827 research outputs found

    Planning of collision-free paths for a reconfigurable dual manipulator equipped mobile robot

    Get PDF
    Includes bibliographical references (pages 241-242).In this paper, we study the problem of finding a collision-free path for a mobile robot which possesses manipulators. The task of the robot is to carry a polygonal object from a starting point to a destination point in a possibly culttered environment. In most of the existing research on robot path planning, a mobile robot is approximated by a fixed shape, i.e., a circle or a polygon. In our task planner, the robot is allowed to change configurations for avoiding collision. This path planner operates using two algorithms: the collision-free feasible configuration finding algorithm and the collision-free path finding algorithm. The collision-free feasible configuration finding algorithm finds all collision-free feasible configurations for the robot when the position of the carried object is given. The collision-free path finding algorithm generates some candidate paths first and then uses a graph search method to find a collision-free path from all the collision-free feasible configurations along the candidate paths. The proposed algorithms can deal with a cluttered environment and is guaranteed to find a solution if one exists

    Non-Rigid Obstacle Avoidance for Mobile Robots

    Get PDF

    Mobile Robot Path Planning Method Using Firefly Algorithm for 3D Sphere Dynamic & Partially Known Environment

    Get PDF
    اذا البحث يقترح طريقة لحل مشكلة تخطيط مسار الروبوت المتحرك في ضمن بيئة شبه معروفة ثلاثية الابعاد كروية الشكل باستخدام نسخة معدلة من خوارزمية الحشرات المضيئة Firefly Algorithm والتي تمكنت بنجاح من ايجاد طريق شبه مثالي خالي من التصادم مع العوائق بسرعة وسهولة وملاحة آمنة على طول الطريق حتى الوصول للهدف. In this paper, a new method is proposed to solve the problem of path planning for a mobile robot in a dynamic-partially knew three-dimensional sphere environment by using a modified version of the Firefly Algorithm that successfully finds near optimal and collision-free path while maintaining quick, easy and completely safe navigation throughout the path to the goal

    Navigation and Control of Mobile Robots

    Full text link
    The rapid development of robotics has benefited by more and more people putting their attention to it. In the 1920s, ‘Robota’, a similar concept, was first known to the world. It is proposed in Karel Capek’ s drama, Rossum’ s Universal Robots (RUR). From then on, numbers of automatic machines were created all over the world, which are known as the robots of the early periods. Gradually, the demand for robots is growing for the purpose of fulfilling tasks instead of humans. From industrial uses, to the military, to education and entertainment, di↵erent kinds of robots began to serve humans in various scenarios. Based on this, how to control the robot better is becoming a hot topic. For the topic of navigating and controlling mobile robots, number of related problems have been carried out. Obstacle avoidance, path planning, cooperative work of multi-robots. In this thesis, we focus on the first two problems, and mention the last one as a future direction in the last part. For obstacle avoidance, we proposed algorithms for both 2D planar environ- ments and 3D space environments. The example cases we raise are those that need to be addressed but have always been ignored. To be specific, the motion of the obstacles are not fixed, the shape of the obstacles are changeable, and the sensors that could be deployed for underwater environments are limited. We even put those problems together to solve them. The methods we proposed are based on the biologically inspired algorithm and Back Propagation Neural network (BPNN). In addition, we put e↵orts into trajectory planning for robots. The two scenarios we set are self-driving cars on the road and reconnaissance and surveillance of drones. The methods we deployed are the Convolutional Neural Network (CNN) method and the two-phase strategy, respectively. When we proposed the strategies, we gave a detailed description of the robot systems, the proposed algorithms. We showed the performance with simulation results to demonstrate the solutions proposed are feasible. For future expectations, there are some possible directions. When applying traditional navigation algorithms, for example, biologically inspired algorithms, we have to pay attention to the limitations of the environment. However, high-tech algorithms sometimes are not computationally friendly. How to combine them together so as to fulfill the tasks perfectly while the computational e ciency is not too high is a worthy topic. In addition, extending the obstacle avoidance al- gorithms to more competitive situations, such as applying to autonomous UAVs, is also being considered. Moreover, for cooperation among multi robots, which could be regarded as Network Control System (NCS), the issues, such as how to complete their respective tasks, how to choose the optimal routes for them are worth attention by researchers. All in all, there is still a long way to go for the development of navigation and control of mobile robots. Despite this, we believe we do not need to wait for too long time to see the revolution of robots

    Multi-robot-based nanoassembly planning with automated path generation

    Get PDF
    In this paper, a novel approach of automated multirobot nanoassembly planning is presented. This approach uses an improved self-organizing map to coordinate assembly tasks of nanorobots while generating optimized motion paths at run time with a modified shunting neural network. It is capable of synchronizing multiple nanorobots working simultaneously and efficiently on the assembly of swarms of objects in the presence of obstacles and environmental uncertainty. Operation of the presented approach is demonstrated with experiments at the end of the paper

    Virtual Structure Based Formation Tracking of Multiple Wheeled Mobile Robots: An Optimization Perspective

    Get PDF
    Today, with the increasing development of science and technology, many systems need to be optimized to find the optimal solution of the system. this kind of problem is also called optimization problem. Especially in the formation problem of multi-wheeled mobile robots, the optimization algorithm can help us to find the optimal solution of the formation problem. In this paper, the formation problem of multi-wheeled mobile robots is studied from the point of view of optimization. In order to reduce the complexity of the formation problem, we first put the robots with the same requirements into a group. Then, by using the virtual structure method, the formation problem is reduced to a virtual WMR trajectory tracking problem with placeholders, which describes the expected position of each WMR formation. By using placeholders, you can get the desired track for each WMR. In addition, in order to avoid the collision between multiple WMR in the group, we add an attraction to the trajectory tracking method. Because MWMR in the same team have different attractions, collisions can be easily avoided. Through simulation analysis, it is proved that the optimization model is reasonable and correct. In the last part, the limitations of this model and corresponding suggestions are given

    Vision-based Testbeds For Control System Applicaitons

    Get PDF
    In the field of control systems, testbeds are a pivotal step in the validation and improvement of new algorithms for different applications. They provide a safe, controlled environment typically having a significantly lower cost of failure than the final application. Vision systems provide nonintrusive methods of measurement that can be easily implemented for various setups and applications. This work presents methods for modeling, removing distortion, calibrating, and rectifying single and two camera systems, as well as, two very different applications of vision-based control system testbeds: deflection control of shape memory polymers and trajectory planning for mobile robots. First, a testbed for the modeling and control of shape memory polymers (SMP) is designed. Red-green-blue (RGB) thresholding is used to assist in the webcam-based, 3D reconstruction of points of interest. A PID based controller is designed and shown to work with SMP samples, while state space models were identified from step input responses. Models were used to develop a linear quadratic regulator that is shown to work in simulation. Also, a simple to use graphical interface is designed for fast and simple testing of a series of samples. Second a robot testbed is designed to test new trajectory planning algorithms. A templatebased predictive search algorithm is investigated to process the images obtained through a lowcost webcam vision system, which is used to monitor the testbed environment. Also a userfriendly graphical interface is developed such that the functionalities of the webcam, robots, and optimizations are automated. The testbeds are used to demonstrate a wavefront-enhanced, Bspline augmented virtual motion camouflage algorithm for single or multiple robots to navigate through an obstacle dense and changing environment, while considering inter-vehicle conflicts, iv obstacle avoidance, nonlinear dynamics, and different constraints. In addition, it is expected that this testbed can be used to test different vehicle motion planning and control algorithms
    corecore