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2School of Engineering, University of Guelph, Guelph, Ontario, N1G 2W1, Canada

Abstract

The construction of nanoscale structures is small
in size, yet massive in volume. Such a massive
construction of nanoscale structures requires a
large number of autonomous nanorobots to work
together. Presented in this paper is a novel ap-
proach of automated multi-robot nanoassembly
planning. This approach uses an improved self-
organizing map to coordinate assembly tasks of
nanorobots while generating optimized motion
paths at run time with a modified shunting neu-
ral network. It is capable of synchronizing mul-
tiple nanorobots working simultaneously and ef-
ficiently on the assembly of swarms of objects in
the presence of obstacles and environmental un-
certainty. Operation of the presented approach
is demonstrated with experiments at the end of
the paper.

1 Introduction

Nanotechnology works on the nanometer scale
of molecules and atoms. It offers the promise
of making a wide range of products that are
nowadays impossible to make, and presents enor-
mous potential in a vast range of new applica-
tions. Current research projects on nanotech-
nology have been mainly in a few areas. They
focus respectively on the development of devices
and systems to prepare tools on the invention
of methods for the manipulation of nanoparti-

cles [24, 10, 31, 14], and on the formation of
strategies that allow the automation of assem-
bly and manufacturing at the nanometer scale
[6, 11]. Applications of nanotechnology are also
under active investigation [7, 4, 8].

Nevertheless, working on the nanometer scale
presents new challenges that researchers have
never faced before when they work on machin-
ery parts in the macro world. Among the list of
features that characterize nanoassembly, a com-
plementary pair stands out as the most obvi-
ous and essential, i.e., the extreme smallness in
size [29] and the massive volume in construc-
tion [27]. Aimed at tackling the problem as-
sociated with object manipulation in extremely
small sizes, man-machine interfaces have been
designed to bridge the macro and nano worlds
mostly by means of virtual reality or augmented
reality [3, 18].

The massive construction of nanoscale struc-
tures, however, requires large numbers of au-
tonomous nanorobots to work together. Despite
the remarkable progress in nanoscale manipula-
tion, little work has been done in respect to the
planning of multiple nanorobots. Presented in
this paper is an investigation on the automa-
tion of multi-robot-based nanoassembly. A strat-
egy is developed to efficiently synchronize mul-
tiple nanorobots while automatically generating
collision-free paths. Simulation results demon-
strate that this strategy is capable of coordinat-
ing multiple nanorobots with equally distributed
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workload and automatically generated motion
paths.

2 Related Work

Though there is hardly any report on the plan-
ning of multi-robot nanoassembly, significant
work has been done in the coordination and co-
operation of multiple robots in the macro world
on the issues of task assignment and path plan-
ning. Task assignment is responsible for moving
robots to certain locations for them to perform
designated assembly tasks. In this regard a num-
ber of algorithms have been proposed, includ-
ing graph matching [17], network simplex [26],
distributed auction [32], dynamic Tabu search-
ing [12], and genetic-based or agent-based algo-
rithms [9, 1]. Efficient solutions were achieved
without taking motion planning into considera-
tion. As a result, robots have to wait until their
destinations are finalized by an algorithm.

Path planning, in comparison, is responsible
for the actual movements of robots. It controls a
group of mobile robots to move from initial po-
sitions, visit intermediate locations, and reach
final destinations. The motion paths need to
be free of collisions, and the traveling distances
should be short. There are quite a large number
of studies on path planning, including the global
method, potential field method, and genetic al-
gorithm [2, 20, 34]. In addition to their limits
to single-robot applications, most of them suffer
from high computational complexity due to the
search in a high-dimensional space for collision-
free paths.

There is also a number of studies focused par-
ticularly on path planning of multiple robots. By
combining with a genetic algorithm, a central-
ized technique was proposed to plan the motion
paths of multiple cooperative robots [5]. Based
upon the observation that the potential solu-
tion of each sub-problem is from and evolves
only in its own sub-population, this technique
introduces fitness functions of sub-population to
reflect the interactions among all sub-problems.

Though the developed technique offers improved
convergence rates and is suitable for parallel
computation, the problem of high computational
cost remains unsolved.

