
A New Optimality Measure

for Distance Dominating Sets

by

Narges Simjour

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2006

c© Narges Simjour 2006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144141987?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I hereby declare that I am the sole author of this thesis. This is a true copy of

the thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

We study the problem of finding the smallest power of an input graph that has

k disjoint dominating sets, where the ith power of an input graph G is constructed

by adding edges between pairs of vertices in G at distance i or less, and a subset of

vertices in a graph G is a dominating set if and only if every vertex in G is adjacent

to a vertex in this subset. The problem is a different view of the d-domatic number

problem in which the goal is to find the maximum number of disjoint dominating

sets in the dth power of the input graph.

This problem is motivated by applications in multi-facility location and dis-

tributed networks. In the facility location framework, for instance, there are k

types of services that all clients in different regions of a city should receive. A

graph representing the map of regions in the city is given where the nodes of the

graph represent regions and neighboring regions are connected by edges. The prob-

lem is how to establish facility servers in the city (each region can host at most one

server) such that every client in the city can access a facility server in its region

or in a region in the neighborhood. Since it may not be possible to find a facility

location satisfying this condition, “a region in the neighborhood” required in the

question is modified to “a region at the minimum possible distance d”.

In this thesis, we study the connection of the above-mentioned problem with

similar problems including the domatic number problem and the d-domatic number

problem. We show that the problem is NP-complete for any fixed k greater than

two even when the input graph is restricted to split graphs, 2-connected graphs,

or planar bipartite graphs of degree four. In addition, the problem is in P for

bounded tree-width graphs, when considering k as a constant, and for strongly

chordal graphs, for any k. Then, we provide a slightly simpler proof for a known

upper bound for the problem. We also develop an exact (exponential) algorithm

for the problem, running in time O(2.73n). Moreover, we prove that the prob-

lem cannot be approximated within ratio smaller than 2 even for split graphs, 2-

connected graphs, and planar bipartite graphs of degree four. We propose a greedy

3-approximation algorithm for the problem in the general case, and other approxi-

iii

mation ratios for permutation graphs, distance-hereditary graphs, cocomparability

graphs, dually chordal graphs, and chordal graphs. Finally, we list some directions

for future work.

iv

Acknowledgments

First, I would like to thank my supervisor, Naomi Nishimura, for being con-

siderate, patient, and encouraging. I could not complete this thesis without her

helpful feedbacks.

Many thanks to Jonathan Buss and Jochen Konemann for accepting to be my

thesis readers and for their great suggestions.

I also would like to thank Therese Biedl for the wonderful course in graph theory

she taught. The course helped me much in proving the results in this thesis.

I benefited much from my meetings with my writing tutors, Nicole Keshav and

Janne Janke. I really appreciate their patience.

I want to thank the Iranian community in Waterloo who warmly welcomed me,

as well as all my friends in Iran who have always been close to me. Special thanks

goes to Azadeh Fakhrzadeh, Somayeh Azarnoosh, Raheleh Salari, Zahra Imanimehr,

Mahdieh Soleymani, and Sara Sadeghi.

Last but definitely not least, I want to thank my parents, Afsaneh Rezaie and

Reza Simjour, who have supported me through all my life in every possible way.

I also would like to thank my extra parents, Farideh Kiani and Ahmad Chini-

forooshan, my brothers, AmirHossein and Mohammad, and my sisters-in-law, El-

ham and Erfan, for their kindness and constant support. Special thanks to my

husband, Ehsan Chiniforooshan, for his companionship, support, encouragement,

and for his helpful discussions.

v

Dedication

This work is dedicated to my beloved mother and father.

vi

Contents

1 Introduction 1

2 Preliminaries 10

2.1 Graph Theory . 10

2.2 Approximation Algorithms . 15

2.2.1 Distance-Approximating Graphs 16

2.3 Exact (Exponential-time) Algorithms 19

2.4 Formal Definitions of the Problem 20

2.4.1 Preliminary and Known Results 25

3 NP-hardness Results and Polynomial Time Algorithms 31

3.1 NP-complete Cases . 31

3.2 Polynomial-time Solvable Cases . 40

3.2.1 Solving the MDDN Problem in Polynomial Time

for Strongly Chordal Graphs 40

3.2.2 Solving The MDDN Problem in Polynomial Time

for Bounded Tree-Width Graphs 42

4 An Upper Bound on the Value of MDDN(G, k) 46

vii

5 Exact Algorithms for General Graphs 49

5.1 Fomin et al.’s Algorithm . 49

5.2 An Improvement for the k = 3 Case 53

6 Approximation Algorithm 71

6.1 An Inapproximability Result . 71

6.2 A Greedy 3-Approximation Algorithm 73

6.3 Approximation Algorithms and

Special Families of Graphs . 76

6.4 Discussion . 80

7 Conclusion 82

7.1 Future Work . 83

viii

List of Tables

6.1 A list of approximation algorithms for the MDDN problem for special

classes of graphs. 79

ix

List of Figures

2.1 The matching diagram and the corresponding permutation graph for

permutation (4, 3, 5, 1, 2) . 15

2.2 Solving the domatic partition, the d-domatic partition, and the MDDN(G, k)

problem for a sample graph G. 23

3.1 An example G′ in the reduction from k-colorability to the MDDN problem 34

3.2 The reduction used in Corollary 3.11 and Corollary 3.12 versus the re-

duction in Corollary 3.9 for a sample graph G. Since these reductions

only differ in the G′ produced, we have not shown the coloring in G and

partition numbers in G′’s. 37

3.3 A monadic second order logic representation for the DP problem . . 45

4.1 The suggested partitioning and vertex labels in Theorem 4.1. 47

5.1 The final recursive formulas for the set cover problem in Fomin et

al.’s paper . 52

5.2 (con’t in the next page) An algorithm to enumerate minimal set covers of

size at most ℓ in (U,S). It is first called with C = ∅. 68

5.2 (con’t) . 69

5.3 An algorithm enumerating minimal dominating sets of size at most ℓ in

a graph G that is only selected from vertices in X ⊆ V (G) 70

x

5.4 Our new algorithm for the three domatic number problem. This algorithm

returns three disjoint dominating sets for the input graph, if D(G) ≥ 3. . 70

6.1 A 3-approximation algorithm for the MDDN problem 74

6.2 The status of vertex partitions in each iteration of the Approximate-

Partitioning algorithm. k is 3 in this example. The numbers rep-

resent partitions and the vertices with a partitioned neighbor are

circled. 75

xi

Chapter 1

Introduction

The concept of dominating sets is a fundamental and practical notion in computer

science. A dominating set for a graph G = (V, E) is a subset S of V such that each

vertex in V either is in S or has a neighbor in S. Assuming that the vertices of

the input graph represent different regions of a city and the edges connect vertices

representing close regions, a dominating set in the graph is a good candidate for the

set of regions providing a facility. Such facility location ensures that each region

can access the facility in a short time. Similar frameworks where cities can host

multiple facilities, bounded by a capacity value, are also interesting.

The domatic number problem, which consists of finding the maximum number

of disjoint dominating sets in an input graph, was introduced by Cockayne and

Hedetniemi [15]. This number was called the domatic number of the given graph.

Translated to the above-mentioned facility location problem, the domatic number

problem can be viewed as a multi-facility location problem where each node of the

graph has capacity one, i.e. it can provide only one facility; the goal in this problem

is to find the maximum number of facilities for which a multi-facility location can be

found such that in the neighborhood of every node in the graph all the facilities can

be found. Feige et al. [25] claimed in their paper they can show that the general

case of having arbitrary capacities for graph vertices, even different for different

vertices, is reduced to this single unit capacity case, where each vertex can host at

1

most one facility.

Different variants of dominating sets lead to different domatic number problems.

Haynes and Hedetniemi have surveyed the results on almost 150 different variants

of dominating set, and some of their corresponding domatic number problems [35].

Distance dominating set, for instance, introduced by Borowiecki and Kuzak in

1976 [7], refers to a subgraph S of graph vertices such that every vertex in the

graph is in S, or has a neighbor within a given distance d in S. Replacing the dom-

inating sets with d-dominating sets (i.e. distance dominating sets with parameter d)

in the definitions of the domatic number of a graph and the domatic number prob-

lem, results in the d-domatic number of a given graph and the d-domatic number

problem. The d-domatic number problem has the same application as the domatic

number problem, except that in the corresponding facility location problem clients

are more tolerant and accept being a distance d from facility centers.

The following applications are two examples of the applications of the d-domatic

number problem. The first problem is a generalized version of the communication

network problem mentioned by Riege and Rothe as a justification for the domatic

number problem [50]. The second one is an information replication problem that

arises in networks.

1. Consider k different wireless services such as satellite TV, radio channels, and

cell phones. How can we establish a number of transmission centers, e.g, TV

stations and radio stations, such that every customer v in the network can

access all the wireless services, i.e. for every service s, 1 ≤ s ≤ k, there is

a transmission center providing s within a given distance d of v? In which

cases is this placement possible?

2. How can we distribute copies of data items p1, p2, . . . , pk in a network of

computers such that exactly one data item is stored on each computer and

for every computer v in the network copies of all the data items are within

a given distance d of v? We can think of d as a distance limit that specifies

how far from a computer we are allowed to store data items. We can modify

the question to present exactly the domatic number problem: given a graph

2

G and distance d, what is the maximum possible number of data items k that

allows such a data distribution?

In this thesis, we study the d-domatic number problem from a slightly different

point of view, in the sense that for a given graph G and an integer k, we seek the

minimum d for which k disjoint d-dominating sets can be found in G; as mentioned

earlier, in the d-domatic number problem the goal was to maximize the number of

disjoint dominating sets k for a given distance limit d. This problem, denoted by

the minimum distance domatic number problem, or the MDDN problem, is moti-

vated by applications with a fixed number of services, where we want to specify

the facility centers such that each client can access all services in a short time, i.e.

facility centers are within an acceptable distance of each client. In such applica-

tions, it is reasonable to seek the minimum possible distance d for which a facility

location, with worst case access time d, can be found. Similar problems with dif-

ferent optimality measures, mostly considering average access time criteria, have

been studied before [5, 40, 42, 4].

Although the d-domatic number problem is not a new problem, no one has

studied this problem considering d as the optimality measure. However, previous

results on the domatic number and d-domatic number problems can be carried

over to this version of the problem. In the rest of this section, we review the

known results on the domatic number problem, the d-domatic number problem, and

variants of the d-domatic number problem, along with our improvements for some

cases. Then, we study the connection of these results to our work and summarize

our contributions to the MDDN problem in this thesis.

We consider the results on the domatic number problem in two categories of

results on arbitrary input graphs and results on special families of graphs. In

each case, we survey the NP-hardness results and polynomial time algorithms,

approximability results, and exponential exact algorithm developments.

The domatic number problem was one of the NP-complete problems listed by

Garey and Johnson [31]. Even the restricted problem of determining whether the

vertices of a given graph can be partitioned into three disjoint dominating sets,

3

called the three domatic number problem, has been proved to be NP-complete [31].

Riege and Rothe have shown the domatic number problem is closely connected to

the boolean hierarchy levels [50] defined by Cai et al. [12, 13]; they proved that

the problem of determining whether the domatic number of a graph is among k

given values is complete for the 2kth level of boolean hierarchy over NP, denoted

by BH2k(NP), with respect to polynomial time reductions. In particular, the k = 1

case is called the exact domatic number problem which asks whether the domatic

number of a graph is equal to a given integer. Therefore, the exact domatic number

problem is complete for BH2(NP).

Feige et al. gave the first approximation result for the domatic number problem

on general graphs in 2000 [25]. They developed an algorithm to partition any input

graph into (1−o(1))(δ+1)/ ln(n) disjoint dominating sets, where δ is the minimum

degree of vertices in the input graph. Since the number of disjoint dominating

sets cannot exceed δ + 1, this gives a (1 + o(1)) ln(n)-approximation algorithm for

the problem. Furthermore, they proved that having a (1− ǫ) ln(n)-approximation

algorithm implies that NP ⊆ DTIME(nO(loglogn)). In a non-constructive proof they

showed the (1− o(1))(δ +1)/ ln(∆) lower bound for the domatic number of general

graphs. After refinement, this proof led to an algorithm finding Ω(δ/ ln(∆)) disjoint

dominating sets in the input graph in polynomial time. It is worth mentioning that

the only previously proved lower bound on the domatic number of general graphs

was ⌈n/(n− δ)⌉ [58].

As for fast exponential-time exact algorithms, the only results of which we are

aware are due to Riege and Rothe [51], Fomin et al. [26], and Riege et al. [52]. Riege

and Rothe obtained an Õ(2.9416n) time algorithm for the three domatic number

problem, where Õ is used to ignore polynomial factors in the running time as is

usual in working with exponential-time algorithms. Then, Fomin et al. succeeded

to obtain a faster algorithm solving the domatic number problem in the general

case in Õ(2.8805n) time. Their algorithm uses almost the same technique as the

classical algorithm for the chromatic number problem, introduced by Lawler [43].

Then, we developed a Õ(2.7393n) algorithm for the three domatic number problem,

improving the running time of Fomin et al.’s algorithm. Recently, Riege et al.

4

found a new algorithm for the three domatic number problem with Õ(2.695n) time

complexity [52]. However, the approaches taken are different, and we present our

exact algorithm in this thesis.

The difficulty of the domatic number problem in general has motivated many

studies on solving the domatic number problem for special families of graphs; it has

been shown that the domatic number problem can be solved in polynomial time for

strongly chordal graphs [24], whereas it is NP-complete for circular-arc graphs [6],

bipartite graphs, and therefore for comparability graphs, split graphs, and hence

for chordal and co-chordal graphs [38]. Furthermore, in this thesis, we prove the

NP-completeness of the domatic number problem for planar bipartite graphs of

maximum degree four, which was not known before.

Other results on the domatic number of special families of graphs consist of exact

algorithms developed for solving the three domatic number problem for graphs of

maximum degree 3 and 4 [51], development of a 4-approximation algorithm for

the domatic number problem on circular-arc graphs [47], and proving that the

existence of an (1 − ǫ) ln(n)-approximation algorithm for split or bipartite graphs

implies NP ⊆ DTIME(nO(loglogn)).

As explained in the introduction, a variation of the domatic number problem,

called the d-domatic number problem, provides the basis for the MDDN problem’s

definition. As far as we know, the only paper working explicitly on the d-domatic

number problem is due to Zelinka [59]; in this paper, Zelinka combined the concept

of distance domination with domatic number and introduced the d-domatic number

problem [59]. He gave a constructive proof stating that the d-domatic number for

different graphs may be any value between d + 1 and n. As special cases of the

d-domatic number problem, he calculated the exact value of the d-domatic number

for a path or a circle. Moreover, he proved that the (k− 1)-domatic number of any

graph G is at least min{n, k}. In this thesis, we give a slightly simpler proof for

this bound.

A generalization of d-domatic number, called (r,d)-configuration, was listed

among the dominating set applications in a book by Haynes et al., published in

5

1998 [36]. A (r, d)-configuration problem asks whether in a given graph G with

nodes of capacity r a multi-facility location can be found such that each node can

access all facilities, where a node of capacity r can host at most r facilities; a node

v has access to a facility s if and only if there is a facility center providing s within

distance d of v. However, the two references [29, 30] mentioned for this concept

were both considering (r, 1)-configurations rather than working on both parame-

ters r and d. Later in 2002, Feige et al. claimed that the domatic number problem

for the general case of having arbitrary capacities for graph vertices, even if not

equal capacities for different vertices, is reduced to the single unit capacity case,

where each vertex can host at most one facility [25]. In other words, computing an

(r, 1)-configuration can be reduced to the (1, 1)-configuration which is the classic

domatic number problem. Unfortunately, since their paper focused on a different

issue, they did not give any argument to support their statement.

The all-factor d-domatic coloring and matched-factor d-domatic coloring prob-

lems, introduced by Alon et al. [1], are other variations of the d-domatic number

problem. As first defined by Brigham and Dutton, a ℓ-factorization of a graph G

is a partitioning of G into ℓ edge-disjoint subgraphs called factors [11]. Alon et

al. generalized the factorization concept and accepted edge-overlapping subgraphs

as factors. They also defined an all-factor d-domatic coloring of a graph G with k

colors for a given t-factorization of G as partitioning V (G) into k partitions such

that each partition is a d-dominating set for each of the factors. In addition, they

defined a matched-factor d domatic coloring of G for a given k-factorization of G

as finding k disjoint d-dominating sets D1, D2, . . . , Dk in G such that Di dominates

the ith factor, 1 ≤ i ≤ k. In the all-factor coloring problem with input k and ℓ,

the goal is to find the minimum distance d for which an acceptable all-factor d-

domatic coloring with k colors can be done given any ℓ-factorization of the input

graph G. Alon et al. obtained two upper bounds ⌈3(ℓk − 1)/2⌉ and O(k log(kℓ))

on this minimum value, when ℓ ≥ 2, k ≥ ℓ and ℓ ≥ 1, k ≥ 1, respectively. In

addition, they proved a lower bound ω(k log(ℓ)) on this value, when k ≥ 2 and

ℓ ≥ 4 [1]. The matched-factor coloring problem with input k is defined similarly; it

asks for the minimum distance d for which an acceptable matched-factor d-domatic

6

coloring with k colors can be done given any k-factorization of the input graph G.

For this optimum value, Alon et al. proved a lower bound k and an upper bound

⌈3(k − 1)/2⌉, for k ≥ 2.

Now, we explain the known results and new contributions on the MDDN prob-

lem in four categories of NP-complete and polynomial cases, upper bounds on the

solution to the MDDN problem, development of exact (exponential) algorithms,

and approximability aspects of the problem. We use MDDN(G, k) to denote the

solution to the MDDN problem when the input graph is G and the number of

required disjoint distance dominating sets is k.

We will see in the preliminaries section that the polynomial computability of the

domatic number of strongly chordal graphs results in a polynomial time algorithm

solving the MDDN problem for strongly chordal graphs. We will also show that

MDDN(G, k) can be computed in polynomial time for bounded tree-width graphs,

for any constant k. Moreover, we will show that if the domatic number problem

is NP-complete for a special family of graphs, the MDDN problem is also NP-

complete for it. Therefore, the previously mentioned NP-completeness results for

the domatic number problem prove that the MDDN problem is NP-complete in

general, and even for circular-arc graphs, bipartite graphs, split graphs, chordal

graphs, and co-chordal graphs. In addition, we will give a reduction from the k-

coloring problem to the MDDN problem in Chapter 3. This reduction helps us

prove the NP-completeness of computing MDDN(G, k) for any fixed k ≥ 3 even

for split graphs and 2-connected graphs. Furthermore, using this reduction, we

also prove that the problem of determining MDDN(G, 3) is NP-complete for planar

bipartite graphs of degree four.

We will see in the preliminaries section that Zelinka’s bound on the (k − 1)-

domatic number results in the tight upper bound k−1 for MDDN(G, k). We prove

Zelinka’s upper bound using a slightly simpler argument.

The all-factor d-domatic coloring and matched-factor d-domatic coloring prob-

lems can be viewed as restricted forms of our problem. These problems are very

similar to our problem in the sense that the goal in both these problems are finding

7

a minimum distance d that allows an acceptable partitioning for the vertices of a

given graph into k partitions. The desired partitioning in both of these frameworks

is not only an acceptable d-domatic partitioning, but also each partition must dom-

inate V (G) via a constrained set of edges. Therefore, any upper bound on these

values is also an upper bound on the solution to the MDDN problem. However,

all the upper bounds proved for these problems are larger than k − 1 [1], i.e. the

upper bound on the MDDN problem. Therefore, the results on these problems do

not have any effect on the MDDN problem.

We will show in the preliminaries section any exact exponential algorithm for

the domatic number problem or the three domatic number problem, that runs

in time Õ(αn), gives an exact exponential algorithm of running time Õ(αn) for

computing MDDN(G, k) in general or for k = 3, respectively. Consequently,

the exact algorithms mentioned for computing the domatic number problem give

Õ(2.9416n), Õ(2.8805n), Õ(2.7393n), and Õ(2.695n) time algorithms for computing

MDDN(G, 3), and an Õ(2.8805n) time algorithm for solving the MDDN problem

in general.

We propose an algorithm approximating the MDDN problem within ratio 3,

and prove that this ratio cannot be improved to (2− ǫ) for any ǫ > 0, unless P =

NP. This inapproximability result holds also for split graphs, 2-connected graphs,

and planar bipartite graphs of ∆ ≤ 4. In addition, we obtain better approximation

ratios for permutation graphs, cocomparability graphs, distance-hereditary graphs,

dually chordal graphs, and chordal graphs.

