2,786 research outputs found

    Special Session on Industry 4.0

    Get PDF
    No abstract available

    A survey of virtual prototyping techniques for mechanical product development

    Get PDF
    Repeated, efficient, and extensive use of prototypes is a vital activity that can make the difference between successful and unsuccessful entry of new products into the competitive world market. In this respect, physical prototyping can prove to be very lengthy and expensive, especially if modifications resulting from design reviews involve tool redesign. The availability and affordability of advanced computer technology has paved the way for increasing utilization of prototypes that are digital and created in computer-based environments, i.e. they are virtual as opposed to being physical. The technology for using virtual prototypes was pioneered and adopted initially by large automotive and aerospace industries. Small-to-medium enterprises (SMEs) in the manufacturing industry also need to take virtual prototyping (VP) technology more seriously in order to exploit the benefits. VP is becoming very advanced and may eventually dominate the product development process. However, physical prototypes will still be required for the near future, albeit less frequently. This paper presents a general survey of the available VP techniques and highlights some of the most important developments and research issues while providing sources for further reference. The purpose of the paper is to provide potential SME users with a broad picture of the field of VP and to identify issues and information relevant to the deployment and implementation of VP technology

    VALIDATING COOPERATIVE SYSTEMS SIMULATION AND REMODELING FOR PUMP COVER DESIGN AND MANUFACTURING IN A VIRTUAL ENTERPRISE

    Get PDF
    In order to integrate the manufacturing systems in virtual environment some changes must be made in manufacturing systems architecture. To support this environment, the basic infrastructure for the enterprise must to consider two main modules: The Internal Module, that represents the autonomous unit of a particular company and includes the manufacturing system, the complete structure of the company information (databases, information system etc.) and all the decision making processes;virtual enterprise, manufacturing systems, remodeling, simulation, cooperative systems

    Assessment of VR Technology and its Applications to Engineering Problems

    Get PDF
    Virtual reality applications are making valuable contributions to the field of product realization. This paper presents an assessment of the hardware and software capabilities of VR technology needed to support a meaningful integration of VR applications in the product life cycle analysis. Several examples of VR applications for the various stages of the product life cycle engineering are presented as case studies. These case studies describe research results, fielded systems, technical issues, and implementation issues in the areas of virtual design, virtual manufacturing, virtual assembly, engineering analysis, visualization of analysis results, and collaborative virtual environments. Current issues and problems related to the creation, use, and implementation of virtual environments for engineering design, analysis, and manufacturing are also discussed

    Product data quality and collaborative engineering

    Get PDF
    [EN] We survey the impact of product data quality within an extended enterprise framework and present a linguistic model, which focuses on three levels: morphological, syntactic, and semantic.The Spanish Government national R&D Feder program partially sponsored this work as project number 1FD97 0784 “Implementing Design and Manufacturing Advanced Technologies in a Concurrent Engineering Environment. Application to an Automotive Components Manufacturing Company.” We also thank Radiadores Ordoñez, who helped us check the effectiveness of our approachContero, M.; Company Calleja, P.; Vila, C.; Aleixos Borrás, MN. (2002). Product data quality and collaborative engineering. IEEE Computer Graphics and Applications. 22(3):32-42. doi:10.1109/MCG.2002.999786S324222

    Combining physical constraints with geometric constraint-based modeling for virtual assembly