Several other studies applied the concept of
self-organizing maps (SOMs) to the planning of
multiple robots. An earlier work was presented
in [16], which worked on path planning from ini-
tial to goal positions, but failed to consider the
depots that have to be visited by one and only
one of the robots. A couple of more recent pa-
pers also worked on the problem from the ap-
proach of SOM, one in concept [30] and another
in practice [21]. The latter used an SOM-based
action selection framework to control the action
of multi-robots. The focus was on action selec-
tion and obstacle avoidance for robots to track
targets, and intermediate depots were not con-
sidered.

Meanwhile, neural networks have proved to be
useful in path planning. Path planning with pen-
etration growth distance, for instance, shows the
advantage in searching for collision-free paths
[25]. There is a number of models developed for
real-time motion planning through learning. For
instance, combining an adaptive sensory-motor
mapping model and an online visual error correc-
tion model may produce the trajectory of robot
manipulators at run time [19]; and dynamic nav-
igation of a mobile robot without any collisions
is possible through unsupervised learning [23].
Since static or learning-based path planning do
not react quickly to changes, they cannot handle
the uncertainty in nanoassembly planning caused
by disturbances and dust particles [29].

One of the major tasks of nanoassembly is to
construct structures that form certain desired
patterns [28]. In particular, the planning of
nanoassembly involves different tasks, including
object assignment, obstacle detection and avoid-
ance, path finding, and path sequencing. An
initial work on nanoassembly planning was re-
ported in [22]. It used a number of existing tech-
niques, and developed a practical method for au-
tomated nanoassembly planning. This method
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works with a single nanorobot, and the motion
paths are not optimal. Besides, its algorithm
breaks down when the environment changes, for
example, in the presence of foreign objects.

The rest of the paper first introduces a modi-
fied shunting neural network for automated gen-
eration of optimized collision-free paths in Sec-
tion 3, and a mechanism of multi-robot coor-
dination with an improved self-organizing map
in Section 4. Section 5 then presents the prob-
lem statement, develops a strategy to links the
improved self-organizing map with the modified
shunting neural network, and discusses the steps
involved in the process of automated nanoassem-
bly planning. The last section before conclusions
provides experiment results to examine issues in-
volved in the study.

3 Optimized Path Generation

Presented in this section is a biologically inspired
neural network that is capable of both dealing
with environmental uncertainty of nanoassembly
planning and generating optimized collision-free
paths at run time.

3.1 Biologically Inspired Neural Net-
work

The original model of a biologically inspired neu-
ral network was proposed in [13], which used
electrical circuit elements to describe a patch of
membrane in biological neural systems. Its sim-
plified model takes the form of (1), in which xi is
the neural activity of the ith neuron in the two-
dimensional membrane. Parameters A, B, and
D are three nonnegative constants describing the
passive decay rate, the upper and lower bounds
of xi respectively. Se

i is the excitatory input and
Si
i is the inhibitory input to the neuron.

dxi
dt

= −Axi + (B − xi)Se
i (t)− (D + xi)S

i
i(t) (1)

Suppose a neuron Nq locates at a point q in
the three-dimensional network, q =<q1, q2, q3>.

It connects to all its n direct neighboring neu-
rons Npj , pj=<pj1, pj2, pj3> and 1 ≤ j ≤ n.
Following the notation in (1), xq and xp denote
the neural activities ofNq andNp respectively. A
modification to (1) produces the following shunt-
ing equation that defines the dynamics ofNq [33].

dxq
dt

= −Axq + (B − xq)([Iq]+ +
n∑

j=1

ωqpj [xpj ]
+)

−(D + xq)([Iq]
− +

n∑
j=1

ωqpjc[xpj − s]−)(2)

In the equation, Iq is the external inputs to
Nq. The two functions [x]+ and [x]− result in
max{x, 0} and max{−x, 0}, respectively. Pa-
rameters A, B, and D represent the passive decay
rate, the upper and lower bounds of Nq, respec-
tively. Parameter c is a constant in the range
[0,1], and s is an adjustable safety factor. Espe-
cially, the symmetric weights ωqp are determined
by a monotonically decreasing function f(|q−p|)
of the Euclidean distance between p and q. For
instance, f(a) = µ/a, if 0 < a < r0 for two posi-
tive constants µ and r0. Otherwise, f(a) = 0.

3.2 Dynamic Path Generation

Every of the three-dimensional neural network
maps to one of the three dimensions of the phys-
ical layout. For an assembly task, the neuron
in the neural network that maps to initial posi-
tion of a nanorobot is a starting neuron Ns, and
the one that maps to the completion of the as-
sembly task by the nanorobot is the target neu-
ron Nt. All the other neurons classify into two
types. One type, denoted by set {Nc}, includes
all the neurons whose location maps to a colli-
sion between objects; the other, {Nf}, counters
in the rest of neurons that lead to the collision-
free movements of the nanorobot.