In summary, in this thesis, we study the status of the MDDN problem on

various graph families, develop an exact (exponential) algorithm for the problem,

and investigate the approximability aspects of the MDDN problem.

The remainder of this thesis is structured as follows: we fix pertinent notation

in the following chapter. We also discuss related problems and their connection to

our problem. In Chapter 3, we study the complexity of the problem in the general

case and for special graph classes. Then, in Chapter 4, we present a slightly simpler

proof for a known upper bound for the problem. In Chapter 5, we explain a new

8

exact exponential-time algorithm for the problem. Chapter 6 addresses different

approximability aspects of the problem. At the end, we have a conclusion and

summarize possible future work.

9

Chapter 2

Preliminaries

In this chapter, we fix pertinent notation for the problem and list several obser-

vations and preliminary results for the problem. We first present graph theory

preliminaries in Section 2.1. As will be shown in Section 2.4, the MDDN problem

is an optimization problem and is NP-hard in the general case. To tackle NP-

hard optimization problems, several approaches, including solving the problem on

restricted domains, development of approximation algorithms, and exact (exponen-

tial) algorithms have been suggested. Motivated by these suggestions, we will look

at the MDDN problem from these three points of view later in this thesis. But

first, we briefly overview the basic definitions of approximation algorithms and ex-

act (exponential) algorithms in Sections 2.2 and 2.3. Then, we present the formal

definition of the main problem in Section 2.4, continued by a list of preliminary or

known results for the problem.

2.1 Graph Theory

We first define the necessary notation of graph theory used in this thesis. For further

information on graphs, we refer the reader to a book by Douglas B. West [56].

A graph G is a pair (V, E), where V is a set and E ⊆ {{u, v} | u, v ∈ V }. V

and E denote the sets of vertices and edges in the graph, respectively. We may

10

use V (G) and E(G) instead of V and E. The numbers of vertices and edges in

the graph G, i.e. |V (G)| and |E(G)|, are represented by nG and mG. An edge

e = {u, v} is called a self-loop when its two endpoints u and v are the same vertex.

A graph is simple if it does not have any self-loops among its edges.

We call two vertices u, v ∈ V (G) adjacent if there exists an edge e = {u, v}

in E connecting u and v. For every vertex u ∈ V (G), we use NG(u) to denote

the set of vertices in G that are adjacent with u. We call this set of vertices the

neighbors of u in G. We can also define the neighbors of a set of vertices U ⊆ V (G)

as NG(U) = {v | ∃u ∈ U such that v ∈ NG(u)}. For each vertex v, the number

of adjacent vertices with v is called deg(v), or the degree of v. In the rest of this

thesis, we denote the minimum (maximum) degree of a graph G by δ(G) (∆(G)).

A path between vertices u and v is defined as a sequence of vertices w1, w2, . . . , wℓ+1

such that u = w1, v = wℓ+1, {wi, wi+1} ∈ E for all 1 ≤ i ≤ ℓ, and each vertex ap-

pears at most once in this sequence. The length of a path P is the number of edges

in P . We denote an n-vertex graph consisting of a path of length n − 1 without

any more edges by Pn. For every pair of vertices u and v in a graph G, the distance

between u and v, denoted by dG(u, v), is the length of the shortest path from u to

v in G. The distance between a vertex w and a set of vertices U ⊆ V is defined

as min{dG(u, w) | u ∈ U}. The diameter of a graph G, denoted by diam(G), is

the maximum distance among all possible pairs of vertices in G. When we speak

of vertices within a distance r of v, we refer to the set of vertices {u1, . . . , uℓ} such

that dG(ui, v) is at most r for all 1 ≤ i ≤ ℓ.

A cycle of length ℓ is a path of length ℓ− 1 where the first and last vertices in

the corresponding sequence are adjacent. In a cycle C, every edge connecting two

non-consecutive vertices in the cycle sequence is called a chord. A chord in C is

said to be strong if it connects two vertices wi and wj , i ≤ j, in the cycle sequence

such that either (j− i) or (n−(j− i)) is odd. In other words, there is an odd-length

path in C from wi to wj, or from wj to wi.

We may eliminate the index G whenever G is known from context.

We say a graph G is connected if for all pairs of vertices u, v ∈ V (G) there is

11

a path between u and v in G. The complement of a graph G = (V, E) is a graph

whose vertex set is V and has an edge between any two vertices u, v ∈ V if and only

if {u, v} /∈ E. Removing an edge {u, v} from a graph G means constructing a new

graph with the same vertex set connected via edge set E − {u, v}. Similarly, the

graph produced by removing a vertex v from G is a graph with vertex set V −v and

edge set E, except that in this case we also remove edges of the form {v, u}, u ∈ V,

to avoid edges with one endpoint. For a graph G = (V, E), any graph generated

after a sequence of vertex and edge removals is called a subgraph of G. A subgraph

of G is spanning if it has the same vertex set as G. An induced subgraph of G is a

graph resulting from removing a number of vertices from G. The subgraph induced

by a set of vertices U ⊆ V is the induced subgraph of G with vertex set U . A set

of vertices U in G is an independent set if the subgraph induced by U has no edges.

An induced subgraph H of G is called isometric if the distances between H vertices

are the same as their distances in G. A subdivision graph of G = (V, E) is a graph

constructed by adding a new vertex wij to V for every {vi, vj} ∈ E, and replacing

every edge {vi, vj} ∈ E by two edges {vi, wij} and {wij, vj}.

In a connected graph G, a vertex v ∈ V (G) is a cut-vertex if removing v from

G a disconnected graph. A connected subgraph B of G is called block if it has no

cut-vertex and any other subgraph B′ of G containing B, i.e. B is a subgraph of

B′, has a cut-vertex.

As we will look at the problem for special graph classes, here we present defi-

nitions of several special families of graphs. In the following list, G is an n-vertex

graph, and each line specifies the property necessary for G to be categorized as an

special graph.

• Complete graph, denoted by Kn: Each pair of vertices u, v ∈ V (G) is adjacent.

• Tree: G is a connected graph without any cycles.

• Split graph: V (G) can be divided into two partitions, i.e. sets of vertices, X

and Y , such that the subgraph induced by X is a complete graph and Y is

an independent set in G.

12

• Bipartite graph: V (G) can be partitioned into two partitions X and Y such

that both X and Y are independent sets in G.

• k-connected graph: For every pair of vertices u, v ∈ V (G), there are k vertex-

disjoint paths in G between u and v.

• Block graph: Every block in G is a complete graph.

• Chordal graph: Every cycle of length at least four in G has a chord.

• Strongly chordal graph: G is chordal, and every cycle of G on at least five

vertices has a strong chord.

• Dually chordal graph: G has a maximum neighborhood ordering defined as

follows. A maximum neighbor for a vertex v in G is a vertex u for which

NG(w) ⊆ NG(u) for any vertex w ∈ NG(v) other than u. A maximum neigh-

borhood ordering is an ordering (v1, v2, . . . , vn) for V (G) such that for every

1 ≤ i ≤ n, vi has a maximum neighbor ui in the subgraph Gi of G in-

duced by {vj | j ≥ i}; that is, for every vertex w ∈ NGi
(vi) the condition

NGi
(w) ⊆ NGi

(ui) holds.

• Comparability graph: E(G) can be oriented such that for every three vertices

u, v, w ∈ V (G), {u, v}, {v, w} ∈ E(G) with {u, v} oriented from u to v and

{v, w} oriented from v to w, {u, w} ∈ E(G) and it is oriented from u to w.

• Planar graph: G can be drawn on the plane such that no two edges cross in

a point other than their endpoints.

• Distance-hereditary graph: All connected induced subgraphs of G are isomet-

ric.

• k-tree: G is a chordal graph and w(G) ≤ (k + 1), where w(G) is the size of

the maximum complete subgraph (clique) of G.

• Graph of tree-width k: G is a subgraph of k-tree.

13

• Bounded tree-width graphs: Graphs whose tree-widths are bounded by a con-

stant value.

To define the next four graph classes, we need to establish the following general

term:

Definition 2.1. The intersection graph of a family of non-empty sets F is con-

structed by creating a vertex for each set in F and putting an edge between any pair

of vertices whose corresponding sets intersect.

Various F ’s lead to different graph families:

• Interval graph: intersection graph of a set of intervals on the real line.

• Circular-arc graph: the intersection graph of a set of arcs of a circle.

• Directed path graph: the intersection graph of a set of directed paths of a

directed tree.

• Permutation graph: the intersection graph of line segments in the match-

ing diagram of a permutation; for a permutation (π1, π2, . . . , πn) of numbers

{1, 2, . . . , n}, the matching diagram is drawn by putting n points in a hori-

zontal row in correspondence with numbers 1, 2, . . . , n, and another n points

in a horizontal row below the first row, corresponding to π1 to πn. Then, the

points corresponding to the same numbers in the first and the second rows are

connected via straight line segments. The intersection graph of these drawn

line segments is a permutation graph. The matching diagram of permutation

(4, 3, 5, 1, 2) and the constructed permutation graph is shown in Figure 2.1.

Starting the name of any of the above-mentioned families of graphs, say family

F , with ‘co’ specifies another family of graphs whose complements fall in F . For

example, ‘cochordal’ graphs refers to the set of graphs with a chordal complement.

14

Figure 2.1: The matching diagram and the corresponding permutation graph for

permutation (4, 3, 5, 1, 2)

2.2 Approximation Algorithms

To study the MDDN problem, it is useful to note that it is an optimization prob-

lem. An optimization problem is a quadruple (I, s, m, g), where I is the set of

input instances, s is a function that returns a set of feasible solutions for each in-

put instance, m is the measure function returning a real measure value for each

feasible solution and input instance, and g is the goal function which is min or

max. The goal is to find for a given input instance x a feasible solution opt such

that m(opt, x) = g{m(y, x) | y ∈ s(x)}. We call such a solution an optimal solu-

tion, and its corresponding measure value the optimum. For further information on

optimization problems the reader is referred to a book by Vazirani [55].

In difficult optimization problems, it is reasonable to seek an algorithm return-

ing almost optimal solutions, rather than exact solutions. For a problem P , a

polynomial-time algorithm A that returns a feasible solution of measure value at

most t·OPT(P), for every input instance x ∈ I, is called a t-approximation algo-

rithm for P . We refer to the t value as the approximation ratio of A. In this thesis,

we also use (t, c)-approximation to denote an algorithm always returning a value at

most t·OPT(P) + c.

Next, we explain one of the approximation tools for graph problems. This notion

will be useful in developing approximation algorithms for the MDDN problem on

15

special families of graphs.

2.2.1 Distance-Approximating Graphs

A well-studied problem is whether a metric space can be embedded into another

metric space such that the distances in the new metric space are approximately the

same as the original distances. This concept has lots of applications in computa-

tional geometry, graph algorithms, compact routing, and network design [37, 44,

20, 33, 53, 17]. A graph can be viewed as a geometric object, in a metric space,

specified by vectors representing vertices, where the distance between each pair of

vectors is exactly the length of a shortest path connecting their corresponding ver-

tices. In many problems it is useful to transform the input graph to a simpler graph

approximating the distances in the original graph, and solve the problem for this

“distance approximating graph”. We are interested in embeddings of graph metric

spaces to graph metric spaces. The studies in this area have been mainly focused

on mapping input graphs to sparse distance-approximating graphs [16, 49, 14], in

particular spanning trees. In many cases finding distance-approximating spanning

trees is not possible. For applications such as efficient routing, it is also beneficial

to find a set of trees for the input graph G such that the distance between each

pair of vertices in G is approximated in one of the trees [34, 22].

We define distance-approximating graphs in more detail, as we will use several

known results on them to design approximation algorithms for the MDDN problem:

Definition 2.2. A distance-approximating graph for a graph G = (V, E) is a graph

R = (V ′, E ′) in which for every pair of vertices u, v ∈ V , dR(u, v) ≤ t · dG(u, v) for

some constant t.

We can define a ratio for such graphs to specify how close their distances are to

distances in G:

Definition 2.3. A distance-approximating graph of ratio (t, c) for a graph G =

(V, E) is a graph R = (V ′, E ′) in which for every pair of vertices u, v ∈ V ,

dR(u, v) ≤ t · dG(u, v) + c.

16

Sometimes, a distance-approximating graph is required to be a spanning subgraph

of the main graph:

Definition 2.4. A distance-approximating spanner for a graph G = (V, E) is a

graph for G that is also a spanning subgraph of G.

For simpler reference to the ratios of such spanners, the following three terms have

been defined in the literature:

Definition 2.5. A multiplicative t-spanner of a graph G = (V, E) is a spanning

subgraph R = (V, E ′) of G in which for every pair of vertices u, v ∈ V , dR(u, v) ≤

t · dG(u, v).

Definition 2.6. An additive c-spanner of a graph G = (V, E) is a spanning sub-

graph R = (V, E ′) of G in which for every pair of vertices u, v ∈ V , dR(u, v) ≤

dG(u, v) + c.

The additive and multiplicative spanner definitions can be written in the following

generalized form:

Definition 2.7. A (t, c)-spanner of a graph G = (V, E) is a spanning subgraph R =

(V, E ′) of G in which for every pair of vertices u, v ∈ V , dR(u, v) ≤ t · dG(u, v) + c.

As far as we know, the only special graph class of distance-approximating span-

ners people have worked on are tree spanners:

Definition 2.8. A tree (t, c)-spanner of a graph G is a tree that is also a (t, c)-

spanner for G.

Note that not all graphs have multiplicative or additive tree (t, c)-spanners for

some constants t and c. For instance, a cycle of length n does not have any tree

t-spanner, when t ≤ n − 2. The only existing spanning tree in this graph is an

n-vertex path. However, the distance between the first and last vertices in the

path is n − 1, whereas they are adjacent in G. Even restricting our attention to

chordal graphs does not solve the problem; for every fixed t, there exists a planar

17

chordal graph that does not have any multiplicative or additive tree t-spanners [9].

Brandstädt showed that for any t ≥ 4, checking whether a tree t-spanner exists in

a given chordal graph G of diam(G) ≤ t + 1 (respectively, t + 2) for even (odd) t’s

is NP-complete [9]. Moreover, for any fixed t ≥ 5, determining whether a chordal

bipartite graph has a multiplicative t-spanner is NP-complete [10]. It is also known

that there are distance-hereditary graphs without any additive tree 1-spanners [41].

However, for several graph classes there are algorithms finding tree spanners.

We list them for future reference:

Theorem 2.9. [46] There is a linear-time algorithm to find multiplicative tree

3-spanners for interval graphs and permutation graphs.

Theorem 2.10. [48] There is an algorithm to find additive tree 2-spanners for

interval graphs and distance hereditary graphs.

Theorem 2.11. [48] There is an algorithm to find an additive tree 4-spanner for

cocomparability graphs.

Theorem 2.12. [8] There are linear-time algorithms to find additive tree 3-

spanners for strongly chordal graphs and dually chordal graphs.

Furthermore, although the chordal graphs do not have distance-approximating

spanners, the following theorem is proved for them:

Theorem 2.13. [8] For every chordal graph G, there is a distance-approximating

graph T of ratio (1, 2) that is also a spanning tree for G2. Such a tree can be found

in linear time.

We will use the previous list of algorithms and this theorem later to design ap-

proximation algorithms for the MDDN problem for permutation graphs, distance-

hereditary graphs, cocomparability graphs, dually chordal graphs, and chordal

graphs.

18

2.3 Exact (Exponential-time) Algorithms

Recently, there has been growing interest in designing relatively fast exact exponential-

time algorithms for NP-hard problems. Efficient exponential-time algorithms may

be useful in working with small-size inputs.

In working with exponential-time algorithms, polynomial factors are not im-

portant in running times and typically are ignored in the computations; because,

increasing the base by a small amount creates a significantly higher order level:

for any polynomial function p, p(n) · αn ∈ O((α + ǫ)n). Therefore, instead of the

classic O notation in which constant coefficients are ignored, the notation Õ is used

in computations dealing with exponential algorithms:

Definition 2.14. For two functions f and g, we say that f(n) is in Õ(g(n)) if and

only if f(n) ∈ O(g(n) · (log g(n))O(1)).

Note that this definition is equivalent to the following definition for exponential

g(n)’s:

Definition 2.15. For functions f and g(n) = αn, we say that f(n) is in Õ(g(n))

if and only if there exists a polynomial p such that f(n) ∈ O(p(n) · g(n)).

As we will refer to the following technique of exact algorithms later, we briefly

explain it here:

The measure and conquer method has been recently formalized by Fomin et al. [27].

The goal is to find an upper bound on the number of acceptable solutions of ev-

ery instance I of the problem. In this technique, a function f , called the problem

measure, is defined to measure the size of each problem instance I, and it is as-

sumed that the desirable upper bound on the number of acceptable solutions of I

depends only on the problem measure, i.e. f(I). Considering all possible cases for

the acceptable solutions of I, several recursive formulas are derived to compute the

number of solutions to a problem based on the number of solutions to problems of

smaller sizes. Finally, to prove a bound on the time complexity of the problem, the

19

number of solutions for an instance of size s is assumed to be less than a parametric

function such as αn. Then, the parameters in the formulas, i.e. α in the example,

are set so that assuming the bound for the problems of smaller size, the bound can

be proved for the current problem size.

For further information on this field, the reader is referred to the comprehensive

surveys by Woeginger [57], Schöning [54], and Fomin et al. [28].

2.4 Formal Definitions of the Problem

Before defining our problem in this section, we bring the formal definitions of rele-

vant terms to specify our problem in terms of these known terms, making it possible

to use the literature on similar problems for our problem. Then, we specify our

problem precisely. At the end, we go through preliminary and known results on

the problem.

In all definitions below, and throughout the whole thesis, we only deal with

simple connected undirected graphs; we will mention otherwise.

As described in the introduction, our main problem is related to the domatic

number and the d-domatic number of a graph. In the following, we define these

two problems using the concepts of dominating set and d-dominating set. We first

describe the following useful term.

Definition 2.16. Suppose that U and W are two sets of vertices in a graph G =

(V, E); that is, U, W ⊆ V . We say that U covers W if and only if W ⊆ (N(U)∪U).

A dominating set in a graph is defined as follows.

Definition 2.17. We call a set of vertices U in G = (V, E), U ⊆ V , a dominating

set of G if and only if U covers V (G).

Now, we can define the domatic number of a graph:

Definition 2.18. The domatic number of a graph G, denoted by D(G), is the

maximum number of disjoint dominating sets in G.

20

To give better insight into the above-mentioned definitions, an illustrating ex-

ample is shown in Figure 2.2(a). Since one of the vertices in the example graph has

degree one, the number of disjoint dominating sets in this graph is at most two.

Hence, the two dominating sets, specified by labels 1 and 2 in the graph, convinces

us that the maximum number of disjoint dominating sets in this graph is two. In

other words, the domatic number of this graph is two.

Since every dominating set has a minimal dominating subset, we can use a

different, yet equivalent, definition of the domatic number: the domatic number of

a graph G is the maximum number of disjoint minimal dominating sets found in

G.

Changing the above-mentioned definitions slightly, we can define the d-domatic

number of a graph. Rather than dealing with dominating sets, the d-domatic

number is defined based on distance dominating sets. Distance dominating set is a

variant of dominating set in which the covering condition is relaxed to some extent:

Definition 2.19. For a graph G = (V, E) and an integer value d, a subset U of V

d-covers another subset W of V if and only if for every vertex w in W there is a

vertex u in U such that d(u, w) ≤ d.

According to this definition, in Figure 2.2(b), the two vertices labeled 4 2-cover

the set of all vertices in the graph.

Definition 2.20. A set of vertices U in G = (V, E), U ⊆ V , is called a distance

dominating set of G with distance limit d if and only if U d-covers V .

Generally, we use the terminology d-dominating set instead of distance domi-

nating set with distance limit d. Based on this notation, the set of vertices labeled

4 in Figure 2.2(b) form a 2-dominating set for the illustrated graph.

Below, the formal definition of the d-domatic number of a given graph is pre-

sented:

Definition 2.21. The d-domatic number of a graph G, denoted by d-D(G), is the

maximum number of disjoint [minimal] d-dominating sets in G.

21

The problem of determination of the domatic (d-domatic) number of a given

graph is called the domatic (d-domatic) number problem. The restricted version of

checking whether a graph can be partitioned into k disjoint dominating sets, i.e.

D(G) ≥ k, is called the k domatic number problem. Although finding the domatic

(d-domatic) number of a graph G is itself a hard problem, most of the time it is not

enough to find this count, as we want to find a partitioning as well. The problem of

partitioning graph vertices into D(G) (d-D(G)) disjoint dominating (d-dominating)

sets is called the domatic (d-domatic) partition problem. A k-partitioning of G

denotes a partitioning of V (G) into k non-empty sets.

