13,224 research outputs found

    Troesch complexes and extensions of strict polynomial functors

    Get PDF
    We develop a new approach of extension calculus in the category of strict polynomial functors, based on Troesch complexes. We obtain new short elementary proofs of numerous classical Ext-computations as well as new results. In particular, we get a cohomological version of the `fundamental theorems' from classical invariant invariant theory for GL_n for n big enough (and we give a conjecture for smaller values of n). We also study the `twisting spectral sequence' E^{s,t}(F,G,r) converging to the extension groups Ext^*(F^{(r)}, G^{(r)}) between the twisted functors F^{(r)} and G^{(r)}. Many classical Ext-computations simply amount to the collapsing of this spectral sequence at the second page (for lacunary reasons), and it is also a convenient tool to study the effect of the Frobenius twist on Ext-groups. We prove many cases of collapsing, and we conjecture collapsing is a general fact.Comment: Revised version, 46 pages. Mathematics unchanged. Typos corrected, Appendix 9 on Troesch complexes improve

    Black Hole Thermodynamics

    Full text link
    The discovery in the early 1970s that black holes radiate as black bodies has radically affected our understanding of general relativity, and offered us some early hints about the nature of quantum gravity. In this chapter I will review the discovery of black hole thermodynamics and summarize the many independent ways of obtaining the thermodynamic and (perhaps) statistical mechanical properties of black holes. I will then describe some of the remaining puzzles, including the nature of the quantum microstates, the problem of universality, and the information loss paradox.Comment: Invited review article. A few parts based on an earlier review, arXiv:0807.4520. To appear in Int. J. Mod. Phys. D and in "One Hundred Years of General Relativity: Cosmology and Gravity," edited by Wei-Tou Ni (World Scientific, Singapore, 2015). v2: added references and appendi

    Relativistic bias in neutrino cosmologies

    Get PDF
    Halos and galaxies are tracers of the underlying dark matter structures. While their bias is well understood in the case of a simple Universe composed dominantly of dark matter, the relation becomes more complex in the presence of massive neutrinos. Indeed massive neutrinos introduce rich dynamics in the process of structure formation leading to scale-dependent bias. We study this process from the perspective of general relativity employing a simple spherical collapse model. We find a characteristic signature at the neutrino free-streaming scale in addition to a large-scale feature from general relativity. The scale-dependent halo bias opposes the suppression in the matter distribution due to neutrino free-streaming and leads to corrections of a few percent in the halo power spectrum. It is not only sensitive to the sum of the neutrino-masses, but respond to the individual masses. Accurate models for the neutrino bias are a crucial ingredient for the future data analysis and play an important role in constraining the neutrino masses.Comment: 20 pages, 10 figure

    Magnetohydrodynamic Simulations of A Rotating Massive Star Collapsing to A Black Hole

    Full text link
    We perform two-dimensional, axisymmetric, magnetohydrodynamic simulations of the collapse of a rotating star of 40 Msun and in the light of the collapsar model of gamma-ray burst. Considering two distributions of angular momentum, up to \sim 10^{17} cm^2/s, and the uniform vertical magnetic field, we investigate the formation of an accretion disk around a black hole and the jet production near the hole. After material reaches to the black hole with the high angular momentum, the disk is formed inside a surface of weak shock. The disk becomes in a quasi-steady state for stars whose magnetic field is less than 10^{10} G before the collapse. We find that the jet can be driven by the magnetic fields even if the central core does not rotate as rapidly as previously assumed and outer layers of the star has sufficiently high angular momentum. The magnetic fields are chiefly amplified inside the disk due to the compression and the wrapping of the field. The fields inside the disk propagate to the polar region along the inner boundary near the black hole through the Alfv{\'e}n wave, and eventually drive the jet. The quasi-steady disk is not an advection-dominated disk but a neutrino cooling-dominated one. Mass accretion rates in the disks are greater than 0.01 Msun/sec with large fluctuations. The disk is transparent for neutrinos. The dense part of the disk, which locates near the hole, emits neutrino efficiently at a constant rate of < 8 \times 10^{51} erg/s. The neutrino luminosity is much smaller than those from supernovae after the neutrino burst.Comment: 42 pages, accepted for publication in the Astrophysical Journal. A paper with higher-resolution figures available at http://www.ec.knct.ac.jp/~fujimoto/collapsar/mhd-color.pd

    The black hole final state

    Full text link
    We propose that in quantum gravity one needs to impose a final state boundary condition at black hole singularities. This resolves the apparent contradiction between string theory and semiclassical arguments over whether black hole evaporation is unitary.Comment: 17 pages, harvmac, 1 figure, v2: comment about interactions and references adde
    • 

    corecore