort to define a single, versatile gamut expansion algorithm (GEA) that can be applied to current display technology and produce the most preferable images for observers. The outcome provided preference results from two displays, both of which resulted in large scene dependencies. However, the sigmoidal GEAs (SGEA) were competitive with the linear GEAs (LGEA), and in many cases, resulted in more pleasing reproductions. The SGEAs provide an excellent baseline, in which, with minor improvements, could be key to producing more impressive images on a wide-gamut display

    Evaluation of the color image and video processing chain and visual quality management for consumer systems

    Get PDF
    With the advent of novel digital display technologies, color processing is increasingly becoming a key aspect in consumer video applications. Today’s state-of-the-art displays require sophisticated color and image reproduction techniques in order to achieve larger screen size, higher luminance and higher resolution than ever before. However, from color science perspective, there are clearly opportunities for improvement in the color reproduction capabilities of various emerging and conventional display technologies. This research seeks to identify potential areas for improvement in color processing in a video processing chain. As part of this research, various processes involved in a typical video processing chain in consumer video applications were reviewed. Several published color and contrast enhancement algorithms were evaluated, and a novel algorithm was developed to enhance color and contrast in images and videos in an effective and coordinated manner. Further, a psychophysical technique was developed and implemented for performing visual evaluation of color image and consumer video quality. Based on the performance analysis and visual experiments involving various algorithms, guidelines were proposed for the development of an effective color and contrast enhancement method for images and video applications. It is hoped that the knowledge gained from this research will help build a better understanding of color processing and color quality management methods in consumer video

    Investigations into colour constancy by bridging human and computer colour vision

    Get PDF
    PhD ThesisThe mechanism of colour constancy within the human visual system has long been of great interest to researchers within the psychophysical and image processing communities. With the maturation of colour imaging techniques for both scientific and artistic applications the importance of colour capture accuracy has consistently increased. Colour offers a great deal more information for the viewer than grayscale imagery, ranging from object detection to food ripeness and health estimation amongst many others. However these tasks rely upon the colour constancy process in order to discount scene illumination to allow these tasks to be carried out. Psychophysical studies have attempted to uncover the inner workings of this mechanism, which would allow it to be reproduced algorithmically. This would allow the development of devices which can eventually capture and perceive colour in the same manner as a human viewer. These two communities have approached this challenge from opposite ends, and as such very different and largely unconnected approaches. This thesis investigates the development of studies and algorithms which bridge the two communities. Utilising findings from psychophysical studies as inspiration to firstly improve an existing image enhancement algorithm. Results are then compared to state of the art methods. Then, using further knowledge, and inspiration, of the human visual system to develop a novel colour constancy approach. This approach attempts to mimic and replicate the mechanism of colour constancy by investigating the use of a physiological colour space and specific scene contents to estimate illumination. Performance of the colour constancy mechanism within the visual system is then also investigated. The performance of the mechanism across different scenes and commonly and uncommonly encountered illuminations is tested. The importance of being able to bridge these two communities, with a successful colour constancy method, is then further illustrated with a case study investigating the human visual perception of the agricultural produce of tomatoes.EPSRC DTA: Institute of Neuroscience, Newcastle University

    Appearance-based image splitting for HDR display systems

    Get PDF
    High dynamic range displays that incorporate two optically-coupled image planes have recently been developed. This dual image plane design requires that a given HDR input image be split into two complementary standard dynamic range components that drive the coupled systems, therefore there existing image splitting issue. In this research, two types of HDR display systems (hardcopy and softcopy HDR display) are constructed to facilitate the study of HDR image splitting algorithm for building HDR displays. A new HDR image splitting algorithm which incorporates iCAM06 image appearance model is proposed, seeking to create displayed HDR images that can provide better image quality. The new algorithm has potential to improve image details perception, colorfulness and better gamut utilization. Finally, the performance of the new iCAM06-based HDR image splitting algorithm is evaluated and compared with widely spread luminance square root algorithm through psychophysical studies

    A Black-Point Adaption model for color reproduction

    Get PDF
    Based on the current state of CIECAM97s, there is a missing adjustment associated with a black-point unlike a white-point. As an attempt to improve the performance of CIECAM97s for color reproduction, six algorithms focusing on black-point adaptation were generated based on previous work on white-point adaptation methods and gamut mapping methods. The six algorithms were used to reproduce four original images targeted to four simulated hard-copy viewing environments that were only differentiated by their black-point settings. Then, the six algorithms were tested in a psychophysical experiment with 32 observers. As a result, linear lightness rescaling under the luminances of white and black of a specific setting was demonstrated to be the best color reproduction method across different black-point settings. The adapted black-point was defined as having the lowest lightness value with its default chromatic appearance correlates predicted by the current state of CIECAM97s under the input viewing environment and was reproduced accordingly with the same appearance correlates

    Human-centered display design : balancing technology & perception

    Get PDF
    • …
    corecore