In the sample graphs shown in Figure 2.2(a), the labels of vertices specify a

2-partitioning for the illustrated graph. As explained before, the domatic number

of the graph is two, and therefore, the specified 2-partitioning solves the domatic

partition problem for the graph. In Figure 2.2(b), the goal is to solve the 2-domatic

partition problem. Among the ten vertices in the graph, there is only one vertex,

labeled 1, that 2-covers the entire set of vertices. Equivalently, except one dominat-

ing set, all dominating sets for this graph include at least two vertices. Therefore,

2-D of this graph is at most 1 + ⌊(10 − 1)/2⌋ = 5. The five disjoint 2-dominating

sets in the image show that this maximum is possible.

Our main problem in this thesis is computing the minimum distance domatic

number defined in the following; we refer to this problem as the minimum distance

domatic number problem.

Definition 2.22. For a given graph G and an integer value k, the minimum dis-

tance domatic number is the minimum distance d for which d-D(G) ≥ k.

In is worth of mentioning that in this thesis, we will use a simplified version of

this definition, which will be presented later. Throughout this thesis, we use the

abbreviation MDDN rather than the minimum distance domatic number. Similarly,

the MDDN problem stands for the minimum distance domatic number problem.

Furthermore, we may use MDDN(G, k) to denote the minimum distance domatic

number given G and k as inputs. We call a k-partitioning of G specifying k disjoint

d-dominating sets an optimum MDDN(G, k) partitioning. In Figure 2.2(c), an

22

optimum MDDN(G, k) is found for the graph G. Note that MDDN(G, 6) > 2, as

2-DN(G) = 5. The partitioning shown in figure shows that it is possible to partition

V (G) into six disjoint 3-dominating sets, and as a result, MDDN(G, 6) = 3.

For the sake of simplicity, in the rest of this thesis we assume that every input

graph G has at least k vertices. If the number of vertices in G is less than k, there

cannot exist any partitioning of V into k non-empty disjoint subsets. This special

case can be checked and handled separately.

(a) A domatic partition (b) A 2-domatic partition (c) An optimum MDDN(G, 6)

partitioning

Figure 2.2: Solving the domatic partition, the d-domatic partition, and the

MDDN(G, k) problem for a sample graph G.

Using graph powers, we can simplify the previous definitions:

Definition 2.23. The rth power of G = (V, E), denoted by Gr, is a graph with the

vertex set V in which for every pair of vertices u, v in V , there is an edge between

u and v in Gr if and only if the distance between u and v in G is at most r.

According to this definition, an edge between two vertices in a power of G, say

Gd, is a symbol to show that the distance between these vertices in G is at most d.

As a result, we can restate all previous distance-related definitions as follows:

Definition 2.24. For a graph G = (V, E) and an integer value d, a subset U of V

23

d-covers another subset W of V if and only if for every vertex w in W there is a

vertex u in U such that {u, w} ∈ E(Gd).

Due to the definition of covering, it can also be restated in this form:

Definition 2.25. For a graph G = (V, E) and an integer value d, a subset U of V

d-covers another subset W of V if and only if U covers W in Gd.

Definition 2.26. A set of vertices U in G = (V, E), U ⊆ V , is called a d-

dominating set of G if and only if U covers V in Gd. Or equivalently, V is a

dominating set for Gd.

Definition 2.27. The d-domatic number of a graph G, denoted by d-D(G), is the

maximum number of disjoint [minimal] dominating sets in Gd.

In particular, since d-D(G) ≥ k in Definition 2.22 means that G can be par-

titioned into k disjoint d-dominating sets, the new definition of d-dominating set

helps us restate the definition of MDDN(G, k) in the following intuitive form:

Definition 2.28. For graph G and positive integer k, MDDN(G, k) is the minimum

d for which Gd can be partitioned into k disjoint [minimal] dominating sets. In other

words, MDDN(G, k) is the minimum d for which D(Gd) ≥ k.

The latter definition gives a lower bound for MDDN(G, k) based on the domatic

number of Gr, and clarifies the strong relationship between the MDDN problem

and the domatic number problem.

Definition 2.29. An optimum MDDN(G, k) partitioning is a k-partitioning of G

that specifies k disjoint dominating sets for GMDDN(G,k).

In Section 2.4.1, we will see that the MDDN problem is an NP-hard problem.

To deal with the difficulty of this problem, it helps us to note that this problem

fits in the framework of optimization problems mentioned in Section 2.2: in the

MDDN problem, I is a graph-integer pair; for an input instance x ∈ I, s(x) is the

set of all k-partitionings of G, and m(x, s(x)) is the maximum distance between

24

a vertex and a partition in x, as defined in page 11; and g is the min function.

We use OPT(MDDN(G, k)) to denote the optimum for this instance of the MDDN

problem.

2.4.1 Preliminary and Known Results

In this section, we go through a number of observations, simple lemmas, and known

facts for the MDDN problem that are needed in the next chapters. Note that we

always assume that the input graph is simple and connected. Also, whenever we

are working with the MDDN problem, we assume that the number of vertices in

the input graph is at least k.

In a complete graph, every subset of V is a dominating set. As a result, in

every k-partitioning, all vertices in the same partition form a dominating set in G1.

Hence, due to Definition 2.28, the MDDN for any Kn is 1. Note that for any graph

G, Gn = Kn. Therefore, the MDDN of any graph is at most n. Similarly, there are

n disjoint dominating sets in Gdiam(G) = Kn. Therefore, the minimum d for which

(Gd) has k disjoint dominating sets is at most diam(G), which leads us to the first

upper bound on MDDN(G, k):

Observation 2.30. For every graph G and any number k, MDDN(G, k) ≤ diam(G).

A result by Zelinka on the d-domatic number of an arbitrary graph proves an-

other upper bound on MDDN(G, k). He proved that (k−1)-D(G) ≥ min{n, k} [59].

Equivalently, if a graph G has at least k vertices, Gk−1 can be partitioned into k

disjoint dominating sets. As we have assumed the number of vertices in the input

graph of the MDDN problem is at least k, Zelinka’s bound results in the following

upper bound on MDDN(G, k).

Theorem 2.31. [59] For every graph G and any number k, MDDN(G, k) ≤ k− 1.

Therefore, MDDN(G, k) is always bounded from above by k− 1 which does not

depend on the size of G.

25

Since for some G’s MDDN(G, k) is at least k − 1, this bound is tight, in the

sense that it cannot be improved even to MDDN(G, k) ≤ k− 2; for instance, using

the following observation, we can show MDDN(G, k) ≥ k − 1 for Pk:

Observation 2.32. For every graph G, D(G) ≤ δ(G) + 1.

Proof. Each vertex v ∈ V (G) cannot be dominated by more than degG(v) + 1.

Therefore, the maximum number of disjoint dominating sets in a graph G is at

most δ(G) + 1, resulting in D(G) ≤ δ(G) + 1.

In Pk, δ(Gk−2) + 1 = (k − 2) + 1 = k − 1. Therefore, the maximum possible

domatic number of Gk−2, i.e. δ(Gk−2) + 1, is at most k − 1. Hence, according to

Definition 2.28 of MDDN(G, k), MDDN(G, k) ≥ k − 1.

We can also obtain a lower bound for MDDN(G, k) that will help us prove an

approximation ratio for our greedy approximation algorithm in Chapter 6:

Lemma 2.33. For any graph G and positive integer k, the minimum r satisfying

k − 1 ≤ δ(Gr) is at most MDDN(G, k).

Proof. Based on Observation 2.32, we know that D(G) ≤ δ(G) + 1. Due to Def-

inition 2.28, MDDN(G, k) is the minimum d satisfying D(Gd) ≥ k. Therefore,

k ≤ D(GMDDN(G,k)) ≤ δ(GMDDN(G,k)) + 1. As a result, the minimum r satisfying

k ≤ δ(Gr) + 1 is at most MDDN(G, k).

In the remainder of this thesis, in several cases, we will use the known algorithms

on the domatic number problem for our problem. Therefore, we need the next

observations and lemmas that explain the relationship between the time complexity

of algorithms in the MDDN and the domatic number problems.

According to Definition 2.28, MDDN(G, k) is the minimum d making the con-

dition D(Gd) ≥ k true. Therefore MDDN(G, k) > 1 implies that D(G) < k;

since otherwise, the minimum d satisfying D(Gd) ≥ k would be 1, and hence,

MDDN(G, k) = 1 which is a contradiction. In addition, if MDDN(G, k) = 1, then

26

there are k disjoint dominating sets in G, and hence, D(G) ≥ k. Therefore, the do-

matic number of a graph G can be compared to k using an algorithm that computes

MDDN(G, k).

Observation 2.34. Suppose that there exists an algorithm solving the MDDN(G, k)

problem for a graph G and a fixed integer k within time t(n), where n is the number

of vertices in G. Then, we can decide on whether D(G) ≥ k in t(n) time.

As a result, if we have an algorithm solving the MDDN(G, k) problem for a

graph G and any k within time t(n), we can find out whether D(G) ≥ k for any k

in t(n) time. Then, to calculate D(G) we can examine D(G) ≥ k for k = 1, 2, . . . , n,

and find the maximum number k for which D(G) ≥ k. Therefore, the following

observation holds:

Observation 2.35. Suppose that we can solve the MDDN(G, k) problem for a graph

G and every integer 1 ≤ k ≤ n within time t(n), where n is the number of vertices

in G. Then, we can compute the domatic number of G within time n · t(n).

Therefore, if the domatic number problem is NP-complete for a family of graphs

F , the MDDN problem cannot be solved for all graphs inF and all k’s in polynomial

time.

Observation 2.36. If the domatic number problem is NP-complete for a family of

graphs F , the MDDN problem is also NP-complete for F .

According to the NP-completeness results for the domatic number problem men-

tioned in Chapter 1, the MDDN problem is NP-complete for the following graph

classes:

Theorem 2.37. [6, 38] The MDDN problem is NP-complete for circular-arc graphs,

bipartite graphs, comparability graphs, split graphs, and chordal and cochordal graphs.

Although an algorithm solving the MDDN problem for general k’s can be used to

solve the domatic number problem, for the reverse direction we need the domatic

number of the input graph and its power graphs. More formally, the following

lemma holds:

27

Lemma 2.38. Suppose that we can determine the domatic number of a graph G

and its powers within time t(n), where n is the number of nodes in G. More

precisely, there is an algorithm A that determines whether the domatic number of

Gr is exactly k, for every k and r, within time t(n). Then, MDDN(G, k) can be

computed in log(k) · t(n) time.

Proof. According to Definition 2.28, to compute MDDN(G, k) we can examine

whether D(Gd) ≥ k for d = 1, 2, . . . , n and find the minimum d satisfying this

condition. If checking the condition D(Gd) ≥ k for any d and k can be done in t(n)

time, the whole process takes at most n · t(n) time.

This time bound can be improved further: considering the MDDN(G, k) ≤ k−1

bound stated in Theorem 2.31, we can confine our search to d = 1, 2, . . . , k − 1,

resulting in the running time k ·t(n); moreover, we can use binary search to find the

minimum power d satisfying (D(Gd) ≥ k and D(Gd−1) < k) resulting in 2 log(k−1)

domatic number checks, which improves the running time to O(log(k) · t(n)).

In this lemma, it is assumed that the power graphs are not part of the in-

put to the algorithm A, and this algorithm is responsible to compute its required

power graphs. In the following lemma we modify this requirement, and include the

computations required to construct power graphs in the final running time.

Lemma 2.39. Suppose that we can solve the domatic number problem for any given

power of a graph G within time f(n), where n is the number of nodes in G. Then,

MDDN(G, k) can be computed in O(n3 + log(k) · f(n)) time.

Proof. Using Floyd-Warshall algorithm, we can compute the shortest paths between

all pairs of vertices in G in time O(n3) [18]. Once we compute the distances, any

power of G, say Gr, can be constructed in time O(n2) by examining d(vi, vj) ≤ r

for every pair of vertices vi, vj ∈ V (G). Therefore, using the same binary search

used in the previous lemma, the running time will be changed to

O(n3) + log(k) · (f(n) + O(n2)) ∈ O(n3 + log(k) · (f(n) + n2)).

28

Since k ≤ n, we have:

O(n3 + log(k) · f(n) + log(n) · n2) ∈ O(n3 + log(k) · f(n)).

Therefore, we can compute MDDN(G, k) in the required running time.

Ignoring polynomial factors, we can conclude the lemma below.

Lemma 2.40. Suppose that there is an Õ(αn) time algorithm for the domatic

number problem on general graphs. Then, for every given graph G and every value

k, the problem of computing MDDN(G, k) can be solved in time Õ(αn).

Proof. Due to the previous lemma, the assumptions in this lemma enables us to

compute MDDN(G, k) in time O(n3+log(k)·αn)) ∈ O(n3+log(n)·αn) ∈ O(n3·αn) =

cn3 · αn for some constant c. Therefore, ignoring the polynomial factor cn3, this

running time is in Õ(αn).

Consequently, any exact algorithm for the domatic number problem implies an

exact algorithm for the MDDN problem with the same exponent.

In the next two lemmas, we study the relationship between the MDDN problem

and the domatic number problem for the case k = 3.

Lemma 2.41. For every graph G, the condition D(G) ≥ 3 holds if and only if

MDDN(G, 3) = 1.

Proof. If D(G) ≥ 3, then due to Definition 2.28 of MDDN(G, 3), MDDN(G, 3) = 1.

Otherwise, according to the same definition of MDDN(G, 3), MDDN(G, 3) > 1.

Therefore, deciding on whether D(G) ≥ 3 determines whether MDDN(G, 3) =

1.

The following result is a consequence of the previous lemma and the upper

bound MDDN(G, k) ≤ k − 1 mentioned in Theorem 2.31:

Lemma 2.42. Suppose that we can decide whether D(G) ≥ 3 in time t(n) for a

graph G. Then, MDDN(G, 3) can also be computed in time t(n).

29

Combining this result with Observation 2.34 we can see that the three domatic

number problem, which is the problem of determining whether D(G) ≥ 3, is equiv-

alent to the problem of computing MDDN(G, 3):

Corollary 2.43. The three domatic number problem for a family of graphs F is

equivalent to the problem of computing MDDN(G, 3) for any graph G ∈ F .

As a result, we can conclude the following statement for exact algorithms of

these problems:

Corollary 2.44. Suppose that there is an Õ(αn) time algorithm for the three do-

matic number problem on general graphs. Then, for every given graph G, the prob-

lem of computing MDDN(G, 3) can be solved within time Õ(αn).

Thus, any exact (exponential) algorithm solving the three domatic number prob-

lem gives an exact (exponential) algorithm with the same base. In Chapter 5, we

will use this fact to develop an exact algorithm for the MDDN problem by improv-

ing the running time of Fomin et al.’s algorithm [26] for the three domatic number

problem.

Our exact algorithm uses an enumeration algorithm developed by Fomin et al.

to enumerate all minimal dominating sets of a graph. Since in this enumeration the

problem of computing a minimal dominating set is viewed as a restricted set cover

problem, we briefly explain this relationship: an instance of a set cover problem is a

pair (U,S), where U is a set of elements and S is a family of non-empty subsets of

U . A minimal set cover is a subset C of S such that for every element u ∈ U there is

a set S ∈ C containing u. Furthermore, no subset of C has this property. From this

perspective, a minimal dominating set of G corresponds to a minimal set cover in

the set cover problem (V (G),∪vi∈V (G)(vi ∪ N(vi))). More formally, replacing each

set of the form vi ∪ N(vi) in a minimal set cover with its corresponding vertex vi

produces a minimal dominating set in G, and replacing each vertex vi in a minimal

dominating set for G with the set vi ∪ N(vi) gives a minimal set cover in the set

cover problem (V (G),∪vi∈V (G)(vi ∪ N(vi))). Note that in this framework a set of

disjoint minimal dominating sets is mapped to a set of disjoint minimal set covers.

30

Chapter 3

NP-hardness Results and

Polynomial Time Algorithms

Traditionally, one way to show that a problem is difficult is proving its NP-completeness.

In the preliminaries section (Theorem 2.37), the MDDN problem was shown to be

NP-complete in general. The first question that arises is that will the MDDN prob-

lem remain NP-complete for restricted inputs? For instance, will it be difficult to

compute MDDN(G, k) for fixed k’s or for special families of graphs? In this chapter,

we first study the complexity of the MDDN problem for various k’s. We show that

except the k = 1 and k = 2 cases, which can be solved in linear time, the MDDN

problem is NP-complete for any fixed k. Then, we concentrate on different graph

classes for which the problem remains NP-complete. Finally, we explain how the

problem can be solved in polynomial time for strongly chordal graphs and bounded

tree-width graphs.

3.1 NP-complete Cases

In this section, we prove the NP-hardness of the problem of computing MDDN(G, k)

for fixed k’s greater than 3 and for various graph classes. But first, we show that

for k = 1, 2 MDDN(G, k) = 1.

31

Obviously, the set of all vertices in a graph G is a dominating set for G:

Observation 3.1. For every graph G, MDDN(G, 1) = 1.

The next fact, which is less trivial, is that MDDN(G, 2) = 1 for any graph

that does not have isolated vertices. This is a direct result of the following lemma,

which is one of the first results proved in the literature of dominating sets. Since

the lemma is used several times in this thesis, we present its proof. Recall from the

preliminaries that we are only studying the MDDN problem on simple connected

input graphs, which does not include any graph with isolated vertices.

Lemma 3.2. [36, Theorem 1.2]For every graph G = (V, E) without isolated ver-

tices, the complement of any minimal dominating set S is also a dominating set.

Proof. If V −S is not a dominating set for G, then there is a vertex v ∈ S without

any neighbors in V − S. Therefore, every vertex in V − S is covered by a vertex in

S other than v. As a result, V −S is also covered by S− v. We claim that S− v is

still a dominating set for G, which contradicts the minimality of S. We know that

(S − v) ∪ (V − S) is covered by the vertices in S − v. It only remains to check the

status of v. As G does not have an isolated vertex, v is connected to at least one

other vertex u ∈ S. Thus, v is also covered by S − v. The resulting contradiction

proves the lemma.

Corollary 3.3. If graph G does not have any isolated vertices, MDDN(G, 2) = 1.

In the rest of this chapter, we sometimes need to extend a complexity result for

the k = 3 case to any fixed k > 3.

Lemma 3.4. The problem of determining whether MDDN(G, 3) = 1 can be reduced

to the problem of determining whether MDDN(G, k) = 1 for any k greater than 3.

Proof. We prove that MDDN(G, 3) = 1 if and only if MDDN(G′, k) = 1 for the

graph G′ constructed by connecting the vertices of a Kk−3 to all vertices of G.

Note that each of the added k − 3 vertices is a dominating set for G′. In addition,

32

all previous vertices in G′ are now connected to these new vertices. Hence, every

dominating set in G is a dominating set for G′. Consequently, if MDDN(G, 3) = 1,

due to Lemma 2.41 D(G) ≥ 3, and therefore, D(G′) ≥ 3 + (k− 3) = k, resulting in

MDDN(G′, k) = 1. To prove the reverse direction, we assume that MDDN(G′, k) =

1. Then, D(G′) ≥ k. Therefore, V (G′) can be partitioned into k disjoint dominating

sets. Since these partitions are disjoint, at least three partitions among them do

not have any vertex from the Kk−3. As a result, these three partitions also specify

three disjoint dominating sets in G. Thus, D(G) ≥ 3, and MDDN(G, 3) = 1.

Corollary 3.5. The problem of calculating MDDN(G, 3) can be reduced to the

problem of calculating MDDN(G, k) for any k greater than 3.

Proof. As mentioned in Chapter 2, based on a result by Zelinka [59], MDDN(G, k) ≤

k − 1. Therefore, MDDN(G, 3) ≤ 2.

Consequently, based on the previous lemma, to decide between the two possible

cases MDDN(G, 3) = 1 and MDDN(G, 3) = 2 possible cases, it suffices to check

whether MDDN(G′, k) = 1 or MDDN(G′, k) ≥ 2.

Due to Theorem 2.37, the MDDN problem is NP-complete in general.In the

following, we reduce the k-colorability problem to the MDDN problem, resulting

the NP-completeness of the problem of computing MDDN(G, k) for any fixed k ≤ 3.

In addition, we will show that the graph constructed in the reduction has some

interesting properties which helps us to prove the NP-completeness of computing

MDDN(G, k)’s for several special families of graphs, for restricted k’s. Moreover,

we can prove that the domatic number problem is NP-complete for planar bipartite

of maximum degree four, which was not known before.

Theorem 3.6. Suppose that G is a graph and k is a fixed integer greater than two.