Different external inputs to the neurons then
distinguish one type from another. The input Iq
in (2) to neuron Nq is a large positive constant V,
V >> B, if Nq happens to be the target Nt. Iq
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(a) Automated Path Generation (b) Neuron Dynamics

Figure 1: Realtime Generation of Optimized Collision-Free Paths

changes to -V if Nq is an element in {Nc}. Oth-
erwise, Iq is 0 for all the neurons in the set of
{Nf} (Fig. 1). As the starting neuron must be an
element of {Nf}, its external input is always 0.
In addition, the stimuli within the receptive field
of neuron Nq also include a sum of the weighted
neural activities from its direct neighbors. In
such a way, it allows the network to propagate
positive neural activity through excitatory con-
nections, and to restrain the negative activities
through inhibitory connections.

Let Ns and Nt be the starting and target neu-
rons respectively. Suppose Np is the neuron
whose neural activity xp yields the biggest value
among all the v neighboring neurons of Ns, i.e.,
xp = max{xsj , j = 1, 2, · · · , v}. The gradient
ascent rule requires neuron Ns to move to the
position of neuron Np. As shown in Fig. 1(a),
this movement maps to the robot space as a step
of moving the object around in the environment.
By following the gradient ascent rule and adap-
tively changing the current position of Ns, the
neural network globally guides the nanorobot to
push the object towards its goal while avoiding
collisions.

The influence of parameters c and s in (2) on
path generation is the clearance distance from

obstacles. They determine the relative strength
and the threshold of the negative neural connec-
tions respectively. This neural network does not
suffer from local minimum, even in a complicated
maze-type environment of many deadlock situa-
tions. The neural activity propagation from the
target to the starting position always generates
smooth, continuous, and optimized paths from
starting to destination locations with obstacle
clearance. Moreover, path generation reacts at
run time to any changes in the environment.

4 Multi-Robot Coordination

The construction of nanoscale structures requires
a large number of nanorobots working together,
and nanoassembly planning needs to efficiently
coordinate their work. This section describes the
structure of an improved self-organizing map and
a mechanism for multi-robot coordination.

4.1 An Improved Self-Organizing
Map

A self-organizing map (SOM) combines a com-
petitive learning principle with a set of nodes
that are topologically structured in a way that
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the adjacent nodes tend to have similar weight
vectors [15]. In the classical application of pat-
tern recognition, an SOM is a two-layer neural
network that consists of an input layer and an
output layer. The input layer has F nodes, where
F is the number of pattern features; and the out-
put layer has M nodes, where M is the number
of results after classification. Each of the nodes
in the input layer connects to all nodes in the
output layer.

The connection strengths of an output node
Rj are given by an F -dimensional weight vec-
tor rj =< rj1, · · · , rjF >, where 1 ≤ j ≤ M .
The learning algorithm of an SOM neural net-
work ensures that the most highly (or lowly) ac-
tivated node wins the competition. Meanwhile,
the weight vectors of the winner and its neigh-
bors change from their initial values toward the
feature values of the input pattern. The neural
network is self-organizing in such a sense that
the output nodes tend to attain weight vectors
that capture the characteristics of the input vec-
tor space.

Assume that there are K nanorobots work-
ing simultaneously on the task of pushing N
objects from their initial locations to M desti-
nation locations in the three-dimensional space,
where K<M<N. As shown in Fig. 2(a), the self-
organizing map can be improved in such a way
that it consists of three nodes xi, yi, and zi in
the input layer, which take in respectively the
three Cartesian coordinates pix, piy, and piz of
the ith destination location Pi, 1 ≤ i ≤ N . In
its output layer, there is a set of two-dimensional
nodes Rlj , where 1 ≤ l ≤ K and 1 ≤ j ≤M . An
weight vector rlj connects the three input nodes
to an output node Rlj with rljx, rljy, and rljz.

Fig. 2(b) illustrates the geometrical meaning
of the nodes in the two-layer neural network. In
the figure, the red circle represents the ith des-
tination location P i, 1 ≤ i ≤ N , which is sup-
posedly the current input node under processing.
Small green circles represent output nodes Rlj ,
1 ≤ l ≤ K and 1 ≤ j ≤ M . Moreover, un-
filled circles represent unprocessed destination

locations, and blue blocks stand for obstacles.
For any of those non-obstacle items, a projection
to the axes identifies the corresponding coordi-
nates. For example, the projected coordinates
for P i are xi and yi in the two-dimensional illus-
tration. Similarly, Rlj projects to rljx and rljy in
the figure.