    Get PDF
    The research presented in this dissertation aims to create a virtual assembly environment capable of simulating the constant and subtle interactions (hand-part, part-part) that occur during manual assembly, and providing appropriate feedback to the user in real-time. A virtual assembly system called SHARP System for Haptic Assembly and Realistic Prototyping is created, which utilizes simulated physical constraints for part placement during assembly.;The first approach taken in this research attempt utilized Voxmap Point Shell (VPS) software for implementing collision detection and physics-based modeling in SHARP. A volumetric approach, where complex CAD models were represented by numerous small cubic-voxel elements was used to obtain fast physics update rates (500--1000 Hz). A novel dual-handed haptic interface was developed and integrated into the system allowing the user to simultaneously manipulate parts with both hands. However, coarse model approximations used for collision detection and physics-based modeling only allowed assembly when minimum clearance was limited to ∼8-10%.;To provide a solution to the low clearance assembly problem, the second effort focused on importing accurate parametric CAD data (B-Rep) models into SHARP. These accurate B-Rep representations are used for collision detection as well as for simulating physical contacts more accurately. A new hybrid approach is presented, which combines the simulated physical constraints with geometric constraints which can be defined at runtime. Different case studies are used to identify the suitable combination of methods (collision detection, physical constraints, geometric constraints) capable of best simulating intricate interactions and environment behavior during manual assembly. An innovative automatic constraint recognition algorithm is created and integrated into SHARP. The feature-based approach utilized for the algorithm design, facilitates faster identification of potential geometric constraints that need to be defined. This approach results in optimized system performance while providing a more natural user experience for assembly

    Virtual Prototyping for Rapid Product Development

    Get PDF
    link_to_OA_fulltex

    Getting back to basics : bimanual interaction on mobile touch screen devices

    Get PDF
    The availability, and popularity, of touch screen tablets is drastically increasing with over 30% of internet users now owning one. However the lack of bimanual interaction in touch screen tablets is presenting product designers with serious challenges. Several attempts have been made to facilitate bimanual interaction in such products but results are not comparable to that of their non-mobile cousins, e.g. laptops. This paper presents the finding of a group collaboration aimed at prototyping a mobile touch screen device which supports bimanual interaction during internet browser navigation through rear mounted inputs. The researchers found it problematic to add basic bimanual interactions for internet browser navigation to the rear of a prototype mobile touch screen device due to issues regarding grip type, finger movement and hand position. This paper concludes that in order to achieve bimanual interaction researchers need to return to basics and consider how to free the hand and fingers from current constraints

    The feasibility of using virtual prototyping technologies for product evaluation

    Get PDF
    With the continuous development in computer and communications technology the use of computer aided design in design processes is becoming more commonplace. A wide range of virtual prototyping technologies are currently in development, some of which are commercially viable for use within a product design process. These virtual prototyping technologies range from graphics tablets to haptic devices. With the compression of design cycles the feasibility of using these technologies for product evaluation is becoming an ever more important consideration. This thesis begins by presenting the findings of a comprehensive literature review defining product design with a focus on product evaluation and a discussion of current virtual prototyping technologies. From the literature review it was clear that user involvement in the product evaluation process is critical. The literature review was followed by a series of interconnected studies starting with an investigation into design consultancies' access and use of prototyping technologies and their evaluation methods. Although design consultancies are already using photo-realistic renderings, animations and sometimes 3600 view CAD models for their virtual product evaluations, current virtual prototyping hardware and software is often unsatisfactory for their needs. Some emergent technologies such as haptic interfaces are currently not commonly used in industry. This study was followed by an investigation into users' psychological acceptance and physiological discomfort when using a variety of virtual prototyping tools for product evaluation compared with using physical prototypes, ranging from on-screen photo-realistic renderings to 3D 3600 view models developed using a range of design software. The third study then went on to explore the feasibility of using these virtual prototyping tools and the effect on product preference when compared to using physical prototypes. The forth study looked at the designer's requirements for current and future virtual prototyping tools, design tools and evaluation methods. In the final chapters of the thesis the relative strengths and weaknesses of these technologies were re-evaluated and a definitive set of user requirements based on the documentary evidence of the previous studies was produced. This was followed by the development of a speculative series of scenarios for the next generation of virtual prototyping technologies ranging from improvements to existing technologies through to blue sky concepts. These scenarios were then evaluated by designers and consumers to produce documentary evidence and recommendations for preferred and suitable combinations of virtual prototyping technologies. Such hardware and software will require a user interface that is intuitive, simple, easy to use and suitable for both the designers who create the virtual prototypes and the consumers who evaluate them
    corecore