Then, the problem of computing MDDN(G, k) is NP-hard.

Proof. We prove the result based on a reduction from the k-colorability problem,

one of the first problems proved to be NP-complete [39]; the k-colorability problem

is the problem of determining whether there exists a coloring for a given graph G

33

Figure 3.1: An example G′ in the reduction from k-colorability to the MDDN problem

with k colors such that each set of vertices colored with the same color is an inde-

pendent set. We show that k-colorability(G) reduces to the problem of determining

whether MDDN(G′, k) ≤ k − 2 for the graph G′ constructed as follows: for every

vertex vi ∈ V (G), we put a vertex v′
i in G′. For every edge (vi, vj) ∈ E(G), we

construct a path of length k − 2 in G′ using new vertices wij
1 , wij

2 , . . . , wij
k−2. Then,

we connect wij
k−2 to v′

i and v′
j . The number of vertices and edges in G′ are at most

O(kn2) and O(km). The corresponding G′ for a sample G is shown in Figure 3.1,

where, for example, we have added the set of new vertices {w34
1 , w34

2 } to G′ with

respect to the edge {v3, v4} in G.

In the case that G is k-colorable, there exists a k-coloring for v1, v2, . . . , vn.

Assume that this coloring assigns color C(vi), 1 ≤ C(vi) ≤ k, to vertex vi, for

every 1 ≤ i ≤ n. Based on this coloring, we put the vertices of G′ into partitions

{1, 2, . . . , k} such that each partition forms a (k − 2)-dominating set for G′. First,

we put every vertex v′
i, 1 ≤ i ≤ n, in partition C(vi). Then, for each {vi, vj} ∈

E(G) with colors 1 ≤ C(vi) ≤ C(vj) ≤ k, we assign vertices wij
1 , wij

2 , . . . , wij
k−2 to

partitions 1, 2, . . . , C(vi)−1, C(vi)+1, . . . , C(vj)−1, C(vj)+1, . . . , k, respectively. In

Figure 3.1, a 4-coloring for a graph G and its resulted partitioning in G′ is specified;

the numbers beside vertices in G′ represent the partitions they are assigned to. It is

easy to verify that we have partitioned V (G′) into k disjoint (k−2)-dominating sets.

The optimal solution of MDDN(G′, k) is the minimum d that allows a partitioning of

34

V (G′) into k disjoint d-dominating sets. Hence, if G is k-colorable, MDDN(G′, k) ≤

k−2. Note that the number of vertices within distance k−3 from the wij
1 vertices, for

all (vi, vj) ∈ E(G), is less than k. Hence, D(G′k−3) < k. Based on Definition 2.28,

MDDN(G′, k) is at least k − 2. Therefore, MDDN(G′, k) is exactly k− 2 whenever

G is k-colorable.

In the next step, we prove that the converse is also true: if MDDN(G′, k) = k−2,

G is k-colorable. Considering the neighborhood of vertices wij
1 , for every {vi, vj} ∈

E(G), there are only k vertices within distance k−2 from them. Therefore, to have

all the k partitions in NGk−2(wij
1), all these vertices must be in different partitions.

Note that v′
i and v′

j are both in NGk−2(wij
1). As a result, v′

i and v′
j must be in

different partitions. This statement holds for every {vi, vj} ∈ E(G). Consequently,

the partition numbers assigned to v′
1, v

′
2, . . . , v

′
n can be viewed as a k-coloring for G,

coloring the endpoints of every edge with different colors. In other words, if such a

partitioning exists, i.e. MDDN(G′, k) = k − 2, G is k-colorable.

Note that we reduced the k-colorability problem to the problem of checking

whether MDDN(G′, k) = k − 2 for a constructed G′. Hence, even this restricted

case of the MDDN problem is NP-complete.

Corollary 3.7. For a given graph G and any fixed integer k ≥ 3, the problem of

determining whether MDDN(G, k) = k − 2 is NP-complete.

A consequence of the above-mentioned corollary is that the decision problem

of determining whether MDDN(G, 3) = 1 is an NP-complete problem. Using

Lemma 3.4, we can conclude the following corollary. The NP-completeness of this

restricted version will help us to prove an inapproximability result in Section 6.

Corollary 3.8. For any fixed integer k ≥ 3, it is NP-complete to decide whether

MDDN(G, k) = 1.

Providing a polynomial-time reduction from instances of an NP-complete prob-

lem P to a set of instances I of another problem Q proves that Q is NP-complete

even if its domain is restricted to I. Therefore, the k-colorability reduction to the

35

problem of determining whether MDDN(G′, k) = k − 2 proves that the MDDN

problem is NP-complete even if we restrict the input graphs to all constructible

G′’s. In the following corollaries we investigate the properties of G′’s produced

from G’s in various graph classes to prove further NP-completeness results for the

MDDN problem.

Corollary 3.9. The problem of determining whether MDDN(H, 3) = 1 is NP-

complete for planar bipartite graphs of maximum degree 4.

Proof. It turns out that the graph G′ constructed in the reduction is a bipartite

graph: coloring vi’s, for every 1 ≤ i ≤ n, with color 1, and wij
k−2, w

ij
k−3, w

ij
k−4, . . . , w

ij
1 ,

for every 1 ≤ i, j ≤ n, with colors 2 and 1 alternatively, gives a perfect 2-coloring

for G′, and proves that G′ is bipartite. Furthermore, the degree of every vertex v′
i

in G′ is equal to the degree of its corresponding vertex vi in G, while the degrees

of wij
ℓ ’s are at most 3. Therefore, if ∆(G) ≥ 3, ∆(G′) = ∆(G).

Moreover, for the k = 3 case, G′ is the subdivision graph of G. As a result, if G

is a planar graph, G′ is also planar, because inserting a point in the middle of each

edge in a drawing of G gives a drawing for G′.

Since 3-coloring is NP-complete for planar graphs of maximum degree 4 [32], we

can choose G from this family of graphs, and prove the NP-completeness of deciding

whether MDDN(G′, 3) = 1 for the family of constructed G′’s. As explained above,

G′ is always bipartite, ∆(G′) = ∆(G) = 4, and is planar for planar G’s. Therefore,

the problem of deciding whether MDDN(G′, 3) = 1 is NP-complete, when G′ is

restricted to be a planar bipartite graph of maximum degree 4.

Using this corollary, we prove the NP-completeness of the domatic number

problem for planar bipartite graphs of maximum degree four, which, to the best

of our knowledge, was not known before. if D(G) ≥ 3 can be decided in poly-

nomial time for every G in a graph class F , then MDDN(G, 3) = 1 can also

be checked in polynomial time. Therefore, the NP-completeness of determining

whether MDDN(G, 3) = 1 for G ∈ F proves that specifying whether D(G) ≥ 3

is also NP-complete when restricting the input graph to the family F . Since the

36

Figure 3.2: The reduction used in Corollary 3.11 and Corollary 3.12 versus the reduction

in Corollary 3.9 for a sample graph G. Since these reductions only differ in the G′

produced, we have not shown the coloring in G and partition numbers in G′’s.

problem of checking D(G) ≥ 3 is an special case of the domatic number problem,

this corollary leads us to the following result:

Corollary 3.10. The domatic number problem is NP-complete for planar bipartite

graphs of degree four.

An interesting property in the reduction from the k-colorability problem is that

the reduction does not depend on the edges between v′
i’s in G′. As stated in

the proof, the subgraph C of G′ induced by the set {v′
1, v

′
2, . . . , v

′
n} of vertices is

the n-vertex empty graph. Replacing C with any n-vertex graph, the proof still

works, and the k-coloring problem reduces to the problem of checking whether

MDDN(G′, k) = k − 2.

Exploiting this flexibility in the proof, we can prove the NP-completeness of the

MDDN problem for special graph classes split graphs and 2-connected graphs.

Corollary 3.11. For any fixed k ≥ 3, the problem of determining whether MDDN(G, k) =

1 is NP-complete for split graphs.

Proof. First, we note that in the reduction of Lemma 3.4, if G is a split graph,

the new graph G′ is also a split graphs; in this reduction G′ is constructed by

37

connecting a Kk−3 to G. Due to the definition of split graphs, V (G) can be par-

titioned into X and Y where X is a clique and Y is an independent set. In the

new graph G′, Y is still an independent set, and X + V (Kk−3) produces a new

clique. Thus, the new graph is a split graph. Therefore, Lemma 3.4 holds when

the input graphs for both problems are confined to split graphs: the problem of

determining whether MDDN(G, 3) = 1 for split G’s can be reduced to the problem

of determining MDDN(G, k) for any k greater than 3 and split G’s.

Consequently, it is sufficient to prove the corollary for the k = 3 case. As

mentioned before, the reduction from the k-colorability problem works even if we

replace the subgraph C of G′ induced by the set {v′
1, v

′
2, . . . , v

′
n} of vertices by an

arbitrary n-vertex graph. The reduction is shown in the third image in Figure 3.2

for a sample graph G and can be compared to the reduction used in Corollary 3.9

shown in the second image. Replacing C with Kn leads to a split graph G′. Thus,

the 3-colorability problem reduces to determining whether MDDN(G, 3) = 1 for

split G’s, proving the NP-completeness of the corollary for k = 3.

The proof for the 2-connected graphs is very similar:

Corollary 3.12. For any fixed k ≥ 3, the problem of determining whether MDDN(G, k) =

1 is NP-complete for 2-connected graphs.

Proof. The input graph to the MDDN problem for this corollary has at least k ≥ 3

vertices.

We first prove that the reduction in Lemma 3.4 preserves 2-connectivity, for

any input graph that has at least 3 vertices. Suppose that the input graph G is

2-connected. We should prove that connecting a Kk−3 to G keeps 2-connectivity.

Any pair of vertices in G do still have their two vertex-disjoint paths connecting

them. Any pair of vertices in the added Kk−3 are adjacent, i.e. have a path of

length 1 to each other, and also have a path of length 2 through an arbitrary vertex

in G. Any vertex v in G and any vertex in the Kk−3 have a path of length 1 to each

other and also a path of length 2 through a neighbor of v in G. Note that such a

neighbor can be found, since G is 2-connected and has at least three vertices, and

38

therefore, to have two vertex-disjoint paths between v and another vertex in G, v

needs to have at least two neighbors.

Therefore, it is sufficient to prove the corollary for the k = 3 case for graphs

that have at least three vertices. Now we prove that replacing the subgraph C of

G′ induced by {v′
1, v

′
2, . . . , v

′
n} with Kn in the reduction in Theorem 3.6 leads to a

2-connected graph G′ with at least the same number of vertices of G; therefore, the

NP-completeness of the 3-colorability problem for graphs of at least three vertices

proves the NP-completeness of the corollary for k = 3.

For the case k = 3, G′ is constructed by adding a new vertex for each edge

{u, v} ∈ E(G) and connecting it to both u and v. Therefore, the number of

vertices in G′ is at least the same as the number of vertices in G. In addition,

since C is set to Kn and n ≥ 3, every pair of vertices in the C part have a path of

length one and also a path of length two via another vertex in C. For any newly

added vertex w corresponding to an edge {u, v} ∈ E(G), and any vertex in the

C part, there are two vertex-disjoint paths of length two, one via u and the other

one via v, connecting them. Finally, for every pair of newly added vertices u and v

corresponding to edges {u1, u2} and {v1, v2} in E(G), since the corresponding edges

are not the same, at least one of u1, u2 is not equal to v1 and v2, say u1 6= v1, v2. If

u1, u2, v1, and v2 are all different, the two paths connecting u and v via (u, u1, v1, v)

and (u, u2, v2, v) are vertex-disjoint and we are done. Otherwise, u2 is the same

as v1 or v2, say v2. Now, the two paths (u, u1, v1, v) and (u, u2, v) are two vertex-

disjoint oaths connecting u and v. Therefore, G′ is 2-connected, and the corollary

is proved.

Other settings for the G′ edges between {v′
1, v

′
2, . . . , v

′
n} in the reduction may

result in recognizing more graph classes for which the problem is NP-complete.

However, the NP-completeness of the MDDN problem for planar bipartite graphs

of ∆ ≤ 4 should not lead us to the conclusion that the MDDN problem is difficult

even for simple graph families. In the next section, we will see the problem can

be solved in polynomial time for bounded tree-width graphs and strongly chordal

graphs.

39

3.2 Polynomial-time Solvable Cases

In the following two sections we prove that the MDDN problem is solvable in poly-

nomial time for bounded tree-width graphs and strongly chordal graphs, including

trees, interval graphs, block graphs, and directed path graphs.

3.2.1 Solving the MDDN Problem in Polynomial Time

for Strongly Chordal Graphs

Strongly chordal graphs were first defined by Farber as a restricted class of chordal

graphs for which a generalized dominating set problem, called “the weighted dom-

inating set problem”, can be solved polynomially. Later, more dominating-related

problems, proved to be NP-complete for chordal graphs, were solved in polynomial

time for strongly chordal graphs. For instance, although the domatic number prob-

lem is NP-complete even for circular-arc graphs [6], bipartite graphs, and chordal

graphs [38], the domatic number of every strongly chordal graph can be computed

in linear time. More precisely, the following two theorems are known:

Theorem 3.13. [24] For every strongly chordal graph G, D(G) = δ(G) + 1.

Theorem 3.14. [38] For every strongly chordal graph, a domatic partition can be

found in linear time.

The similarity between the MDDN problem and the domatic number problem

motivates us to check whether the MDDN problem can be solved polynomially

for strongly chordal graphs. In the following, we show how a polynomial-time

algorithm is designed for the problem combining the following known theorem with

the above-mentioned results:

Theorem 3.15. [45] Any power of a strongly chordal graph is strongly chordal.

Therefore, due to Theorem 3.13, we have:

40

Corollary 3.16. Suppose that G is strongly chordal graph. Then, for any positive

integer i, 1 ≤ i ≤ n, D(Gi) = δ(Gi) + 1.

Using this corollary, we can compute the domatic number of any given power

of G in time O(n2): since the minimum degree of a given graph can be specified

in time O(n2), for every given power graph of G, say Gi, D(Gi) = δ(Gi) + 1 can

be calculated in time O(n2). As a result, we can prove the following theorem for

strongly chordal graphs:

Theorem 3.17. For every strongly chordal graph G and positive integer k, MDDN(G, k)

and an optimum MDDN(G, k) partitioning can be found in O(n3) time.

Proof. We can use Lemma 2.39 for strongly chordal graphs and set the required

function f(n) to O(n2). Consequently, we can compute MDDN(G, k) for every

strongly chordal G in time O(n3 + log(k) · n2) ∈ O(n3). Moreover, after finding

MDDN(G, k), due to Theorem 3.14, a domatic partition for GMDDN(G,k) can also be

found in linear time. According to Definition 2.29, this partitioning is an optimum

MDDN(G, k) partitioning. Therefore, we can compute an optimum MDDN(G, k)

partitioning in time O(n3) + O(n) ∈ O(n3).

In a closer look at the properties of the domatic number of strongly chordal

graphs, we can improve this running time to O(nk2):

Theorem 3.18. For every strongly chordal graph G and positive integer k, MDDN(G, k)

and an optimum MDDN(G, k) partitioning can be found in O(nk2) time.

Proof. For every vertex v in G, we find the minimum distance ℓ such that there are

at least k − 1 vertices within distance ℓ of v. Then, we find the maximum among

all computed ℓ’s. This maximum value is the minimum distance d for which all

vertices in Gd have degree at least k − 1, and hence δ(Gd) ≥ k − 1. Equivalently,

it is the minimum d satisfying D(Gd) = δ(Gd) + 1 ≥ k. Due to Definition 2.28,

this value is MDDN(G, k). Therefore, this algorithm calculates MDDN(G, k). As

in the previous theorem, after computing MDDN(G, k), we can find an optimum

MDDN(G, k) partitioning using Theorem 3.14.

41

In order to compute ℓ for each vertex v ∈ V (G), we use a breadth-first search [18].

However, we keep track of the depth we are searching in. We also count the number

of times we visit new vertices, including v at the first step, in the BFS and stop the

BFS anytime this count reaches k. At the end, we return the current depth.

At each step of the BFS, a new edge connecting one of the visited vertices

u ∈ V (G) to another vertex w ∈ V (G) is traversed. The vertex w is among the

vertices visited before, or it is added to the visited vertices. Therefore, the number

of steps in this BFS is of the order of the number of edges between the k vertices

the algorithm visits: O(k2).

Consequently, performing the BFS algorithm for all vertices in V (G), takes

O(nk2) time. In addition, the maximization step and computing an optimum

MDDN(G, k) partitioning takes O(n) time. Thus, the overall running time would

be O(nk2 + n) ∈ O(nk2).

Since trees, interval graphs, block graphs, and directed path graphs are all

strongly chordal graphs [23], MDDN(G, k) can be computed in polynomial time for

all of them.

3.2.2 Solving The MDDN Problem in Polynomial Time

for Bounded Tree-Width Graphs

It was mentioned in the previous section that computing MDDN(G, k) can be done

in polynomial time when the input graph is a tree. A natural question is what

the complexity of our problem is on bounded tree-width graphs, which are more

generalized than trees. In this section, we address this question and prove that for

any constant k MDDN(G, k) can be computed in linear time for bounded tree-width

graphs.

In a beautiful paper, Circle [19] proposed a general method to prove a problem

is linear time solvable for bounded tree-width graphs. We show that Courcelle’s

method can be applied to our problem, when k is considered as a constant value,

resulting in the following theorem:

42

Theorem 3.19. Suppose k is a fixed integer. Then, for every graph G of constant

tree-width, the problem of finding MDDN(G, k) and a corresponding partitioning

can be solved in linear time.

Proof. As defined in the preliminaries section, MDDN(G, k) is the minimum ℓ al-

lowing a k-partitioning for Gℓ into k disjoint dominating sets. We define DP(G, k, ℓ)

to be true if Gℓ has k disjoint dominating sets, and false otherwise. If computing

DP(G, k, ℓ) can be done in polynomial time, we can compute MDDN(G, k) in linear

time by examining DP(G, k, ℓ) ≥ k for ℓ = 1, 2, . . . , k − 1.

Based on the fact that every graph problem stated in MSOL(π1, p), which is a

certain variation of monadic second order logic defined for graphs, can be solved

in linear time for graphs of bounded tree-width [19], it is sufficient to show that

DP(G, k, ℓ) can be expressed in MSOL(π1, p); MSOL(π1, p), initially studied by

Courcelle, includes the following variables, operators, and quantifiers [21]:

1. atomic variables, shown by small letters (such as x, y)

2. set variables, represented by capital letters (such as X, Y)

3. operators ¬,∨,∧, =, 6=, and ∈ (such as x ∈ Y , x = v ∨ x = w)

4. existential and universal quantifiers over vertices, edges, and sets of vertices

(such as ∃{u, v} ∈ E, ∀X ⊂ V)

Now, it is the time to state DP(G, k, ℓ) in MSOL(π1, p). The representation

is shown in Figure 3.3. To increase readability, we have used several auxiliary

functions in this representation. The auxiliary function distance(ℓ, u, v) calculates

whether there is a path of length ℓ between vertices u and v. It checks for ℓ − 1

vertices w1, w2, . . . , wℓ−1 connecting u and v via a path. If there exists such a path,

it is not necessarily the shortest path between u and v. Therefore, if distance(ℓ, u, v)

is true, we can only conclude d(u, v) ≤ ℓ; otherwise, if distance(ℓ, u, v) is not true,

d(u, v) 6= ℓ, since no path of length ℓ connecting u and v exists. In particular, for

the case d(u, v) ≤ ℓ, depending on the the graph, distance(ℓ, u, v) may return either

43

true or false. However, using this distance function, we construct close(ℓ, u, v) that

determines d(u, v) ≤ ℓ. The key point in designing this function is that d(u, v) ≤ ℓ

if and only if there exists a path of length at most ℓ between u and v. The function

intersect(U, W) returns true if and only if the sets U and W have a common member

v. The function dominate(G, U, ℓ) determines whether the set of vertices U ⊆ V

is a ℓ-dominating set for G. This functions checks for the existence of some vertex

u ∈ U for each vertex v ∈ V , such that d(u, v) ≤ ℓ. Finally, DP(G, k, ℓ) holds

if and only if graph vertices can be partitioned into k disjoint ℓ-dominating sets

V1, V2, . . . , Vk.

In this chapter we proved that MDDN is hard even for planar bipartite graphs

of maximum degree four. On the other hand, we proved that our problem is easy,

i.e. polynomial-time solvable, on strongly chordal and bounded tree-width graphs.

However, polynomial-time solvability is not the only difficulty measure of prob-

lems. Thus, we will proceed by studying the exact algorithms and approximation

algorithms for MDDN in next chapters.

