100 research outputs found

    Collective additive tree spanners for circle graphs and polygonal graphs

    Get PDF
    AbstractA graph G=(V,E) is said to admit a system of ÎŒ collective additive tree r-spanners if there is a system T(G) of at most ÎŒ spanning trees of G such that for any two vertices u,v of G a spanning tree T∈T(G) exists such that the distance in T between u and v is at most r plus their distance in G. In this paper, we examine the problem of finding “small” systems of collective additive tree r-spanners for small values of r on circle graphs and on polygonal graphs. Among other results, we show that every n-vertex circle graph admits a system of at most 2log32n collective additive tree 2-spanners and every n-vertex k-polygonal graph admits a system of at most 2log32k+7 collective additive tree 2-spanners. Moreover, we show that every n-vertex k-polygonal graph admits an additive (k+6)-spanner with at most 6n−6 edges and every n-vertex 3-polygonal graph admits a system of at most three collective additive tree 2-spanners and an additive tree 6-spanner. All our collective tree spanners as well as all sparse spanners are constructible in polynomial time

    Isometric Embeddings in Trees and Their Use in Distance Problems

    Get PDF
    International audienceWe present powerful techniques for computing the diameter, all the eccentricities, and other related distance problems on some geometric graph classes, by exploiting their "tree-likeness" properties. We illustrate the usefulness of our approach as follows: (1) We propose a subquadratic-time algorithm for computing all eccentricities on partial cubes of bounded lattice dimension and isometric dimension O(n^{0.5−Δ}). This is one of the first positive results achieved for the diameter problem on a subclass of partial cubes beyond median graphs. (2) Then, we obtain almost linear-time algorithms for computing all eccentricities in some classes of face-regular plane graphs, including benzenoid systems, with applications to chemistry. Previously, only a linear-time algorithm for computing the diameter and the center was known (and an O(n^{5/3})-time algorithm for computing all the eccentricities). (3) We also present an almost linear-time algorithm for computing the eccentricities in a polygon graph with an additive one-sided error of at most 2. (4) Finally, on any cube-free median graph, we can compute its absolute center in almost linear time. Independently from this work, BergĂ© and Habib have recently presented a linear-time algorithm for computing all eccentricities in this graph class (LAGOS'21), which also implies a linear-time algorithm for the absolute center problem. Our strategy here consists in exploiting the existence of some embeddings of these graphs in either a system or a product of trees, or in a single tree but where each vertex of the graph is embedded in a subset of nodes. While this may look like a natural idea, the way it can be done efficiently, which is our main technical contribution in the paper, is surprisingly intricate

    A New Optimality Measure for Distance Dominating Sets

    Get PDF
      We study the problem of finding the smallest power of an input graph that has k disjoint dominating sets, where the ith power of an input graph G is constructed by adding edges between pairs of vertices in G at distance i or less, and a subset of vertices in a graph G is a dominating set if and only if every vertex in G is adjacent to a vertex in this subset.   The problem is a different view of the d-domatic number problem in which the goal is to find the maximum number of disjoint dominating sets in the dth power of the input graph.   This problem is motivated by applications in multi-facility location and distributed networks. In the facility location framework, for instance, there are k types of services that all clients in different regions of a city should receive. A graph representing the map of regions in the city is given where the nodes of the graph represent regions and neighboring regions are connected by edges. The problem is how to establish facility servers in the city (each region can host at most one server) such that every client in the city can access a facility server in its region or in a region in the neighborhood. Since it may not be possible to find a facility location satisfying this condition, "a region in the neighborhood" required in the question is modified to "a region at the minimum possible distance d".   In this thesis, we study the connection of the above-mentioned problem with similar problems including the domatic number problem and the d-domatic number problem. We show that the problem is NP-complete for any fixed k greater than two even when the input graph is restricted to split graphs, 2-connected graphs, or planar bipartite graphs of degree four. In addition, the problem is in P for bounded tree-width graphs, when considering k as a constant, and for strongly chordal graphs, for any k. Then, we provide a slightly simpler proof for a known upper bound for the problem. We also develop an exact (exponential) algorithm for the problem, running in time O(2. 73n). Moreover, we prove that the problem cannot be approximated within ratio smaller than 2 even for split graphs, 2-connected graphs, and planar bipartite graphs of degree four. We propose a greedy 3-approximation algorithm for the problem in the general case, and other approximation ratios for permutation graphs, distance-hereditary graphs, cocomparability graphs, dually chordal graphs, and chordal graphs. Finally, we list some directions for future work

    LIPIcs, Volume 244, ESA 2022, Complete Volume

    Get PDF
    LIPIcs, Volume 244, ESA 2022, Complete Volum
    • 

    corecore