10,154 research outputs found

    Exploring Vortex Dynamics in the Presence of Dissipation: Analytical and Numerical Results

    Full text link
    In this paper, we systematically examine the stability and dynamics of vortices under the effect of a phenomenological dissipation used as a simplified model for the inclusion of the effect of finite temperatures in atomic Bose-Einstein condensates. An advantage of this simplified model is that it enables an analytical prediction that can be compared directly (and favorably) to numerical results. We then extend considerations to a case of considerable recent experimental interest, namely that of a vortex dipole and observe good agreement between theory and numerical computations in both the stability properties (eigenvalues of the vortex dipole stationary states) and the dynamical evolution of such configurations.Comment: 12 pages, 5 figures, accepted by PR

    Phase Transitions and superuniversality in the dynamics of a self-driven particle

    Full text link
    We study an active random walker model in which a particle's motion is determined by a self-generated field. The field encodes information about the particle's path history. This leads to either self-attractive or self-repelling behavior. For self-repelling behavior, we find a phase transition in the dynamics: when the coupling between the field and the walker exceeds a critical value, the particle's behavior changes from renormalized diffusion to one characterized by a diverging diffusion coefficient. The dynamical behavior for all cases is surprisingly independent of dimension and of the noise amplitude.Comment: 14 pages, 4 figure

    Surface dissipation in nanoelectromechanical systems: Unified description with the standard tunneling model and effects of metallic electrodes

    Full text link
    By modifying and extending recent ideas [C. Seoanez et al., Europhys. Lett. 78, 60002 (2007)], a theoretical framework to describe dissipation processes in the surfaces of vibrating micro- and nanoelectromechanical devices, thought to be the main source of friction at low temperatures, is presented. Quality factors as well as frequency shifts of flexural and torsional modes in doubly clamped beams and cantilevers are given, showing the scaling with dimensions, temperature, and other relevant parameters of these systems. Full agreement with experimental observations is not obtained, leading to a discussion of limitations and possible modifications of the scheme to reach a quantitative fitting to experiments. For nanoelectromechanical systems covered with metallic electrodes, the friction due to electrostatic interaction between the flowing electrons and static charges in the device and substrate is also studied.Comment: 17 pages, 7 figure

    Nonlinear current response of an isolated system of interacting fermions

    Full text link
    Nonlinear real-time response of interacting particles is studied on the example of a one-dimensional tight-binding model of spinless fermions driven by electric field. Using equations of motion and numerical methods we show that for a non-integrable case at finite temperatures the major effect of nonlinearity can be taken into account within the linear response formalism extended by a renormalization of the kinetic energy due to the Joule heating. On the other hand, integrable systems show on constant driving a different universality with a damped oscillating current whereby the frequency is related but not equal to the Bloch oscillations

    The photon to pseudoscalar meson transition form factors

    Full text link
    In this talk it is reported on an analysis of the form factors for the transitions from a photon to one of the pseudoscalar mesons pi0, eta, eta', etac within the modified perturbative approach in which quark transverse degrees of freedom are retained. The report is focused on the discussion of the surprising features the new BaBar data exhibit, namely the sharp rise of the pi-gamma form factor with the photon virtuality and the strong breaking of flavor symmetry in the sector of pseudoscalar mesons.Comment: 19 pages, 8 figures, using Latex, talk presented at the conference on Hadronic Structure, Tatranska Strba (2011

    Parton and Hadron Correlations in Jets

    Full text link
    Correlation between shower partons is first studied in high pTp_T jets. Then in the framework of parton recombination the correlation between pions in heavy-ion collisions is investigated. Since thermal partons play very different roles in central and peripheral collisions, it is found that the correlation functions of the produced hadrons behave very differently at different centralities, especially at intermediate pTp_T. The correlation function that can best exhibit the distinctive features is suggested. There is not a great deal of overlap between what we can calculate and what has been measured. Nevertheless, some aspects of our results compare favorably with experimental data.Comment: 28 pages in Latex + 13 figures. This is a revised version with extended discussions added without quantitative changes in the result
    • …
    corecore