44

distance(ℓ, u, v) ≡ ∃w1 ∈ V : ∃w2 ∈ V : . . .∃wℓ−1 ∈ V :

{u, w1} ∈ E ∧ {w1, w2} ∈ E ∧ {w2, w3} ∈ E ∧ . . . ∧ {wℓ−1, v} ∈ E

close(ℓ, u, v) ≡ (u = v) ∨ distance(1, u, v) ∨ distance(2, u, v) ∨ . . .distance(ℓ, u, v)

intersect(U, W) ≡ ∃v ∈ U : v ∈ W

dominate(G, U, ℓ) ≡ ∀v ∈ V : ∃u ∈ U : close(ℓ, u, v)

DP(G, k, ℓ) ≡ ∃V1 ⊂ V : ∃V2 ⊂ V : . . .∃Vk ⊂ V :

¬intersect(V1, V2) ∧ . . . ∧ ¬intersect(V1, Vk) ∧

¬intersect(V2, V3) ∧ . . . ∧ ¬intersect(V2, Vk) ∧

.

¬intersect(Vk−1, Vk) ∧

dominate(G, V1, ℓ) ∧ dominate(G, V2, ℓ) . . . ∧ dominate(G, Vk, ℓ)

Figure 3.3: A monadic second order logic representation for the DP problem

45

Chapter 4

An Upper Bound on the Value of

MDDN(G, k)

In this chapter, we give a slightly simpler proof for the upper bound MDDN(G, k) ≤

k − 1 mentioned in Theorem 2.31. This bound was a direct result of an algorithm

proposed by Zelinka [59] that finds k disjoint (k−1)-dominating sets in every input

graph G. Zelinka’s algorithm gives a k-partitioning for the input graph. Then,

he proves that each partition is a (k − 1)-dominating set. We propose a different

k-partitioning simplifying the proof to some extent. The key idea in our proof is

that the longest path in a tree can be found in polynomial time and we can use

the longest path in the spanning tree of G rather than in G to give an acceptable

partitioning.

Theorem 4.1. For any graph G = (V, E) and positive integer k, MDDN(G, k) ≤

k − 1.

Proof. Based on Observation 2.30, the theorem holds when diam(G) ≤ k − 1. To

prove the statement for the case of diam(G) > k − 1, it is sufficient to provide a

k-partitioning for V in which each partition is a dominating set for Gk−1.

We propose the following partitioning for V : we construct a spanning tree T

of G and consider the longest path P in T . Assuming that the vertices in P are

46

(a) (b)

Figure 4.1: The suggested partitioning and vertex labels in Theorem 4.1.

called v1, v2, . . . , vℓ, we assign each vertex u ∈ V to partition (dT (u, v1) mod k).

Figure 4.1(a) illustrates this partitioning for k = 3 on a sample graph. In this

figure, T is specified by dashed edges, P is the path connecting v1, v2, . . . , v10, and

every vertex is labeled by its partition number.

Now, we claim that all the specified partitions are dominating sets for Gk−1.

Equivalently, every vertex u is covered in Gk−1 by each of the k specified partitions.

We prove our claim for both cases dT (u, v1) ≥ k − 1 and dT (u, v1) < k − 1.

In the former case, the first k vertices in the path from u to v1, including u, are

from different partitions, and cover u in Gk−1. For the latter case, we show that

the vertices v1, v2, . . . , vk are adjacent to u in Gk−1: Since T is connected, u must

have a path to a vertex in P , say vf . However, T is a tree and does not have any

cycles. Therefore, u cannot connect to vertices in P via two paths. As a result,

the only path between u and any vertex vi, 1 ≤ i ≤ ℓ, consists of the unique

path from u to vf and a path from vf to vi. Similarly, since T does not have any

cycles, vf has a unique path to every vi which exactly includes the set of vertices

{vi, vi+1, . . . , vf−1, vf} for i ≤ f , or the set of vertices {vf , vf+1, . . . , vi−1, vi} for

f ≤ i. The situation is shown in Figure 4.1(b). Hence, {v1, . . . , vf} are in the

shortest path from u to v1. We are considering the case dT (u, v1) < k−1, and thus,

47

f ≤ k−1 and u is adjacent to {v1, . . . , vf} in Gk−1. In addition, as P is the longest

path in T , dT (u, vℓ) ≤ dT (v1, vℓ). Subtracting the common path from vf to vℓ from

both corresponding paths, we get dT (u, vf) ≤ dT (v1, vf). Now, for every f ≤ i ≤ k,

adding a common path from vf to vi to both these paths leads to the inequality

dT (u, vi) ≤ dT (v1, vi) = i − 1 ≤ k − 1, proving the adjacency of u and vi in Gk−1.

Thus, all vertices in {v1, v2, . . . , vk} are adjacent to u in Gk−1, and u is covered by

all partitions.

48

Chapter 5

Exact Algorithms for General

Graphs

In this chapter, we develop a new exact algorithm for solving MDDN(G, 3) on

general graphs. As mentioned in the preliminaries section (Corollary 2.43, Corol-

lary 2.44), the problem of computing MDDN(G, 3) is equivalent to the three do-

matic number problem. Our algorithm was originally developed to solve the three

domatic number problem, and runs in time Õ(2.7393n), for an n vertex graph,

which is faster than the previously best known Õ(2.8805n) exact algorithm for the

three domatic number by Fomin et al. [26]. Recently, using a completely different

approach, Riege et al. [52] have proposed another algorithm for the three domatic

number problem with time complexity Õ(2.695n).

Since our algorithm uses part of Fomin et al.’s algorithm, we first give an

overview of their algorithm in Section 5.1. Next, in Section 5.2 we present a detailed

explanation of our algorithm and its analysis.

5.1 Fomin et al.’s Algorithm

As we use part of Fomin et al.’s work [26] in our algorithm, we go through the basic

idea of their algorithm.

49

It was stated in the preliminaries section that the domatic number of a graph

G can be seen as the maximum number of disjoint minimal dominating sets in G.

Considering this fact, Fomin et al. solve a harder problem rather than computing

D(G): for every subset X of graph vertices V (G), what is the maximum number

of disjoint minimal dominating sets of G in X, i.e. D(G|X)? Note that whenever

D(G|X) is more than 1, there must exist a subset Y of X such that Y is a minimal

dominating set for G and also D(G|(X − Y)) is exactly D(G|X) − 1. Hence, we

would have:

D(G|X) = max {D(G|(X − Y)) + 1 | Y ⊆ X and Y is a minimal dominating set}.

The key idea of the algorithm is to enumerate all possible Y ’s for the given X in

a relatively fast way, and find the domatic number recursively. To avoid repeating

the same computation, dynamic programming is used. That is, all subsets X of

V (G) are listed in the order of non-decreasing |X|, and D(G|X)’s are calculated

and saved for them. For each X ⊆ V (G), all D(G|(X − Y))’s are saved before

computing D(G|X). Consequently, each D(G|X) is determined in the same time

complexity as enumerating all minimal dominating sets Y of G in X.

In the following, we give an overview of Fomin et al.’s enumeration technique.

This is mainly because this part is used in our improvement for the three domatic

number problem. Computations of the overall running time of their algorithm are

given at the end.

To list all the minimal dominating sets of G, Fomin et al. obtain an upper

bound on the number of minimal set covers of the corresponding set cover problem

(V (G),∪v∈V (G)(v ∪ N(v))) and convert their counting method to an enumeration

of all possible cases. In fact, the main contribution of their paper is bounding the

number of minimal dominating sets, which also improves the time complexity of

determining the domatic number of a given graph.

Applying the measure and conquer method [27] from exact algorithms, Fomin

et al. obtain a bound on the number of minimal set covers. Fomin et al.’s prob-

lem measure computes the size of an instance (U,S) of the set cover problem as

50

f((U,S)) = |U | + Σ4
i=1ǫini, where the value of ǫ1 to ǫ4 will be set later; n1, n2,

and n3 are the numbers of sets in S having precisely one, two, and three elements,

and n4 is the number of sets in S having more than three elements. Fomin et al.

assume that for each instance of the set cover problem of size s, i.e. for each (U,S)

that f((U,S)) = s, the number of minimal set covers in the problem is bounded by

αs, where α is another parameter which is set at the end of their analysis. Then,

they specify the number of minimal set covers of (U,S) in terms of the number of

minimal set covers of several smaller instances. Using induction, they obtain an

upper bound on the number of minimal set covers based on the bound on smaller

instances.

For future reference, we list all the recursive formulas in Fomin et al.’s paper in

Figure 5.1. In these inequalities, the parameters d2, d3, and d4 denote min{ǫ1, ǫ2 −

ǫ1}, min{d2, ǫ3 − ǫ2}, and min{d3, ǫ4 − ǫ3}, respectively. More precisely, Fomin et

al. prove the following lemma.

Lemma 5.1. [26] Suppose 0 ≤ ǫ1 ≤ ǫ2 ≤ ǫ3 ≤ ǫ4, and d2, d3, d4 denote min{ǫ1, ǫ2−

ǫ1}, min{d2, ǫ3 − ǫ2}, and min{d3, ǫ4 − ǫ3}, respectively. Then, if U is a set of

elements, S is a family of subsets of U , and s = f((U,S)) = |U | + Σ4
i=1ǫini, then

(U,S) has at most αs minimal set covers, where α and the ǫi’s satisfy the inequalities

in Figure 5.1.

Corollary 5.2. [26] Suppose G = (V, E) is an n-vertex graph and X ⊆ V . Then,

the number of minimal dominating sets of G that are completely in X is at most

αn+ǫ4|X|, where α and 0 ≤ ǫ1 ≤ ǫ2 ≤ ǫ3 ≤ ǫ4 satisfy the inequalities of Figure 5.1 and

d2, d3, d4 denote min{ǫ1, ǫ2−ǫ1}, min{d2, ǫ3−ǫ2}, and min{d3, ǫ4−ǫ3}, respectively.

According to their paper this counting is easily converted to an enumeration

algorithm:

Corollary 5.3. [26] Suppose G = (V, E) is an n-vertex graph and X ⊆ V . There

is an algorithm enumerating all minimal dominating sets of G that are completely

in X in time Õ(αn+ǫ4|X|), where α and 0 ≤ ǫ1 ≤ ǫ2 ≤ ǫ3 ≤ ǫ4 satisfy the inequalities

of Figure 5.1.

51

αs ≥ rαs−rǫ1−1, ∀r ≥ 2

αs ≥ αs−ǫ4 + αs−5−ǫ4

αs ≥ αs−ǫ4 + αs−4−ǫ4−4d4

αs ≥ αs−1−ǫ1−ǫ2 + αs−2−ǫ1−ǫ2−d3

αs ≥ 2αs−2−2ǫ2

αs ≥ 2αs−2−2ǫ2−d3 + αs−3−2ǫ2−2d3

αs ≥ αs−ǫ3 + αs−3−ǫ3−6d3

αs ≥ αs−ǫ2 + αs−2−2ǫ2−2d2

αs ≥ αs−ǫ2 + αs−2−ǫ1−ǫ2−3d2

αs ≥ 3αs−2−3ǫ2−2d2 + 3αs−3−6ǫ2 + αs−4−6ǫ2

αs ≥ αs−ǫ2 + 2αs−2−4ǫ2−3d2

Figure 5.1: The final recursive formulas for the set cover problem in Fomin et al.’s

paper

It only remains to set the values of ǫ1, ǫ2, ǫ3, ǫ4, and α such that all the inequal-

ities hold. In addition, the assigned values should lead to a good upper bound on

the time complexity of the whole domatic number problem. Now, we show that the

suggested value assignment of Fomin et al. proves the time complexity Õ(2.8805n)

for their algorithm.

As mentioned in the overview of Fomin et al.’s algorithm, this algorithm finds

the domatic number of a graph G by computing D(G|X)’s for all subsets X of

V (G), which can be done by enumerating all minimal dominating sets Y of G in

X. Due to Corollary 5.3, this step is done in time Õ(αn+ǫ4i) for any X of size i.

Since the number of X’s, X ⊆ V (G), of size i is
(

n
i

)

, the final time complexity is

Õ(
n

∑

i=0

(

n

i

)

αn+ǫ4i) ∈ Õ(αn(1 + αǫ4)n),

52

that is converted to 2.8805n with the following assignments:

ǫ1 = 3.3512, ǫ2 = 4.0202, ǫ3 = 4.4664, ǫ4 = 4.7164, and α < 1.105579.

Note that these values for ǫi’s and α satisfy the inequality set in Figure 5.1.

5.2 An Improvement for the k = 3 Case

In this section, we explain our algorithm which solves the three domatic number

problem, and equivalently computes MDDN(G, 3), in time Õ(2.7393n).

The key point in our algorithm is that if we can enumerate all pairs of disjoint

minimal dominating sets in a graph G, it will be straightforward to check the

existence of three disjoint dominating sets in G; for every such pair (D1,D2), we

examine whether the set of vertices D3 = V (G)−D1 −D2 forms a dominating set

for G.

If G has three disjoint dominating sets, the smallest dominating set has at most

n/3 vertices. Thus, we can also restrict our pair enumeration to listing all pairs

(D1,D2) that satisfy |D1| ≤ n/3 and |D1| ≤ |D2|.

In our pair enumeration, we exploit Fomin et al.’s enumeration algorithm. How-

ever, instead of enumerating all the minimal dominating sets without any special

order, we enumerate minimal dominating sets of size 1, then 2, and continue to size

n/3. This step is done based on a small change in Fomin et al.’s algorithm that

receives the size of the dominating set as an extra input. In the next step, for each

dominating set D1 we enumerate all minimal dominating sets only in V (G) −D1,

using Fomin et al.’s algorithm unchanged; in the analysis of this enumeration we

are aware of |D1|, which helps us establish a better bound on the computations.

Note that since the running time function is different in this approach, we find

other values for the ǫ’s and α.

To give better insight, our algorithm is shown precisely in Figure 5.4, page 70.

The function All-Minimal-Dominating-Sets(G, X, ℓ) is the modified enumer-

ation function we will describe next. This function returns an enumeration of all

53

minimal dominating sets of graph G that only contain vertices in X and have at

most ℓ vertices. As this enumeration function differs from Fomin et al.’s function

only in restricting the size of returned minimal set covers, setting ℓ = n changes it

to Fomin et al.’s algorithm.

To develop the modified enumeration algorithm, we prove the following lemma,

which bounds the number of minimal dominating sets. Although the proof is very

similar to Fomin et al.’s proof, the explanations are not omitted to make the result

verifiable. In this proof, the size of a set cover problem is defined as f ′((U,S)) =

|U | + Σ4
i=1cini, where n1, n2, and n3 are the numbers of sets in S having precisely

one, two, and three elements, and n4 is the number of sets in S having more than

three elements.

Lemma 5.4. Suppose 0 ≤ c1 ≤ c2 ≤ c3 ≤ c4, min{c1, c2 − c1} is denoted by d2,

min{d2, c3− c2} is denoted by d3, and min{d3, c4− c3} is denoted by d4. Also, U is

a set of elements, S is a family of subsets of U , and s is the size of the set cover

problem (U,S) defined as s = f ′((U,S)) = |U |+ Σ4
i=1cini for n1, n2, n3, n4 denoting

the number of subsets in S of size one, two, three, and more than three, respectively.

Then, (U,S) has at most λsβℓ minimal set covers of size ℓ, where λ, β, and ci’s

satisfy the following inequalities:

λsβℓ ≥ max

rλs−rc1−1βℓ−1, ∀r ≥ 2 (1)

λs−c4βℓ + λs−5−c4βℓ−1 (2)

λs−c4βℓ + λs−4−c4−4d4βℓ−1 (3)

λs−1−c1−c2βℓ−1 + λs−2−c1−c2−d3βℓ−1 (4A)

2λs−2−2c2βℓ−1 (4B)

2λs−2−2c2−d3βℓ−1 + λs−3−2c2−2d3βℓ−2 (4C)

λs−c3βℓ + λs−3−c3−6d3βℓ−1 (5)

λs−c2βℓ + λs−2−2c2−2d2βℓ−1 (6A)

λs−c2βℓ + λs−2−c1−c2−3d2βℓ−1 (6B)

3λs−2−3c2−2d2βℓ−1 + 3λs−3−6c2βℓ−2 + λs−4−6c2βℓ−3 (7)

λs−c2βℓ + 2λs−2−4c2−3d2βℓ−1 (8)

Proof. We first fix some notation that will be used in the proof. Let COV(U,S, ℓ)

54

denote the number of minimal set covers of size at most ℓ for (U,S), and let

COV(s, ℓ) denote the maximum possible value of COV(U,S, ℓ) over all set cover

problems (U,S) of size s. Also, we use S|U to denote {S ∩ U : S ∈ S}. We say an

element u ∈ U has frequency t if exactly t subsets in S contain u.

As in Fomin et al.’s proof, we use strong induction on s to prove the lemma:

we prove that for any λ, β, c1, c2, c3, c4 satisfying the above-mentioned inequalities,

and for all non-negative integers s and ℓ, COV(s, l) ≤ λsβℓ.

Base Case: If s = 0, |U | must be zero, and hence, |S| = 0 as well. The only

minimal set cover for this problem is the empty set. Therefore, COV(0, ℓ) = 1 for

all ℓ ≥ 0.

Induction hypothesis: COV(k, ℓ) ≤ λkβℓ for all k < s.

Induction step: Assuming the hypothesis, we prove that COV(U,S, ℓ) ≤ λsβℓ

for any set cover problem (U,S) of size s, where the size of (U,S) is f ′((U,S)) =

|U | + Σ4
i=1cini for n1, n2, n3, n4 denoting the number of subsets in S of size one,

two, three, and more than three, respectively. Suppose S is a family of subsets of

U such that (U,S) has size s. Also, suppose ℓ ≥ 0 is an integer.

Fomin et al. have considered nine possible cases, and proved their statement for

each case. We do the same, except that we also consider the size of the set cover in

the computations and we count the number of minimal set covers of size at most ℓ.

We number the cases as Fomin et al. have done this. Note that the order of these

cases is important. We prove that the inequality resulted from a case, say ‘case i’, is

true for all problems (U,S) of size s that have none of the conditions listed in ‘case

0’ to ‘case i-1’. For instance, if the set cover problem (U,S) has both conditions

of ‘case 1’ and ‘case 3’, we only prove the inequality corresponding to ‘case 1’ for

it. As a result, since the last case considers all remaining set cover problems not

satisfying the previous cases, these cases are exhaustive.

It might be useful to note that we have only added a β parameter to Fomin

et al.’s proof [26, Lemma 1], and the specified recursive formulas, as well as the

exponent of λ in each case, were proved in their theorem.

Case 0: There is a u ∈ U of frequency one.

55

The only set S1 containing u must be in every minimal set cover. Thus, to

enumerate all minimal set covers of size at most ℓ in (U,S), we can enumerate all

minimal dominating sets of size at most ℓ− 1 of (U −{u},S −{S1}) and add S1 to

all covers in this enumeration. Since adding S1 to each cover in this enumeration

does not change the number of set covers in the enumeration, we have

COV(U,S, ℓ) ≤ COV(U − {u},S − {S1}, ℓ− 1).

In this new set cover problem, the number of elements in U and the number of

subsets in S are decreased by one. Based on |S1|, the size of this new set cover

problem may be s − 1 − c1, s − 1 − c2, s − 1 − c3, or s − 1 − c4. Therefore, due

to the induction hypothesis, COV(U − {u},S − {S1}, ℓ − 1) is less than or equal

to λs−ci−1βℓ−1 for a c1 ≤ ci ≤ c4. Setting ci = c1 gives an upper bound for this

expression. Therefore,

COV(U,S, ℓ) ≤ COV(U − {u},S − {S1}, ℓ− 1) ≤ λs−c1−1βℓ−1.

To prove COV(U,S, ℓ) ≤ λsβℓ, it is sufficient to have λs−c1−1βℓ−1 ≤ λsβℓ, which

is always true.

Case 1: There is a u ∈ U that belongs only to size one sets.

Assume u is in S1, . . . , Sr, where r ≥ 2. Then, every minimal set cover should

contain exactly one of S1, . . . , Sr. Thus, to enumerate all minimal set covers of size

at most ℓ in (U,S) we can compute all minimal set covers of size at most ℓ− 1 of

(U −{u},S −{S1, . . . , Sr}), and compute the union of new enumerations produced

by adding S1, S2, . . . , or Sn to these set covers. Therefore,

COV(U,S, ℓ) = r · COV(U − {u},S − {S1, . . . , Sr}, ℓ− 1) ≤ rλs−rc1−1βℓ−1.

The second inequality is obtained similar to the previous case, except that in this

case r subsets are removed from S instead of one subset.