4.2 Coordinating Mechanism

A fixed point l′ on the l -axis of the output layer
in Fig. 2(a) groups together the M nodes on
the m-axis, i.e., Rl′j for j = 1, · · · ,M . These M
nodes are initialized in such a way that they are
distributed on an imaginary line that virtually
links the M output nodes from the starting lo-
cation to the final location of the lth nanorobot
. When a destination location P i is presented
to the two-layer neural network, 1 ≤ i ≤ N , all
the KM nodes in the output layer participate
in competition, and a winner R′lj is determined
according to the following criterion.

R′lj ⇐ S′lj = min{ Slj |
l = 1, · · · ,K; j = 1, · · · ,M ;Rlj ∈ Ω} (3)

In (3), Rlj is the jth node of the lth virtual
line; Ω is the set of output nodes on the lth
virtual line that have not been a winner before;
and S′lj is the minimum of Slj whose definition
is given below,

Slj = S(Pi, Rlj)(1 + T ) (4)

where S(Pi, Rlj) is the distance between Pi and
Rlj along the path generated by the shunt-
ing equation (2) in Section 3. The term T
in (4) equalizes the workload distribution of
nanorobots. The workload of nanorobots has dif-
ferent emphases in different applications, and a
definition of T is given below that particularly
takes the traveling distance of nanorobots into
the consideration of workload,

T =
Ll − V
1 + V

(5)
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Figure 2: SOM-based Neural Network and Its Geometric Representation

where Ll is the length of the lth virtual line,
1 ≤ l ≤ K; and V is the average path length.

V =
1

K

K∑
l=1

Ll (6)

In addition, the neural network updates itself
by revising its weight vectors rlj , 1 ≤ l ≤ K and
1 ≤ j ≤M , according to the following rule,

rlj(t+ 1) ={
pi, if S(Pi, Rlj) < ηρ
rlj(t) + βf(dlj)(pi − rlj(t)), otherwise

(7)

where η is a small constant normally less than
0.5 ; β is the learning rate; ρ is the minimum
distance between any two nodes of the target lo-
cations; and f(dlj) is a neighborhood function
whose definition is given below,

f(dlj) =

{
e−d

2
lj/G

2

, if dlj < γM
0, otherwise

(8)

and,

G = (1− α)tG (9)

In (8), dlj is the distance measured along the
lth virtual line between the jth node and the

winner node R′lj ; G is the gain constant with an
initial value of, for example, 10 ; and γ is a small
constant indicating the range of neighborhood,
which is normally less than 0.4. In (9), t is the
number of iterations, and α is the gain changing
rate. The smaller the α is, the longer time the
computation takes, and the shorter distance of
the total paths of all the nanorobots will be. The
normal range of α is between 0.001 and 0.05.

5 Automated Nanoassembly
Planning

When a single nanorobot works on the forma-
tion of patterns or construction of particles,
nanoassembly planning focuses on object as-
signment, and the searching and sequencing of
collision-free motion paths. With the involve-
ment of multiple nanorobots, the issue of coor-
dination becomes crucial in planning. This sec-
tion develops a seamless approach of automated
multi-robot-based nanoassembly planning.

5.1 Problem Statement

Suppose that the working environment
of a nanoassembly planning system
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consists of a set of obstacles, a collec-
tion of N identical objects, and a team
of K nanorobots, all of which locate
at known positions in three-dimensional
space. Given a cluster of M locations
that defines the pattern of a product,
an assembly task instructs a nanorobot
to reach an object and push it from its
initial position to a destination along a
collision-free path with a predetermine
distance from obstacles.

With the assumption of K<M<N,
multi-robot nanoassembly planning dy-
namically coordinates the team of
nanorobots to complete the assembly
tasks of constructing the product with
a minimal or near-minimal total cost.
When the cost of nanoassembly tasks
is evaluated in terms of traveling dis-
tances, the cost for each individual
nanorobot is the distance it travels from
its initial to final position. The to-
tal cost is the sum of costs of all the
nanorobots.

