355 research outputs found

    A Systematic Literature Review of Path-Planning Strategies for Robot Navigation in Unknown Environment

    Get PDF
    The Many industries, including ports, space, surveillance, military, medicine and agriculture have benefited greatly from mobile robot technology.  An autonomous mobile robot navigates in situations that are both static and dynamic. As a result, robotics experts have proposed a range of strategies. Perception, localization, path planning, and motion control are all required for mobile robot navigation. However, Path planning is a critical component of a quick and secure navigation. Over the previous few decades, many path-planning algorithms have been developed. Despite the fact that the majority of mobile robot applications take place in static environments, there is a scarcity of algorithms capable of guiding robots in dynamic contexts. This review compares qualitatively mobile robot path-planning systems capable of navigating robots in static and dynamic situations. Artificial potential fields, fuzzy logic, genetic algorithms, neural networks, particle swarm optimization, artificial bee colonies, bacterial foraging optimization, and ant-colony are all discussed in the paper. Each method's application domain, navigation technique and validation context are discussed and commonly utilized cutting-edge methods are analyzed. This research will help researchers choose appropriate path-planning approaches for various applications including robotic cranes at the sea ports as well as discover gaps for optimization

    Sensor Network Based Collision-Free Navigation and Map Building for Mobile Robots

    Full text link
    Safe robot navigation is a fundamental research field for autonomous robots including ground mobile robots and flying robots. The primary objective of a safe robot navigation algorithm is to guide an autonomous robot from its initial position to a target or along a desired path with obstacle avoidance. With the development of information technology and sensor technology, the implementations combining robotics with sensor network are focused on in the recent researches. One of the relevant implementations is the sensor network based robot navigation. Moreover, another important navigation problem of robotics is safe area search and map building. In this report, a global collision-free path planning algorithm for ground mobile robots in dynamic environments is presented firstly. Considering the advantages of sensor network, the presented path planning algorithm is developed to a sensor network based navigation algorithm for ground mobile robots. The 2D range finder sensor network is used in the presented method to detect static and dynamic obstacles. The sensor network can guide each ground mobile robot in the detected safe area to the target. Furthermore, the presented navigation algorithm is extended into 3D environments. With the measurements of the sensor network, any flying robot in the workspace is navigated by the presented algorithm from the initial position to the target. Moreover, in this report, another navigation problem, safe area search and map building for ground mobile robot, is studied and two algorithms are presented. In the first presented method, we consider a ground mobile robot equipped with a 2D range finder sensor searching a bounded 2D area without any collision and building a complete 2D map of the area. Furthermore, the first presented map building algorithm is extended to another algorithm for 3D map building

    Collision Free Navigation of a Multi-Robot Team for Intruder Interception

    Full text link
    In this report, we propose a decentralised motion control algorithm for the mobile robots to intercept an intruder entering (k-intercepting) or escaping (e-intercepting) a protected region. In continuation, we propose a decentralized navigation strategy (dynamic-intercepting) for a multi-robot team known as predators to intercept the intruders or in the other words, preys, from escaping a siege ring which is created by the predators. A necessary and sufficient condition for the existence of a solution of this problem is obtained. Furthermore, we propose an intelligent game-based decision-making algorithm (IGD) for a fleet of mobile robots to maximize the probability of detection in a bounded region. We prove that the proposed decentralised cooperative and non-cooperative game-based decision-making algorithm enables each robot to make the best decision to choose the shortest path with minimum local information. Then we propose a leader-follower based collision-free navigation control method for a fleet of mobile robots to traverse an unknown cluttered environment where is occupied by multiple obstacles to trap a target. We prove that each individual team member is able to traverse safely in the region, which is cluttered by many obstacles with any shapes to trap the target while using the sensors in some indefinite switching points and not continuously, which leads to saving energy consumption and increasing the battery life of the robots consequently. And finally, we propose a novel navigation strategy for a unicycle mobile robot in a cluttered area with moving obstacles based on virtual field force algorithm. The mathematical proof of the navigation laws and the computer simulations are provided to confirm the validity, robustness, and reliability of the proposed methods

    Analysis and Development of Computational Intelligence based Navigational Controllers for Multiple Mobile Robots