As the previous case, it is enough to have rλs−rc1−1βℓ−1 ≤ λsβℓ for every r ≥ 2.

This condition is the first inequality listed in the lemma, and therefore, it holds.

Case 2: There is an S1 = {u1, . . . , ur} ∈ S where r ≥ 5.

56

Since the number of minimal set covers that do not have S1 is at most COV(U,S−

{S1}, ℓ), and the number of minimal set covers that have S1 is at most COV(U1, (S−

{S1})|U1, ℓ− 1), where U1 = U − S1, we have

COV(U,S, ℓ) ≤ COV(U,S − {S1}, ℓ) + COV(U1, (S − {S1})|U1, ℓ− 1).

The size of the first resulting set cover problem, (U,S − {S1}), is s − c4, since

|S1| ≥ 5. In the second problem, (U1, (S − {S1})|U1), |U1| ≤ |U | − 5 and a set of

size at least five is eliminated from S. Therefore, the size of this problem is at most

s− 5− c4. Using the induction hypothesis, we have:

COV(U,S − {S1}, ℓ) + COV(U1, (S − {S1})|U1, ℓ− 1) ≤ λs−c4βℓ + λs−5−c4βℓ−1.

Based on Inequality 2, COV(U,S, ℓ) ≤ λsβℓ is obtained for this case.

Case 3: There is an S1 = {u1, u2, u3, u4} ∈ S.

This case is similar to Case 2, except that all subsets of size more than four

are eliminated in Case 2. Also, we consider the fact that all elements of U with

frequency one are also removed in Case 0. Therefore, every ui (1 ≤ i ≤ 4) is a

member of a subset other than S1 of size at most four. Removing ui (1 ≤ i ≤ 4)

reduces the size of this set by one, thus reducing the size of the problem by at least

1 + min{c1, c2 − c1, c3 − c2, c4 − c3} = 1 + d4. Removing S1 decreases the size by

another c4. Thus,

COV(U,S, ℓ) ≤ COV(U,S − {S1}, ℓ) + COV(U1, (S − {S1})|U1, ℓ− 1)

≤ λs−c4βℓ + λs−4−c4−4d4βℓ−1,

where U1 = U − S1. Now, Inequality 3 proves the required condition.

Case 4: There is a u ∈ U of frequency two.

Suppose u is in S1 and S2, where |S1| ≤ |S2|. Since the condition of Case 1 does

not hold, |S2| ≥ 2. We consider both possible cases |S1| = 1 and |S1| ≥ 2, where

the second case is also studied for S1 ⊆ S2 and S1 6⊆ S2.

Subcase 4A: |S1| = 1.

57

Thus, every minimal set cover has either S1 or S2, but not both. After selecting

which one is put in the minimal set cover, S1 and S2 and the element covered

by S1 will be removed, reducing the size of the problem by at least c1 + c2 + 1.

Furthermore, if we remove S2, at least one element other than u will be eliminated.

Using the same argument as in Case 3, removing an element of frequency at least

two decreases the size of the problem by at least 1 + d3. Therefore,

COV(U,S, ℓ) ≤ COV(U1,S − {S1, S2}, ℓ− 1)

+ COV(U2, ((S − S1), S2)|U2, ℓ− 1)

≤ λs−1−c1−c2βℓ−1 + λs−1−c1−c2−1−d3βℓ−1,

where U1 = U−S1 and U2 = U−S2. Inequality 4A proves that COV(U,S, ℓ) ≤ λsβℓ.

Subcase 4B: |S1| ≥ 2 and S1 ⊆ S2.

Every minimal set cover has either S1 or S2, but not both. Thus, after selecting

either S1 or S2 for the minimal set cover, we remove both S1 and S2 from S. Since

both of them have at least two elements, removing them reduces the size of the

problem by at least (1 + c2) + (1 + c2), and we have:

COV(U,S, ℓ) ≤ COV(U1,S − {S1, S2}|U1, ℓ− 1)

+ COV(U2,S − {S1, S2}|U2, ℓ− 1)

≤ 2λs−2−2c2βℓ−1,

where U1 = U − S1 and U2 = U − S2. Now, Inequality 4B proves the required

statement.

Subcase 4C: |S1| ≥ 2 and S1 6⊆ S2.

If exactly one of S1 and S2 is selected for the minimal set cover, then both sets

S1, S2 and two elements are removed and the cardinality of at least one other set

is reduced. If we select both S1 and S2, at least three elements and two sets are

removed and either the sizes of two other sets are reduced by one or the size of one

58

other set is reduced by two. Thus,

COV(U,S, ℓ) ≤ COV(U1,S − {S1, S2}|U1, ℓ− 1)

+ COV(U2, (S − {S1, S2})|U2, ℓ− 1)

+ COV(U3, (S − {S1, S2})|U3, ℓ− 2)

≤ 2λs−2−2c2−d3βℓ−1 + λs−3−2c2−2d3βℓ−2,

where U1 = U − S1, U2 = U − S2, and U3 = U − (S1 ∪ S2). Now, it only remains

to use inequality 4C.

Case 5: There is an S1 = {u1, u2, u3} ∈ S.

This case is similar to Case 3. However, now all subsets have at most three

elements and each element has frequency at least three. Therefore, removing each

element reduces the size of at least two other sets that contain at most three ele-

ments, which reduces the size of the problem by at least 1 + 2 ·min{c1, c2− c1, c3−

c2} = 1 + 2d3. Removing S1, u1, u2, and u3 reduces the problem size by at least

c3 + 3(1 + 2d3). Thus,

COV(U,S, ℓ) ≤ COV(U,S − {S1}, ℓ) + COV(U1, (S − {S1})|U1, ℓ− 1)

≤ λs−c3βℓ + λs−c3−3−6d3βℓ−1,

where U1 = U − S. Inequality 5 proves that COV(U,S, ℓ) ≤ λsβℓ.

Case 6: There are S1, S2 ∈ S such that S1 ⊆ S2.

We now know all elements have frequency at least three and all sets in S are of

size at most two. Hence, |S1| ≤ |S2| ≤ 2. Also, no minimal set cover can have both

S1 and S2. We consider two cases now:

Subcase 6A: S1 = {u1, u2} ∈ S.

Therefore, |S2| = 2, and S1 and S2 have the same elements, each contained in

at least one other subset. S2 may be selected for the minimal set cover. If we do

not choose S2, only S2 is removed, changing the size to s − c2. If we choose S2,

S1, S2, u1, and u2 are removed, and u1 and u2 are removed from another set of size

59

one or two, containing them. Hence, the size of the problem is reduced by at least

c2 + c2 + 2 + 2 ·min{c1, c2 − c1} = 2 + 2c2 + 2d2. Thus,

COV(U,S, ℓ) ≤ COV(U,S − {S2}, ℓ) + COV(U2, (S − {S1, S2})|U2, ℓ− 1)

≤ λs−c2βℓ + λs−2−2c2−2d2βℓ−1,

where U2 is again U−S2. We can use Inequality 6A to prove the required statement

now.

Subcase 6B: S1 = {u1} ∈ S.

Since we have passed Case 1, u1 is not only contained in subsets of size one.

Therefore there is another subset S3 of size two containing u1. We call the other

element of S3, u2. If S3 is not selected in the minimal set cover, we remove S3,

changing the size of the problem to s−c2. Otherwise, S1, S3, u1, and u2 are removed.

u1 and u2 are in at least one and two other subsets, respectively. Therefore, the size

of the problem reduces by at least c1 +c2 +2+3 ·min{c1, c2−c1} = 2+c1 +c2 +3d2.

Thus,

COV(U,S, ℓ) ≤ COV(U,S − {S3}, ℓ) + COV(U3, (S − {S1, S3})|U3, ℓ− 1)

≤ λs−c2βℓ + λs−2−c1−c2−3d2βℓ−1,

where U3 = U − S3. Inequality 6B proves the statement for this case.

Case 7: There is a u ∈ U of frequency three.

Since the frequencies of all elements are at least three, every subset of size one

in S is a subset of other subsets in S. As we have passed Case 6, no subset in S

is contained in another subset in S. Therefore, at this step, no subset of size one

exists in S, and hence, all subsets in S have exactly two elements. In addition, since

none of these subsets is a subset of another subset, all subsets in S are different.

Therefore, u is contained in subsets of the form S1 = {u, u1}, S2 = {u, u2}, and

S3 = {u, u3}.

Every minimal set cover has either one, two, or three of S1, S2, and S3.

60

• It contains one of S1, S2, or S3, say S1, removing S1, S2, S3, u, and u1 reduces

the size of the problem by at least 3c2 + 2 + 2d2, since u1 is in at least two

other subsets of size two.

• It includes two of S1, S2, and S3, say S1 and S2. Since both S1 and S2 are in

a minimal set cover, putting any subset containing u1 or u2 in the minimal

set cover contradicts the minimality of this set cover. There is at most one

subset containing both u1 and u2. Therefore, we can remove at least three

subsets other than S1 and S2 containing either u1 or u2. Removing these sets

along with u, u1, u2, S1, S2, and S3 reduces the size of the problem by at

least 3c2 + 3 + 3c2 = 3 + 6c2.

• It contains all S1, S2, and S3. Then, we can remove S1 S2, S3, u, u1, u2, u3,

and all other subsets containing u1, u2 or u3. The number of such subsets

is at least three. Therefore, removing all these subsets and elements reduces

the size of the problem by at least 3c2 + 4 + 3c2 = 4 + 6c2.

Thus, using the induction hypothesis, we have:

COV(U,S, ℓ) ≤
3

∑

i=1

COV(Ui, (S − {Si})|Ui, ℓ− 1)

+

3
∑

i=1

COV(U ′
i , (S − ({S1, S2, S3} − {Si}))|U

′
i , ℓ− 2)

+ COV(U ′′, (S − ({S1, S2, S3})|U
′′, ℓ− 3)

≤ 3λs−2−3c2−2d2βℓ−1 + 3λs−3−6c2βℓ−2 + λs−4−6c2βℓ−3,

where Ui = U − Si, U ′
i = U − ∪j 6=iSj, and U ′′ = U − ∪3

i=1Si. Now, Inequality 7

proves our desired inequality.

Case 8: None of the Cases 1-7 holds.

Suppose S1 = {u, v} is a set in S and Su and Sv are the sets of subsets in S that

have u and v respectively. We know the frequencies of all elements are more than

three. Thus, |Su| ≥ 3 and |Sv| ≥ 3. Also, every minimal set cover that contains S1

61

cannot contain both a set from Su and a set from Sv. Thus, we have

COV(U,S, ℓ) ≤ COV(U,S − {S1}, ℓ) + COV(U1, (S − ({S1} ∪ Su))|U1, ℓ− 1)

+ COV(U1, (S − ({S1} ∪ Sv))|U1, ℓ− 1),

where U1 = U − S1. Removing S1 changes the size of the problem to s− c2. In the

second alternative, S1 is selected in the minimal set cover, and we can remove v

from all subsets in Sv. Removing S1, u, v, subsets in Su, and v from subsets in Sv

reduces the size of the problem by at least c2 + 2 + 3c2 + 3(c2− c1) ≥ 2 + 4c2 + 3d2.

Therefore, the above-mentioned expression is at most

≤ λs−c2βℓ + 2λs−2−4c2−3d2βℓ−1.

We can prove COV(U,S, ℓ) ≤ λsβℓ for this final case using Inequality 8.

Using Lemma 5.4, it is easy to find an upper bound on the number of minimal

dominating sets of a graph.

Corollary 5.5. Suppose G = (V, E) is an n-vertex graph and 0 ≤ ℓ ≤ n is an

integer. Then, the number of minimal dominating sets of size ℓ of G is at most

λ(1+c4)nβℓ, where λ, β, and 0 ≤ c1 ≤ c2 ≤ c3 ≤ c4 satisfy the inequalities of

Lemma 5.4.

Proof. Let U = V and S = {{v} ∪ N(v) : v ∈ V }. Moreover, let s denote the size

of the set cover problem (U,S) as defined in Lemma 5.4: s = |U |+ Σ4
i=1cini, where

n1, n2, and n3 stand for the number of subsets in S that have 1, 2, and 3 elements,

and n4 denotes the number remaining subsets in S. Then, the number of minimal

dominating sets of size ℓ of G is equal to the number of minimal set covers of size ℓ

of (U,S) which is at most λsβℓ by Lemma 5.4. Since s ≤ n +
∑4

i=1 c4ni = n + c4n,

the number of minimal dominating sets of size ℓ of G is at most λ(1+c4)nβℓ.

Converting the Counting to an Enumeration Algorithm

The counting technique provided can be exploited to design an algorithm to enu-

merate all minimal set covers of a problem set (U,S) (see Figure 5.2, page 69). In

62

the given algorithm, the problem instance (U,S) is checked against the conditions

of cases in Lemma 5.4. The algorithm acts upon the first case such that the con-

dition is satisfied by instance (U,S), say Case c. Based on the alternatives listed

for Case c, the algorithm decides on the smaller instances it will solve to compute

the enumeration. The union of minimal set covers for all possible alternatives gives

the set of minimal set covers for the current problem instance. In the following, we

prove that the running time of this algorithm is in O(poly(n)·(|U |+|S|)·λ(1+c4)nβℓ),

which is converted O(poly(n) · λ(1+c4)nβℓ) if we execute it to compute the desired

minimal dominating sets according to the algorithm shown in Figure 5.3, page 70.

Lemma 5.6. Suppose U is a set of elements, S is a set of subsets of U , and

0 ≤ ℓ ≤ n is an integer. Then, All-Minimal-Set-Covers(U,S, ℓ, ∅) enu-

merates all minimal set covers of size at most ℓ of the set cover problem (U,S)

in time O(|U |(|U | + |S|)2 · λsβℓ), where λ, β, 0 ≤ c1 ≤ c2 ≤ c3 ≤ c4, d2 =

min{c1, c2 − c1}, d3 = min{d2, c3 − c2}, and d4 = min{d3, c4 − c3} satisfy the in-

equalities of Lemma 5.4, and s is the size of the problem instance (U,S) defined as

s = f ′((U,S)) = |U | + Σ4
i=1cini for n1, n2, n3, n4 denoting the number of subsets in

S of size one, two, three, and more than three, respectively.

Proof. All-Minimal-Set-Covers considers all possible minimal set covers in

problem instance (U,S) according to the cases listed in Lemma 5.4. Therefore, the

algorithm works correctly.

At each step this algorithm does the following:

1. It finds the first case for which (U,S) satisfies the corresponding condition.

2. It calls All-Minimal-Set-Covers a constant number of times with the specified

inputs.

3. It computes the union of all enumerations found.

We implement the algorithm using the following data structure for U and S: el-

ements in U and subsets in S are kept in two linked lists. Each subset in S has

63

a linked list of its elements pointing to elements of U , and each element u in U

has a linked list of the subsets in S containing u. Having these assumptions, the

conditions of cases 0 to 8 can be checked in times O(|U |), O(|U | · |S|), O(5|S|),

O(4|S|), O(|U |), O(2|S|), O(|U | · |U |), O(2|U |), and O(1). Thus, checking the con-

ditions takes O(|U ||U |+ |U ||S|) time. Computing the parameters in function calls

consists of removing constant number of elements from U or from subsets in S,

thus taking at most O(|U | + |S|). And, computing the union of constant number

of enumeration sets takes O(1) time. Therefore, each step of the algorithm is per-

formed in time O(|U ||U |+ |U ||S|), and hence, the running time of the algorithm is

O(|U |(|U |+ |S|) · num), where num is the number of steps taken. We can view the

steps of the algorithm as nodes of a tree. Since for each problem instance at each

function call either |U | or |S| is decreased, the height of this tree is at most |U |+|S|.

Since at each node a constant number of computation branches are generated, the

number of nodes in this tree is of the order of the number of leaves. Note that at

each leaf an acceptable minimal dominating set is produced. Therefore, the number

of leaves is equal to the number of minimal dominating sets of size at most ℓ in G

with all their vertices in X. Therefore, due to Lemma 5.4, the number of leaves

is at most λsβℓ. Consequently, this tree has at most O((|U | + |S|) · λsβℓ) nodes,

resulting in the running time O(|U |(|U |+ |S|)2 · λsβℓ).

We show that the running time in Lemma 5.6 can be refined to O(n3·λ(n+c4|X|)βℓ)

when we enumerate all minimal set coves corresponding to minimal dominating sets

of a graph:

Lemma 5.7. Suppose G = (V, E) is an n-vertex graph, 0 ≤ ℓ ≤ n is an integer,

and X ⊆ V is a set of vertices. Then, All-Minimal-Dominating-Sets(G, X, ℓ)

enumerates all minimal dominating sets of size at most ℓ of G that are selected

from X in time O(n3 · λ(n+c4|X|)βℓ), where λ, β, 0 ≤ c1 ≤ c2 ≤ c3 ≤ c4, and

d2 = min{c1, c2 − c1}, d3 = min{d2, c3 − c2}, d4 = min{d3, c4 − c3} satisfy the

inequalities of Lemma 5.4.

Proof. This function sets U to V (G) and S to
⋃

v∈X{v}∪N(v) in time O(n2). Then,

it enumerates all the minimal set covers of size at most ℓ in the set cover problem

64

(U,S) by executing All-Minimal-Set-Covers(U,S, ℓ, ∅). Due to Lemma 5.6,

this step is done in time O(|U |(|U | + |S|)2 · λsβℓ) where s = f ′((U,S)) = |U | +

Σ4
i=1cini for n1, n2, n3, n4 denoting the number of subsets in S of size one, two,

three, and more than three, respectively. As described in Corollary 5.5, since

0 ≤ c1 ≤ c2 ≤ c3 ≤ c4, s ≤ |U | + Σ4
i=1c4ni = |U | + c4|S| = n + c4|X|, and

therefore, Step 7 runs in time O(|U |(|U |+ |S|)2 · λ(n+c4|X|)βℓ). As explained in the

preliminaries section, all minimal dominating sets of graph G in X ⊆ V (G) are

generated by replacing all subsets of the form {vi ∪N(vi)} by vi in every minimal

set cover of the set cover problem (V (G),
⋃

v∈X{v} ∪ N(v)). Thus, steps 8 and 9

produce all minimal dominating sets of size at most ℓ of G in X. These steps are

performed in O(n2 · num) where num is the number of minimal dominating sets

in G. According to Corollary 5.5, we know that num ≤ λ(1+c4)nβℓ. Therefore,

the final time complexity of the algorithm is O(n2 + |U |(|U |+ |S|)2 · λ(n+c4|X|)βℓ +

n2 · λ(1+c4)|X|βℓ) ∈ O(n2 + n(2n)2 · λ(n+c4|X|)βℓ) ∈ O(n2(n + n) · λ(n+c4|X|)βℓ) ∈

O(n3 · λ(n+c4|X|)βℓ).

Now, we can compute the overall running time of our main algorithm, specified

in Figure 5.4, page 70, that finds three disjoint dominating sets in the input graph

G, if D(G) ≥ 3:

Theorem 5.8. The three domatic number problem can be solved in time

Õ(2.7393n).

Proof. Let λ, β and ci’s be the constants satisfying inequalities in Lemma 5.4 and

α and ǫi’s be the constants of Fomin et al.’s inequalities. According to Lemma 5.7,

all minimal dominating sets of size i are enumerated in time O(n3 · λ(1+c4)nβi).

Then, for each dominating set D1 of size i, all minimal dominating sets only in

V (G)−D1 are enumerated. Based on Corollary 5.2, this enumeration can be done

in Õ(αn+ǫ4|V (G)−D1|) ∈ Õ(αn+ǫ4(n−i)) time. For each pair of disjoint dominating

sets (D1, D2) obtained, the algorithm checks whether D3 = V (G) − D1 − D2 is a

dominating set for G in time O(n2). Hence, the final time complexity is

65

O

⌈n/3⌉
∑

i=1

n3 · λ(n+c4n)βi · Õ(α(n+ǫ4(n−i))) · n2

 ∈ Õ

⌈n/3⌉
∑

i=1

λ(n+c4n)βi · α(n+ǫ4(n−i))

∈ Õ

λ((1+c4)n)α(1+ǫ4)n

⌈n/3⌉
∑

i=1

α(i lgβ
α −iǫ4)

 ∈ Õ

λ((1+c4)n)α(1+ǫ4)n

⌈n/3⌉
∑

i=1

αi(lgβ
α −ǫ4)

 .