5.2 Planning Process

Fig. 3 highlights the steps in the presented ap-
proach of multi-robot nanoassembly planning.
The automated planning starts with an initial-
ization to the modified shunting neuron network
(Section 3). According to the location of obsta-
cles in the 3D space, inputs to their correspond-
ing neurons in the network are set to a large
negative constant -V . All other neurons take 0
as their input, and each of the K nanorobots
takes a position in the neuron network in line
with their spatial occupations. Afterwards, the
improved SOM neuron network is initialized in
the way as described in the previous subsection.
In addition to the initialization of parameters η,
β, G, γ, and α, the connecting weights from the
three input nodes to the output nodes are set to
form K virtual lines.

The remaining steps operate in two phases. In

No Yes

Figure 3: A Process of Multi-Robot Nanoassem-
bly Planning

the first phase, coordinates of the N objects are
fed into the SOM neuron network one set after
another, and the K nanorobots compete to grasp
the objects. In the second phase, coordinates of
theM destination locations are fed into the SOM
neuron network one by one, and the nanorobots
compete to push the objects to the destinations.
When the number of nanorobots is less than the
number of objects, i.e., K<N, this two-phase op-
eration repeat to deal with unprocessed objects.

The same SOM network is used in both phases
to manage the nanorobots, but there is a need
to initialize the network again before the second
phase starts. In either of the two phases, the
coordinate input of a position to the SOM neu-
ron network sets a large positive constant V to
the input at the matching neuron in the modified
shunting neuron network. This input stimulates
the shunting network to generate collision-free
paths at realtime from all nanorobots to the po-
sition.

The distances along the paths are used in
(4) for nanorobot competition as regulated by
(3), and the winner follows its path to reach
the object at the location or push the object
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to a destination. As illustrated in Fig. 3, au-
tomated nanoassembly planning then computes
the neighborhood with (8), and updates the
weights of nanorobots in the SOM neuron net-
work with (7). This process continues in the first
phase until all the objects are accompanied by a
nanorobot, or in the second phase until all the
objects are pushed to a destination.

5.3 Discussions

Nanorobots and nanoparticles are so tiny that
their sizes are almost negligible in the physical
environment. Nanoassembly, therefore, allows
path planning to treat them as circular dots,
each of which occupies a point in space. This
observation greatly simplifies the work when
the presented multi-robot nanoassembly plan-
ning initializes the modified shunting neural net-
work for the generation of collision-free paths.
The input to a neuron in the network can sim-
ply be determined by checking the corresponding
location in space.

The paths of nanorobot movements are piece-
wise linear, which is consistent with single-robot
nanoassembly planning as characterized in [22].
Parameters c and s in (2) determine the rela-
tive strength and the threshold of the negative
neural connections respectively. Optimality of
path generation refers to the ability of (2) to ad-
just parameters c and s for automatic generation
of smooth, continuous, and collision-free motion
paths, without being too close to or too far from
obstacles.

The computational complexity of path gener-
ation linearly depends on the size of the modi-
fied shunting neural network. This neural net-
work does not suffer from local minimum, even
in a complicated maze-type environment of many
deadlock situations. In addition, its underlying
dynamic neural activity operates without explic-
itly searching over the free workspace, without
explicitly optimizing any cost functions, without
any prior knowledge of a dynamic environment,
and without any learning procedures. It is there-
fore capable of dealing with environmental un-

certainty in the presence of dust particles.

The process of nanoassembly planning links
nanorobots coordination with real-time path
generation. The SOM structure given in Fig. 2
treats nanorobots as nodes in the output layer.
This structure allows the number of nanorobots
to change during the coordination process, which
is a useful feature that helps to handle situations
when some nanorobots break down or some more
are added. The coordinates of the input layer are
also changeable. It further enables the presented
approach of nanoassembly planing to deal with
environment changes due to shifted or moving
targets caused by disturbances.

6 Simulation Results

Simulation has been conducted to examine the
presented approach of multi-robot nanoassem-
bly planning. Programs were coded with MAT-
LAB on a personal computer running Windows
XP, and test cases covered both multi-robot
path planning without obstacles and multi-robot
nanoassembly planning in the presence of obsta-
cles. Experiment results given below are in 2D
cases for the simplicity of illustration, but the
presented approach works with higher dimen-
sions as both the modified shunting neural net-
work and the improved self-organizing map are
structured for 3D applications.