    Get PDF
    Navigational path planning problems of the mobile robots have received considerable attention over the past few decades. The navigation problem of mobile robots are consisting of following three aspects i.e. locomotion, path planning and map building. Based on these three aspects path planning algorithm for a mobile robot is formulated, which is capable of finding an optimal collision free path from the start point to the target point in a given environment. The main objective of the dissertation is to investigate the advanced methodologies for both single and multiple mobile robots navigation in highly cluttered environments using computational intelligence approach. Firstly, three different standalone computational intelligence approaches based on the Adaptive Neuro-Fuzzy Inference System (ANFIS), Cuckoo Search (CS) algorithm and Invasive Weed Optimization (IWO) are presented to address the problem of path planning in unknown environments. Next two different hybrid approaches are developed using CS-ANFIS and IWO-ANFIS to solve the mobile robot navigation problems. The performance of each intelligent navigational controller is demonstrated through simulation results using MATLAB. Experimental results are conducted in the laboratory, using real mobile robots to validate the versatility and effectiveness of the proposed navigation techniques. Comparison studies show, that there are good agreement between them. During the analysis of results, it is noticed that CS-ANFIS and IWO-ANFIS hybrid navigational controllers perform better compared to other discussed navigational controllers. The results obtained from the proposed navigation techniques are validated by comparison with the results from other intelligent techniques such as Fuzzy logic, Neural Network, Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO) and other hybrid algorithms. By investigating the results, finally it is concluded that the proposed navigational methodologies are efficient and robust in the sense, that they can be effectively implemented to solve the path optimization problems of mobile robot in any complex environment

    Navigational control of multiple mobile robots in various environments

    Get PDF
    The thesis addresses the problem of mobile robots navigation in various cluttered environments and proposes methodologies based on a soft computing approach, concerning to three main techniques: Potential Field technique, Genetic Algorithm technique and Fuzzy Logic technique. The selected techniques along with their hybrid models, based on a mathematical support, solve the three main issues of path planning of robots such as environment representation, localization and navigation. The motivation of the thesis is based on some cutting edge issues for path planning and navigation capabilities, that retrieve the essential for various situations found in day-to-day life. For this purpose, complete algorithms are developed and analysed for standalone techniques and their hybrid models. In the potential field technique the local minima due to existence of dead cycle problem has been addressed and the possible solution for different situations has been carried out. In fuzzy logic technique the different controllers have been designed and their performance analysis has been done during their navigational control in various environments. Firstly, the fuzzy controller having all triangular members with five membership functions have been considered. Subsequently the membership functions are changed from Triangular to other functions, e.g. Trapezoidal, Gaussian functions and combinational form to have a more smooth and optimised control response. It has been found that the fuzzy controller with all Gaussian membership function works better compared to other chosen membership functions. Similarly the proposed Genetic algorithm is based on the suitable population size and fitness functions for finding out the robot steering angle in various cluttered field. At the end hybrid approaches e.g. Potential-Fuzzy, otential-Genetic, Fuzzy-Genetic and Potential-Fuzzy-Genetic are considered for navigation of multiple mobile robots. Initially the combination of two techniques has been selected in order to model the controllers and then all the techniques have been hybridized to get a better controller. These hybrid controllers are first designed and analysed for possible solutions for various situations provided by human intelligence. Then computer simulations have been executed extensively for various known and unknown environments. The proposed hybrid algorithms are embedded in the controllers of the real robots and tested in realistic scenarios to demonstrate the effectiveness of the developed controllers. Finally, the thesis concludes in a chapter describing the comparison of results acquired from various environments, showing that the developed algorithms achieve the main goals proposed by different approaches with a high level of simulations. The main contribution provided in the thesis is the definition and demonstration of the applicability of multiple mobile robots navigations with multiple targets in various environments based on the strategy of path optimisation

    Navigational Path Analysis of Mobile Robot in Various Environments

    Get PDF
    This dissertation describes work in the area of an autonomous mobile robot. The objective is navigation of mobile robot in a real world dynamic environment avoiding structured and unstructured obstacles either they are static or dynamic. The shapes and position of obstacles are not known to robot prior to navigation. The mobile robot has sensory recognition of specific objects in the environments. This sensory-information provides local information of robots immediate surroundings to its controllers. The information is dealt intelligently by the robot to reach the global objective (the target). Navigational paths as well as time taken during navigation by the mobile robot can be expressed as an optimisation problem and thus can be analyzed and solved using AI techniques. The optimisation of path as well as time taken is based on the kinematic stability and the intelligence of the robot controller. A successful way of structuring the navigation task deals with the issues of individual behaviour design and action coordination of the behaviours. The navigation objective is addressed using fuzzy logic, neural network, adaptive neuro-fuzzy inference system and different other AI technique.The research also addresses distributed autonomous systems using multiple robot
    corecore