We consider the cases lgβ
α < ǫ4 and lgβ

α ≥ ǫ4. For the first case, since α > 1,

αi(lgβ
α −ǫ4) is less than 1. Therefore,

∑⌈n/3⌉
i=1 αi(lgβ

α −ǫ4) is less than n/3, which is

negligible in our computations. Consequently, the running time of the first case

will be Õ
(

λ(1+c4)α(1+ǫ4)
)n

. For the second case, since lgβ
α−ǫ4 ≥ 0, replacing i with

⌈n/3⌉ will not increase the power of α. Therefore, as α > 1, we can replace i with

α without decreasing the computed running time. Consequently, the running time

for the second case is at most

Õ

λ((1+c4)n)α(1+ǫ4)n

⌈n/3⌉
∑

i=1

α⌈n/3⌉(lgβ
α −ǫ4)

 ∈ Õ
(

λ((1+c4)n)α(1+ǫ4)n ·
n

3
αn/3(lgβ

α−ǫ4)
)

∈ Õ
(

λ(1+c4)α(1+2/3ǫ4+1/3 lgβ
α)

)n

.

The overall running time can be written as the sum of the above mentioned

running times.

Õ
(

λ(1+c4)α(1+ǫ4)
)n

+ Õ
(

λ(1+c4)α(1+2/3ǫ4+1/3 lgβ
α)

)n

where α, ǫ1, ǫ2, ǫ3, and ǫ4 must be set such that all inequalities in Figure 5.1 hold,

and λ, c1, c2, c3, c4, and β must be set such that every inequality of Lemma 5.4

holds.

The values

ǫ1 = 3.3512, ǫ2 = 4.0202, ǫ3 = 4.4664, ǫ4 = 4.7164, α = 1.105579 ,

c1 = 2.92887, c2 = 3.81637, c3 = 4.24856, c4 = 4.46431, λ = 1.08147 ,

66

β = 1.6344

satisfy the mentioned inequalities, and result in the running time of Õ(2.73929n).

Therefore, our proposed algorithm runs in Õ(2.73929n) time.

In this chapter, we gave an exact algorithm for computing MDDN(G, 3) in time

Õ(2.739n). In a recent paper by Riege and Rothe, this result was improved to

Õ(2.695n), using a completely different approach [52]. One possible direction for

future work is to combine these methods to obtain a faster algorithm. Another

alternative is to work on exact algorithms for other k’s. Currently, the only exact

algorithm for general k’s is due to Fomin et al., who solve the problem in Õ(2.88n)

time.

67

All-Minimal-Set-Covers(U,S, ℓ, C)

1 if ℓ = 0 then

2 return C

3 if condition of Case 0 then

4 return All-Minimal-Set-Covers(U − {u},S − {S1}, ℓ− 1, {S1} ∪ C)

5 if condition of Case 1 then

6 return
⋃r

i=1(All-Minimal-Set-Covers(U − {u},S − {S1, . . . , Sr}, ℓ− 1, {Si} ∪ C))

7 if condition of Case 2 then

8 A1 ← All-Minimal-Set-Covers(U,S − {S1}, ℓ, C)

9 A2 ← All-Minimal-Set-Covers(U1, (S − {S1})|U1, ℓ− 1, {S1} ∪C)

10 return A1 ∪A2

11 if condition of Case 3 then

12 A1 ← All-Minimal-Set-Covers(U,S − {S1}, ℓ, C)

13 A2 ← All-Minimal-Set-Covers(U1, (S − {S1})|U1, ℓ− 1, {S1} ∪C)

14 return A1 ∪A2

15 if condition of Case 4 then

16 if condition of Case 4A then

17 A1 ← All-Minimal-Set-Covers(U1,S − {S1, S2}, ℓ− 1, {S1} ∪C)

18 A2 ← All-Minimal-Set-Covers(U2,S − {S1, S2}|U2, ℓ− 1{S2} ∪ C)

19 return A1 ∪A2

20 if condition of Case 4B then

21 A1 ← All-Minimal-Set-Covers(U1,S − {S1, S2}|U1, ℓ− 1, {S1} ∪ C)

22 A2 ← All-Minimal-Set-Covers(U2,S − {S1, S2}|U2, ℓ− 1, {S2} ∪ C)

23 return A1 ∪A2

24 if condition of Case 4C then

25 A1 ← All-Minimal-Set-Covers(U1,S − {S1, S2}|U1, ℓ− 1, {S1} ∪ C)

26 A2 ← All-Minimal-Set-Covers(U2,S − {S1, S2}|U2, ℓ− 1, {S2} ∪ C)

27 A3 ← All-Minimal-Set-Covers(U3, (S − S1, S2)|U3, ℓ− 2, {S1, S2} ∪ C)

28 return A1 ∪A2 ∪A3

Figure 5.2: (con’t in the next page) An algorithm to enumerate minimal set covers of

size at most ℓ in (U,S). It is first called with C = ∅.

68

29 if condition of Case 5 then

30 A1 ← All-Minimal-Set-Covers(U,S − {S1}, ℓ, C)

31 A2 ← All-Minimal-Set-Covers(U1, (S − {S1})|U1, ℓ− 1, {S1} ∪C)

32 return A1 ∪A2

33 if condition of Case 6 then

34 if condition of Case 6A then

35 A1 ← All-Minimal-Set-Covers(U,S − {S2}, ℓ, C)

36 A2 ← All-Minimal-Set-Covers(U2, (S − {S1, S2})|U2, ℓ− 1, {S2} ∪ C)

37 return A1 ∪A2

38 if condition of Case 6B then

39 A1 ← All-Minimal-Set-Covers(U,S − {S3}, ℓ, C)

40 A2 ← All-Minimal-Set-Covers(U3, (S − {S1, S3})|U3, ℓ− 1, {S3} ∪ C)

41 return

42 if condition of Case 7 then

43 A1 ←
⋃3

i=1(All-Minimal-Set-Covers(Ui, (S − {Si})|Ui, ℓ− 1, {Si} ∪ C))

44 A2 ← All-Minimal-Set-Covers(U ′
1, (S − {S2, S3})|U

′
1, ℓ− 2, {S2, S3} ∪ C))

45 A3 ← All-Minimal-Set-Covers(U ′
2, (S − {S1, S3})|U

′
2, ℓ− 2, {S1, S3} ∪ C))

46 A4 ← All-Minimal-Set-Covers(U ′
3, (S − {S1, S2})|U

′
3, ℓ− 2, {S1, S2} ∪ C))

47 A5 ← All-Minimal-Set-Covers(U ′′, (S − ({S1, S2, S3})|U
′′, ℓ− 3, {S1, S2, S3} ∪ C)

48 return A1 ∪A2 ∪A3 ∪A4 ∪A5

49 if condition of Case 8 then

50 A1 ← All-Minimal-Set-Covers(U,S − {S1}, ℓ, C)

51 A2 ← All-Minimal-Set-Covers(U1, (S − ({S1} ∪ Su))|U1, ℓ− 1, {S1} ∪ C)

52 A3 ← All-Minimal-Set-Covers(U1, (S − ({S1} ∪ Sv))|U1, ℓ− 1, {S1} ∪ C)

53 return A1 ∪A2 ∪A3

Figure 5.2: (con’t)

69

All-Minimal-Dominating-Sets(G = (V, E), X ⊆ V, ℓ)

54 U ← V

55 S ← ∅

56 n← |X|

57 for i← 1 to n do

58 Si = {vi} ∪N(vi), where vi is the ith vertex in X

59 S ← S ∪ {Si}

60 enum← All-Minimal-Set-Covers(U,S, ℓ, ∅)

61 for (every set cover C ∈ enum) do

62 Replace each subset Si in C with vi

63 return enum

Figure 5.3: An algorithm enumerating minimal dominating sets of size at most ℓ in a

graph G that is only selected from vertices in X ⊆ V (G)

Three-Domatic-Partition(G = (V, E))

64 for i← 1 to ⌈n/3⌉ do

65 enum1← All-Minimal-Dominating-Sets(G, V, i)

66 for (every D1 ∈ enum1) do

67 enum2← All-Minimal-Dominating-Sets(G, V −D1, n)

68 for (every D2 ∈ enum2) do

69 D3 ← V −D1 −D2

70 if (D3 is a dominating set for G) then

71 return {D1, D2, D3}

72 return ∅

Figure 5.4: Our new algorithm for the three domatic number problem. This algorithm

returns three disjoint dominating sets for the input graph, if D(G) ≥ 3.

70

Chapter 6

Approximation Algorithm

In this chapter, we study the approximability aspects of the MDDN problem.

In the following sections, we first prove an inapproximability result for the

MDDN problem in the general case. In other words, we find a ratio t for which no

t-approximation algorithm can be designed. Then, we show that the same result

holds for split graphs, 2-connected graphs, and planar bipartite graphs of degree

four. Next, we develop a greedy algorithm that returns a 3-approximation for the

problem. The next section is devoted to approximation algorithms we can design

using distance-approximating graphs, for special families of input graphs. In the

final section, we have a discussion on the best approximation ratio and possible

future work.

6.1 An Inapproximability Result

In this section, we prove it is hard to approximate the MDDN problem within a

ratio better than two, unless P = NP.

There are three techniques to prove an inapproximability result: using the cel-

ebrated technique introduced by Arora et al. in 1992 [3], reducing the problem

to a known inapproximable problem by a special kind of reduction called “gap-

71

preserving reduction” [2], or directly reducing an NP-complete problem to the

problem of finding an approximate solution for the main problem.

Using the last approach, we prove the following inapproximability result for the

MDDN problem.

Theorem 6.1. For any fixed k ≥ 3, the problem of computing MDDN(G, k) does

not have an (2− ǫ)-approximation algorithm for any ǫ > 0, unless P = NP.

Proof. We suppose that a (2− ǫ)-approximation algorithm for the MDDN problem

exists. If we execute this algorithm on an integer k and a graph G, it should

compute a value between MDDN(G, k) and (2− ǫ)·MDDN(G, k). We consider the

two possible cases MDDN(G, k) = 1 and MDDN(G, k) > 1. If MDDN(G, k) = 1,

then the value returned of the algorithm cannot exceed 2− ǫ. Thus, the algorithm

returns 1. Otherwise, since the algorithm cannot return a value less than the

optimum value, it does not return 1. Consequently, based on the value returned

by the algorithm we can check whether MDDN(G, k) = 1 in polynomial time.

According to Corollary 3.8, this is a contradiction, unless P = NP.

The proof results in a similar inapproximability result if we restrict the input

graph to split graphs, 2-connected graphs, or planar bipartite graphs of degree four,

and use Corollaries 3.11, 3.12, and 3.9 to prove the contradiction, respectively:

Theorem 6.2. For any fixed k ≥ 3, the problem of computing MDDN(G, k) does

not have an (2 − ǫ)-approximation algorithm for any ǫ > 0, even for split graphs

and 2-connected graphs, unless P = NP.

Theorem 6.3. The problem of computing MDDN(G, 3) does not have an (2− ǫ)-

approximation algorithm for any ǫ > 0, even for planar bipartite graphs of degree

four, unless P = NP.

In summary, there is not any polynomial-time algorithm approximating the

MDDN problem within ratio smaller than 2, even if the input graph is selected

from split graphs, 2-connected graphs, or planar bipartite graphs of maximum

degree four.

72

6.2 A Greedy 3-Approximation Algorithm

We develop an algorithm, specified in Figure 6.1, that gives a 3-approximation for

the MDDN problem. As an example, we have illustrated how this algorithm works

for the graph shown in Figure 6.2. The algorithm first finds the minimum distance

MinDistance for which δ(GMinDistance) ≥ k − 1, that is 2 in the example. Then, it

gives a k-partitioning in GMinDistance by choosing an unpartitioned vertex v having

no partitioned neighbor at each step and assigning partitions 1 to k to k − 1 of

neighbors of v and v. In the figure, the selected v’s in the first and second images

are specified by partition number k = 3. After each selection, the vertices with

partitioned neighbors are circled to show which vertices cannot be chosen as the

next v. So, in third image, there is not any choice left for v, and all vertices are

put in partition 1 according to steps 10 and 11 of the algorithm.

In the remainder of this section, we prove that this algorithm is a 3-approximation

algorithm.

Theorem 6.4. Suppose that k is an integer and G is a graph with minimum degree

at least k−1. Then, Greedy-Partitioning(G, k) partitions V (G) into k disjoint

dominating sets in G3.

Proof. Greedy-Partitioning may not be applicable on some input parameters,

since it may not be possible to choose k−1 neighbors in step 5. However, assuming

that δ(G) ≥ k − 1, this problem can not occur.

We prove that the set of vertices put in the same partition i, for any i between

1 and k, is a dominating set for G3. In other words, every vertex in V either is in

partition i, or has a neighbor in G3 assigned to partition i. In the rest of the proof,

whenever we call a vertex v a good vertex we mean that v is assigned to partition

i. Also, when we say that a vertex v has a good neighbor, we mean that v has a

neighbor which is a good vertex.

We check graph vertices in three distinct groups: vertices chosen as v in step 4;

vertices selected as the neighbor set of a v in step 5; vertices in Unpartitioned in

73

Precondition: δ(G) ≥ k − 1.

Approximate-Partitioning(G = (V, E), k)

73 MinDistance ← min{d | ∀v ∈ V deg(v) ≥ k − 1 in Gd}.

74 return GREEDY − PARTITIONING(GMinDistance, k)

Greedy-Partitioning(G = (V, E), k)

75 Unpartitioned ← V

76 while (there exists v in Unpartitioned

77 with all neighbors in Unpartitioned) do

78 v ← a vertex in Unpartitioned with all neighbors in Unpartitioned

79 Select k − 1 neighbors {v1, v2, . . . , vk−1} of v.

80 Unpartitioned ← Unpartitioned − {v1, . . . , vk−1} − {v}

81 for i← 1 to k − 1 do

82 Partition(vi)← i

83 Partition(v)← k

84 for (every vertex u ∈ Unpartitioned) do

85 Partition(u)← 1

86 return Partition

Figure 6.1: A 3-approximation algorithm for the MDDN problem

step 10 of the algorithm, i.e. the vertices that are not partitioned in the while loop.

According to steps 7, 8 and 9, every vertex in the first group is good or has a good

neighbor. As for the second group, note that every such vertex is a neighbor of a

first group vertex. Consequently, every vertex in the second group is at most two

nodes away from a good vertex. Therefore, it is good or has a good neighbor in G3.

Now, it remains to check the third group. Based on the while condition, whenever

the algorithm reaches step 10, every vertex in Unpartitioned is connected to at

least one partitioned vertex. In addition, the only partitioned vertices at step 10

74

Figure 6.2: The status of vertex partitions in each iteration of the Approximate-

Partitioning algorithm. k is 3 in this example. The numbers represent partitions

and the vertices with a partitioned neighbor are circled.

are group 1 and 2 vertices. As mentioned before, each of these partitioned vertices

is at most two nodes away from a good node. Therefore, every vertex of the third

group is at most three nodes away from a good vertex and hence, either is a good

vertex itself, or has a good neighbor in G3.

Theorem 6.5. For every graph G = (V, E) and positive integer k, Approximate-

Partitioning(G, k) returns a k-partitioning for G corresponding to a 3-approximation

for MDDN(G, k).

Proof. At the first step of Approximate-Partitioning, MinDistance is set to

the minimum distance d satisfying δ(Gd) ≥ k − 1. Therefore, when, at step 2,

Greedy-Partitioning is called with (GMinDistance, k), the precondition of The-

orem 6.4 holds for the input parameters. Therefore, we can say that Greedy-

Partitioning(GMinDistance, k) partitions V into k disjoint dominating sets of GMinDistance3 =

G3·MinDistance. So, we have obtained the upper bound 3·MinDistance on MDDN(G, k).

Besides, according to Lemma 2.33, the minimum d satisfying k − 1 ≤ δ(Gd) is

at most MDDN(G, k). Since MinDistance is equal to min{d | k − 1 ≤ δ(Gd)},

MinDistance ≤ MDDN(G, k).

75

Combining the two results obtained above, we have MinDistance ≤ MDDN(G, k) ≤

3 ·MinDistance. Hence, MinDistance is a 3-approximation for MDDN(G, k), and

Approximate-Partitioning gives a corresponding k-partitioning for this 3-approximating

value.

6.3 Approximation Algorithms and

Special Families of Graphs

As described in Section 3, the MDDN problem can be solved on strongly chordal

graphs, including trees, interval graphs, block graphs, and directed path graphs, in

polynomial time. This motivates us to replace the input graph G with a graph R in

one of these special families with almost the same optimum value, i.e. MDDN(R, k)

is approximately equal to MDDN(G, k), and solve the problem for R instead of G.

The question is in which properties R should be similar to G to be a good

representative of G in the MDDN problem.

Suppose that for all pairs of vertices (u, v), u, v ∈ V (G), dR(u, v) is approxi-

mately dG(u, v). Then, a dominating set in Gℓ is probably a dominating set in Rℓ′ ,

for an ℓ′ approximately equal to ℓ, and vice verse. Therefore, selecting R to be a

spanning subgraph of G that approximates the distances in G might be useful in

designing approximation algorithms.

In the following, we list the approximation algorithms we can obtain based on

known results on distance-approximating spanners. In the discussion section (6.4),

we explain another choice of R and specify a proposition sufficient to prove a 2-

approximation algorithm for the MDDN problem in general.

The following theorem clarifies the connection between finding (t, c)-spanners

for special families of graphs and designing (t, c)-approximation algorithms for the

MDDN problem. We use a lemma and its corollary as the building blocks of this

theorem:

76

Lemma 6.6. Suppose that G is a graph and R is a distance-approximating graph

of ratio (t, c) for G. Then, MDDN(R, k) ≤ t·MDDN(G, k) + c.

Proof. We claim that every dominating set in a power of G, say Gi, is also a

dominating set for Rt·i+c. Assume that a set of vertices U ⊆ V (G) covers the

vertices of Gi. It means that every vertex v ∈ V (G) is within distance i of a vertex

u ∈ U in G. Due to the definition of a distance-approximating graph of ratio (t, c),

dR(v, u) ≤ t · i + c. Hence, U is a dominating set for Rt·i+c, and we are done.

As a result, every set of disjoint dominating sets in the ith power of G is a set

of disjoint dominating sets in Rt·i+c. Therefore, D(Gi) ≤ D(Rt·i+c) for any i.

According to Definition 2.28, MDDN(G, k) is the minimum r for which D(Gr) ≥

k. Since k ≤ D(Gr) ≤ D(Rt·r+c), the minimum distance d making D(Rd) ≥ k is at

most t · r + c. This statement is exactly what we wanted to prove.

Corollary 6.7. If R is a subgraph of a graph G, then MDDN(G, k) ≤MDDN(R, k).

Proof. Since R is a subgraph of G, for every pair of vertices u, v ∈ V (G), dG(u, v) ≤

dR(u, v). Equivalently, G is a distance-approximating graph of ratio (1, 0) for R,

and Lemma 6.6 proves the corollary.

Theorem 6.8. Suppose that F is a family of graphs for which there is a polynomial-

time algorithm A to find a (t, c)-spanner R. Moreover, the domatic number of R and

its powers can be determined in polynomial time. Then, restricting the input graph

to be in F , we can give a (t, c)-approximation algorithm for the MDDN problem.

Proof. We consider a graph G in F . Running A on G, we obtain a (t, c)-spanner

R for G.

Due to the previous lemma and corollary, as R is a distance-approximating

graph of ratio (t, c) for G and also a subgraph of G, MDDN(G, k) ≤MDDN(R, k) ≤

t·MDDN(G, k) + c. Consequently, an algorithm returning MDDN(R, k) is a (t, c)-

approximation for the MDDN(G, k) problem.

77

According to Lemma 2.39, since the domatic number of R and its powers can

be determined in polynomial time, MDDN(R, k) can be computed in polynomial

time. The polynomial-time algorithm that computes MDDN(R, k) is our desired

approximation algorithm.

Choosing R from trees, we can use the known results on tree (t, c)-spanners

mentioned in the preliminaries section (Theorems 2.9, 2.10, 2.11, and 2.12) to design

approximation algorithms for the MDDN problem:

Corollary 6.9. We can obtain the following approximation algorithms for the

MDDN problem:

1. (3, 0)-approximation, as well as (1, 4)-approximation, for permutation graphs

2. (1, 2)-approximation for distance-hereditary graphs

3. (1, 4)-approximation for cocomparability graphs

4. (1, 3)-approximation for dually chordal graphs

As mentioned in the preliminaries (Theorem 2.13), although it is not possible

to find tree (t, c)-spanners for all chordal graphs, Brandstadt et al. succeeded to

obtain a distance-approximating graph R of ratio (1, 2) for every chordal graph

G, where R is a spanning tree for G2 rather than G. Their theorem is useful in

designing approximation algorithms for the MDDN problem on chordal graphs:

Lemma 6.10. For any graph G and any subgraph R of G2, MDDN(G, k) ≤

2·MDDN(R, k).