Between the two neuron networks that work
together in automated multi-robot nanoassem-
bly planning, the core is the improved SOM
network as it is in charge of coordinating the
operations of multiple nanorobots. The first
group of experiments, therefore, concentrated on
checking the capability of the SOM network in
workload equalization when a smaller number of
nanorobots are involved in operation. In par-
ticular, suppose that there are three nanorobots
originally placed at the ‘S ’ location in Fig. 4(a),
and they return to the ‘S ’ location after all the
marked positions have been visited by one and
only one nanorobot.

The ‘S ’ point in Fig. 4(a) is also the loca-

8



IEEE TRANSACTIONS ON XXX, VOL. XX, NO. YEAR, MONTH 2004 17

B. Path Planning of Multi-robots

To illustrate the effectiveness of the proposed approach to the path planning of a multi-

robot system, this algorithm is applied to four different cases, including the robots at the same

start position to the same destination; the robots at the same start position but to different

destinations; the start position of a robot being the destination of other robot, and so on.

(c) (d)

(a) (b)

S S

S S

Fig. 12. The evolution of the solution for three robot with the same start and destination position at S: (a) at the initial,

(b) after 5, (c) after 100 iterations, and (d) the final status.

In the first case, the proposed approach is applied in a 2-D workspace in which three robots

have the same start position and the destination. Assume that the start and the destination

position S is located anywhere in the workspace as shown in the Fig. 12(a). At the initial

situation, for representing 3 robots, a point considered as 3 virtual lines with M dots on

every virtual line is formed at S position (see Fig. 12(a)). During the processing, the three
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Figure 4: An Experiment of Path Planning

tion where all the three groups of M output
nodes along three virtual lines meet together at
the initialization of the SOM neuron network.
These three virtual lines then graduately stretch
out in the self-organizing process, moving the
nodes towards the marked positions. The geo-
metric meaning of virtual lines becomes clear af-
ter they start to form three rings in Fig. 4(b) af-
ter several iterations of weight adjustment. This
process continues to allow one node on one of
the virtual lines reaching to one marked position
(Fig. 4(c)), and it ends when each of the marked
positions is visited by one node (Fig. 4(d)).

When a test considers neither the pushing op-
eration of nanoassembly nor the presence of ob-
stacles as in the case of Fig. 4, it becomes an
extremely simplified case of path planning for
multiple robots without physical shape. The re-
sults demonstrate the SOM network’s ability to
equally distribute workload. Tests in this group

also indicate that the number of required itera-
tions mainly depends on the parameter of gain
change rate α. A total of 160 iterations are
needed in the experiment with α being set to
0.03. In comparison, the self-organizing pro-
cess is not much sensitive to the learning rate
β, neighborhood parameter γ, and parameter η
when they are in the ranges of [0.05, 0.1 ], [0.1,
0.4 ], and [0.01, 0.1 ] respectively.

The second group of experiments tested the
presented approach of nanoassembly planning on
the setting of Fig. 5(a), which is similar to the
one used in [22]. The presence of obstacles puts
the modified shunting neural network in work
to generate collision-free paths. In addition to
the initialization of SOM network parameters,
the parameters of the shunting network are ini-
tialized so that the passive decay rate A, upper
bound B, and lower bound D are set to 10.0, 1.0,
and 1.0 respectively. The other parameters are
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Figure 5: An Experiment of Nanoassembly Planning

set in such a way that µ = 1.0, c = 0.9, s = −0.7,
and r0 = 2.0 for the neighborhood connections,
and V = 100.0 for the external inputs.

Fig. 5(b) depicts the operation of a single
nanorobot in action. By following the opti-
mized collision-free paths, the nanorobot pushes
all objects one after another to the nearest des-
tinations. The numbers indicate the order of
pushing operations, and the little circles illus-
trate the trace of object/nanorobot movements
along the paths. Fig. 5(c) finally demonstrate
the operation of multi-robot nanoassembly plan-
ning. Assuming enough nanorobots and suffi-
cient destinations, all the nanorobots work to-
gether pushing the objects to their destinations
along collision-free paths.

7 Conclusion

This paper presents an approach of automated
planning of multi-robot-based nanoassembly. It
uses an improved self-organizing map (SOM) to
coordinate multiple nanorobots for them to work
simultaneously with equally distributed work-
load, and a modified shunting neuron network
to generate optimized collision-free paths at run
time with adjustable safety distance to obstacles.
This approach fits all the tasks of multi-robot
nanoassembly planning into a seamless process,
and makes it possible for realtime handling of
environmental uncertainty. Continuous research
is under active investigation to examine its ap-
plication in practice for further refinement and

10



enhancement.
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