Proof. In an arbitrary power of G, say Gi, the vertices of distance at most i in G

are connected by edges. As a result, a path of length ℓ is reduced to a path of

length ⌈ℓ/i⌉. That is, for every pair of vertices in V (G), dG(u, v) ≤ i · dGi(u, v).

Now, limiting our focus to the i = 2 case, we have dG(u, v) ≤ 2 · dG2(u, v) for

any u, v ∈ V (G). Since R is a subgraph of G2, dG2(u, v) ≤ dR(u, v) also holds,

78

Graph Class Approximation Ratio

permutation graphs (1, 4)

distance-hereditary graphs (1, 2)

cocomparability graphs (1, 4)

dually chordal graphs (1, 3)

chordal graphs (2, 4)

general graphs (3, 0)

Table 6.1: A list of approximation algorithms for the MDDN problem for special

classes of graphs.

leading to dG(u, v) ≤ 2 · dR(u, v) for every u, v ∈ V (G). Therefore, G is a distance-

approximating graph of ratio (2, 0) for R, and we can use Lemma 6.6 to conclude

the result.

Theorem 6.11. There exists a (2, 4)-approximation algorithm for computing MDDN(G, k)

for chordal graphs.

Proof. We first compute the spanning tree T of G2 mentioned in Theorem 2.13. Due

to Lemma 6.6, MDDN(T, k) ≤ MDDN(G, k) + 2. However, unlike in the previous

theorem, MDDN(T, k) is not necessarily greater than or equal to MDDN(G, k),

since the distances in T might be less than the distances in G. Whereas accord-

ing to Theorem 2.13, T is a spanning tree of G2, and according to Lemma 6.10,

MDDN(G, k) ≤ 2·MDDN(T, k). Combining it with the previous inequality, we

have:

MDDN(G, k) ≤ 2 ·MDDN(T, k) ≤ 2 ·MDDN(G, k) + 4

Consequently, an algorithm returning 2·MDDN(T, k) is a (2, 4)-approximation

algorithm for chordal graphs.

A summary of the approximation results on special families of graphs is shown

in Table 6.1.

79

6.4 Discussion

We have developed a 3-approximation algorithm and proved that the approximation

ratio cannot be less than 2. Hence, the best approximation ratio for the MDDN

problem, denoted by ρ, is a value between 2 and 3. The question is how we can

close the gap between the current upper and lower bounds for ρ.

It is worth mentioning that there is not any gap for the case k = 3, since there is

a 2-approximation algorithm for this case: due to Theorem 2.31, MDDN(G, 3) ≤ 2.

Hence, an algorithm always returning 2 is a 2-approximation for the problem.

It might be the case that the best approximation ratio is 2 for all k’s; but

how can we prove that? One choice is to exploit an approach similar to that

in Section 6.2. Our 3-approximation algorithm is based on Theorem 6.4. This

theorem states that for every graph G, D(G3) ≥ δ(G) and provides an algorithm

that finds a δ(G)-partitioning for G3 in polynomial time. A similar result on G2,

i.e. D(G2) ≥ δ(G), will give a 2-approximation algorithm. This condition is not

necessary, but only sufficient, to obtain a 2-approximation algorithm. However,

although we have not proved this result, we have not yet been able to find a graph

G for which D(G2) ≥ δ(G), either.

One approach to obtain a lower bound for D(G2) is to design an algorithm

specifying a spanning subgraph R ⊆ G of a graph family F of known D(R2). Since

D(G2) ≥ D(R2), if such a subgraph ensures D(R2) ≥ δ(G), the desired D(G2) ≥

δ(G) will hold, and ρ will be proved to be 2. As mentioned in Corollary 3.16, for

any power of a strongly chordal graph S, D(Si) = δ(Si)+1. Therefore, the strongly

chordal family of graphs is a good candidate for F . As a result, if the answer to

the following question is yes, we can achieve a 2-approximation algorithm for the

MDDN problem:

Open Question 1. Does every graph G have a strongly chordal spanning subgraph

R such that δ(R2) ≥ δ(G)?

The response to this question is no if we restrict R to the family of trees; as

a counterexample, we consider graph G produced by removing a perfect matching

80

from a complete n-vertex graph. In this example, δ(G) = ∆(G) = n − 2, and we

claim that no tree subgraph T ⊆ G has δ(T 2) ≥ δ(G) = n− 2. Every tree T must

have exactly n−1 edges and at least one leaf. Suppose that ℓ is a leaf of T . To have

a minimum degree of n− 2 in T 2, ℓ must be connected to a vertex u with at least

n− 3 neighbors other than ℓ. Since ∆(G) = n− 2, u is connected to exactly n− 2

vertices in T . Thus, there is only one vertex v that is not among the neighbors of

u in T . Up to now, we have identified n − 2 edges in T , and hence, we are only

allowed to add one more edge to T . Therefore, degT (v) ≤ 1, and v is also a leaf

in T . Using the same argument as described for ℓ, we conclude that v must have

a neighbor of degree n − 2. The only (n − 2)-degree vertex in T is u which is not

connected to v. Hence, we proved that G does not have any tree subgraph T with

δ(T 2) ≥ δ(G).

We have not been able to answer this question for strongly chordal R’s. So, a

possible direction for future work is to investigate this question.

81

Chapter 7

Conclusion

In this thesis, we studied the d-domatic problem, which is the problem of finding the

maximum number of disjoint dominating sets for the dth power of the input graph,

from a different angle: we considered the problem of computing the minimum d

for a given number of disjoint dominating sets, k, and an input graph G such that

V (G) can be partitioned into k disjoint dominating sets for Gd. This problem is

indeed a multi-facility location problem with the worst case access time criterion.

In previous chapters, we studied the status of this problem, referred to as the

MDDN problem, on various graph families, developed an exact (exponential) algo-

rithm for the problem, and investigated the approximability aspects of the problem.

We showed that the MDDN problem is in P for strongly chordal graphs, based

on a result on the domatic number problem and a result on power graphs of strongly

chordal graphs. Furthermore, we proved that computing MDDN(G, k) can be done

in polynomial-time for bounded tree-width graphs, when k is a constant. In addi-

tion, using a reduction from the domatic number problem to the MDDN problem,

we showed that the problem is be NP-complete for circular-arc graphs, bipartite

graphs, and split graphs. We gave a reduction from the k-coloring problem to

the MDDN problem, proving its NP-completeness on 2-connected graphs and split

graphs for any fixed k ≥ 3, and on planar bipartite graphs of degree four for k = 3.

Furthermore, we could prove the NP-completeness of the domatic number problem

82

for planar bipartite graphs of maximum degree four, which was not known before.

As we explained in Section 2, Zelinka gives an upper bound for the problem [59];

we proved Zelinka’s upper bound using a slightly simpler argument. It is worth

mentioning that this is the best bound possible for the general case, since it cannot

be improved for paths.

We developed a new exponential-time exact algorithm for computing MDDN(G, 3)

running in Õ(2.7393n) time, improving the previous Õ(2.8805n) best running time.

Unfortunately, before our result was published, Riege et al. developed a faster algo-

rithm independently, using a completely different approach [52]. Their algorithm’s

running time is Õ(2.695n).

As for approximation algorithms, we proved that the problem cannot be ap-

proximated with ratio less than 2. The result holds for split graphs, 2-connected

graphs, and planar bipartite graphs of maximum degree 4. In addition, we designed

a greedy 3-approximation algorithm for the problem. Using the known results on

distance-approximating spanners, we also designed some approximation algorithms

for permutation graphs, cocomparability graphs, distance-hereditary graphs, and

dually chordal graphs. Finally, we proposed an approximation algorithm for the

problem on chordal graphs.

7.1 Future Work

Much is still left to be studied:

As mentioned in the introduction, the MDDN problem is a restricted version

of multi-facility location with worst-case access time criterion. In similar problems

with average access time criterion, other generalizations have been considered, some

of which seem reasonable for the MDDN problem, too. For example, the problem

would be more applicable if the input graph is directed or weighted, or we are not

allowed to choose the dominating sets from all vertices in the graph, but only from

a limited subset of vertices. Some of the algorithms in this thesis work with the

second and third conditions, too.

83

Even for the current version of the problem there are some directions possible

for future work:

In Chapter 3, we could prove that MDDN(G, k) can be computed in polynomial

time for graphs of bounded tree-width, when k is considered as a constant. One

question is whether the problem is still in P when k is part of the input.

Another possible question that can be studied is whether the ideas of Riege and

Rothe and of our new exact algorithm can be combined to develop a faster exact

algorithm to compute MDDN(G, 3). As mentioned before, the running time of our

proposed exact algorithm was improved by Riege and Rothe recently. Since the

approaches taken are different, it might be possible to find a good combination of

these two approaches.

In addition, the only exact algorithm for k’s other than 3 is due to Fomin et al.

that runs in time Õ(2.8805n). So, there is not much work done in this part, yet.

At the end of Chapter 6, we had a discussion on the best approximation ratio

for the MDDN problem, and presented an open question. The affirmative answer

to this question is perhaps the key point in designing a 2-approximating algorithm

for the MDDN problem for general graphs.

84

Bibliography

[1] N. Alon, G. Fertin, A. L. Liestman, T. C. Shermer, and L. Stacho. Factor

d-domatic colorings of graphs. Discrete Mathematics, 262(1):17–25, 2003.

[2] S. Arora and C. Lund. Hardness of approximations. Approximation algorithms

for NP-hard problems, pages 399–446, 1997.

[3] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification

and hardness of approximation problems. Journal of ACM, 45(3):501–555,

1998.

[4] V. Arya, N. Garg, R. Khandekar, K. Munagala, and V. Pandit. Local search

heuristic for k-median and facility location problems. In STOC ’01: Proceed-

ings of the 33rd Annual Symposium on Theory of Computing, pages 21–29.

ACM Press, 2001.

[5] I. D. Baev and R. Rajaraman. Approximation algorithms for data placement

in arbitrary networks. In SODA ’01: Proceedings of the 12th Annual ACM-

SIAM Symposium on Discrete Algorithms, pages 661–670, Philadelphia, PA,

USA, 2001. Society for Industrial and Applied Mathematics.

[6] M. A. Bonucelli. Dominating sets and domatic number of circular arc graphs.

Discrete Applied Mathematics, 12:203–213, 1985.

[7] M. Borowiecki and M. Kuzak. On the k-stable and k-dominating sets of graphs.

In M. Borowiecki, Z. Skupień, and L. Szamkolowicz, editors, Graphs, Hyper-

85

graphs and Block Systems: Proceedings of the Symposium on Combinatorial

Analysis, pages 134–143, Univ. Zielona Góra, 1976.

[8] A. Brandstädt, V. Chepoi, and F. F. Dragan. Distance approximating trees

for chordal and dually chordal graphs. Journal of Algorithms, 30(1):166–184,

1999.

[9] A. Brandstädt, F. F. Dragan, H. Le, and V. B. Le. Tree spanners on chordal

graphs: complexity and algorithms. Theoretical Computer Science, 310(1-

3):329–354, 2004.

[10] A. Brandstädt, F. F. Dragan, H. Le, V. B. Le, and R. Uehara. Tree spanners

for bipartite graphs and probe interval graphs. In WG ’03: Proceedings of

the 29th International Workshop on Graph-Theoretic Concepts in Computer

Science, pages 106–118. Springer-Verlag, 2003.

[11] R. Brigham and R. D. Dutton. Factor domination in graphs. Discrete Mathe-

matics, 86:127–136, 1990.

[12] J. Cai, T. Gundermann, J. Hartmanis, L. Hemachandra, V. Sewelson, K. Wag-

ner, and G. Wechsung. The Boolean hierarchy I: Structural properties. SIAM

Journal on Computing, 17(6):1232–1252, 1988.

[13] J. Cai, T. Gundermann, J. Hartmanis, L. Hemachandra, V. Sewelson, K. Wag-

ner, and G. Wechsung. The Boolean hierarchy II: Applications. SIAM Journal

on Computing, 18(1):95–111, 1989.

[14] V. Chepoi, F. F. Dragan, and C. Yan. Additive spanners for k-chordal graphs.

In CIAC ’03: Proceedings of the 5th Conference on Algorithms and Complexity,

pages 96–107. Springer-Verlag, 2003.

[15] E. J. Cockayne and S. T. Hedetniemi. Towards a theory of domination in

graphs. Networks, 7:247–261, 1977.

[16] E. Cohen. Fast algorithms for constructing t-spanners and paths with stretch

t. SIAM Journal on Computing, 28(1):210–236, 1999.

86

[17] D. Coppersmith and M. Elkin. Sparse source-wise and pair-wise distance pre-

servers. In SODA ’05: Proceedings of the 16th Annual ACM-SIAM Symposium

on Discrete Algorithms, pages 660–669, Philadelphia, PA, USA, 2005.

[18] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.

MIT Press and McGraw-Hill, 1990.

[19] Bruno Courcelle. The monadic second-order logic of graphs. I. Recognizable

sets of finite graphs. Information and Computation, 85(1):12–75, 1990.

[20] L. J. Cowen. Compact routing with minimum stretch. In SODA ’99: Pro-

ceedings of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms,

pages 255–260, Philadelphia, PA, USA, 1999.

[21] R. G. Downey and M. R. Fellows. Parameterized Complexity, chapter Au-

tomata and Bounded Treewidth, page 530. Springer-Verlag, 1999.

[22] F. F. Dragan, C. Yan, and I. Lomonosov. Collective tree spanners of graphs.

SIAM Journal on Discrete Mathematics, 20(1):240–260, 2006.

[23] M. Farber. Applications of Linear Programming Duality to Problems Involving

Independence and Domination. Ph.D. Thesis, Rutgers University, 1982.

[24] M. Farber. Domination, independent domination, and duality in strongly

chordal graphs. Discrete Applied Mathematics, 7:115–130, 1984.

[25] U. Feige, M. M. Halldórsson, G. Kortsarz, and A. Srinivasan. Approximating

the domatic number. SIAM Journal on Computing, 32(1):172–195, 2002.

[26] F. Fomin, F. Grandoni, A. Pyatkin, and A. Stepanov. Bounding the number

of minimal dominating sets: a measure and conquer approach. In ISAAC ’05:

Proceedings of the 16th International Symposium on Algorithms and Compu-

tation, volume 3827, pages 573–582. Springer-Verlag, 2005.

[27] F. V. Fomin, F. Grandoni, and D. Kratsch. Measure and conquer: Domination

- a case study. In ICALP ’05: Proceedings of 32nd International Colloquium

on Automata, Languages and Programming, pages 191–203, 2005.

87

[28] F. V. Fomin, F. Grandoni, and D. Kratsch. Some new techniques in design and

analysis of exact (exponential) algorithms. Bulletin of the EATCS, 87:47–77,

2005.

[29] S. Fujita, T. Kameda, and M. Yamashita. A resource assignment problem

on graphs. In ISAAC ’95: Proceedings of the 6th International Symposium

on Algorithms and Computation, pages 418–427, London, UK, 1995. Springer-

Verlag.

[30] S. Fujita, M. Yamashita, and T. Kameda. A study on r-configurations–a re-

source assignment problem on graphs. SIAM Journal on Discrete Mathematics,

13(2):227–254, 2000.

[31] M. Garey and D. Johnson. Computers and Intractability: A Guide to the

Theory of NP-completeness. W. H. Freeman and Company, New York, USA,

1979.

[32] M. R. Garey, D. S. Johnson, and L. J. Stockmeyer. Some simplified NP-

complete graph problems. Theoretical Computer Science, 1(3):237–267, 1976.

[33] C. Gavoille. Routing in distributed networks: overview and open problems.

ACM SIGACT News, 32(1):3652, 2001.

[34] A. Gupta and A. Kumar. Traveling with a Pez dispenser (or, routing issues in

MPLS). In FOCS ’01: Proceedings of the 42nd IEEE Symposium on Founda-

tions of Computer Science, pages 148–157, Washington, DC, USA, 2001.

[35] T. W. Haynes and S. T. Hedetniemi. Domination in Graphs: Advanced Topics.

Marcel Dekker, New York, USA, 1998.

[36] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, editors. Fundamentals of

Domination in Graphs. Marcel Dekker, New York, USA, 1998.

[37] P. Indyk. Algorithmic applications of low-distortion geometric embeddings.

In FOCS ’01: Proceedings of the 42nd IEEE Symposium on Foundations of

Computer Science, pages 10–33, Washington, DC, USA, 2001.

88

[38] H. Kaplan and R. Shamir. The domatic number problem on some perfect

graph families. Information Processing Letters, 49:51–56, 1994.

[39] R. M. Karp. Complexity of Computer Computations, chapter Reducibility

Among Combinatorial Problems, pages 85–103. Plenum Press, New York,

USA, 1972.

[40] M. Korupolu, G. Plaxton, and R. Rajaraman. Placement algorithms for hier-

archical cooperative caching. Journal of Algorithms, 38(1):260–302, 2001.

[41] D. Kratsch, H. Müllers H. Le, E. Prisner, and D. Wagner. Additive tree

spanners. SIAM Journal on Discrete Mathematics, 17(2):332–340, 2003.

[42] N. Laoutaris, V. Zissimopoulos, and I. Stavrakakis. Joint object placement and

node dimensioning for internet content distribution. Information Processing

Letters, 89(6):273–279, 2004.

[43] E. L. Lawler. A note on the complexity of the chromatic number problem.

Information Processing Letters, 5:66–67, 1976.

[44] N. Linial. Finite metric spaces – combinatorics, geometry and algorithms. In

Proceedings of the International Congress of Mathematicians III, pages 573–

586, 2002.

[45] A. Lubiw. Γ-free Matrices. Master’s Thesis, Department of Combinatorics and

Optimization, University of Waterloo, 1982.

[46] M. S. Madanlal, G. Venkatesan, and C. P. Rangan. Tree 3-spanners on interval,

permutation and regular bipartite graphs. Information Processing Letters,

59(2):97–102, 1996.

[47] M. V. Marathe, H. B. Hunt, and S. S. Ravi. Efficient approximation algorithms

for domatic partition and on-line coloring of circular arc graphs. Discrete

Applied Mathematics, 64(2):135–149, 1996.

89

[48] E. Prisner. Distance approximating spanning trees. In STACS ’97: Proceedings

of the 14th Annual Symposium on Theoretical Aspects of Computer Science,

pages 499–510, London, UK, 1997. Springer-Verlag.

[49] Y. Rabinovich and R. Raz. Lower bounds on the distortion of embedding finite

metric spaces in graphs. Discrete and Computational Geometry, 19(1):79–94,

1998.

[50] T. Riege and J. Rothe. Complexity of the exact domatic number problem and

of the exact conveyor flow shop problem. ACM Computer Science Research

Repository, cs.CC/0212016, 2002.

[51] T. Riege and J. Rothe. An exact 2.9416n algorithm for the three domatic

number problem. In MFCS ’05: Proceedings of the 30th International Sympo-

sium on Mathematical Foundations of Computer Science, volume 3618, pages

733–744. Springer-Verlag, 2005.

[52] T. Riege, J. Rothe, H. Spakowski, and M. Yamamoto. An improved exact

algorithm for the domatic number problem. In ICTTA ’06: Proceedings of

the 2nd IEEE International Conference on Information and Communication

Technologies: From Theory to Applications, pages 1021–1022. IEEE Computer

Society Press, 2006.

[53] F. S. Salman, J. Cheriyan, R. Ravi, and S. Subramanian. Buy-at-bulk network

design: approximating the single-sink edge installation problem. In SODA ’97:

Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms,

pages 619–628, Philadelphia, PA, USA, 1997. Society for Industrial and Ap-

plied Mathematics.

[54] U. Schöning. Algorithmics in exponential time. In STACS ’05: Proceedings

of the 22nd Annual Symposium on Theoretical Aspects of Computer Science,

volume 3404, pages 36–43. Springer-Verlag, 2005.

[55] U. U. Vazirani. Approximation Algorithms. Springer-Verlag, 2001.

90

[56] D. B. West. Introduction to Graph Theory. Prentice Hall, Upper Saddle River,

N.J., second edition, 2001.

[57] G. J. Woeginger. Exact algorithms for NP-hard problems: a survey. In Pro-

ceedings of the 5th International Workshop on Combinatorial Optimization,

volume 2570 of Lecture Notes in Computer Science, pages 185–207, New York,

USA, 2003. Springer-Verlag.

[58] B. Zelinka. Domatic number and degree of vertices of a graph. Mathematica

Slovaca, 33:145–147, 1983.

[59] B. Zelinka. On k-domatic numbers of graphs. Czechoslovak Mathematical

Journal, 33:309–313, 1983.

91

