963 research outputs found

    Reciprocal Recommender System for Learners in Massive Open Online Courses (MOOCs)

    Get PDF
    Massive open online courses (MOOC) describe platforms where users with completely different backgrounds subscribe to various courses on offer. MOOC forums and discussion boards offer learners a medium to communicate with each other and maximize their learning outcomes. However, oftentimes learners are hesitant to approach each other for different reasons (being shy, don't know the right match, etc.). In this paper, we propose a reciprocal recommender system which matches learners who are mutually interested in, and likely to communicate with each other based on their profile attributes like age, location, gender, qualification, interests, etc. We test our algorithm on data sampled using the publicly available MITx-Harvardx dataset and demonstrate that both attribute importance and reciprocity play an important role in forming the final recommendation list of learners. Our approach provides promising results for such a system to be implemented within an actual MOOC.Comment: 10 pages, accepted as full paper @ ICWL 201

    YourMOOC4all: a recommender system for MOOCs based on collaborative filtering implementing UDL

    Get PDF
    YourMOOC4all is a pilot research project to collect feedback requests regarding accessible design for Massive Open Online Courses (MOOCs). In this online application, a specific website offers the possibility for any learner to freely judge if a particular MOOC complies Universal Design for Learning (UDL) principles. User feedback is of great value for the future development of MOOC platforms and MOOC educational resources, as it will help to follow De-sign for All guidelines. YourMOOC4all is a recommender system which gathers valuable information directly from learners to improve aspects such as the quality, accessibility and usability of this online learning environment. The final objective of collecting user’s feedback is to advice MOOC providers about the missing means for meeting learner needs. This paper describes the pedagogical and technological background of YourMOOC4all and its use cases

    Effects of Automated Interventions in Programming Assignments: Evidence from a Field Experiment

    Full text link
    A typical problem in MOOCs is the missing opportunity for course conductors to individually support students in overcoming their problems and misconceptions. This paper presents the results of automatically intervening on struggling students during programming exercises and offering peer feedback and tailored bonus exercises. To improve learning success, we do not want to abolish instructionally desired trial and error but reduce extensive struggle and demotivation. Therefore, we developed adaptive automatic just-in-time interventions to encourage students to ask for help if they require considerably more than average working time to solve an exercise. Additionally, we offered students bonus exercises tailored for their individual weaknesses. The approach was evaluated within a live course with over 5,000 active students via a survey and metrics gathered alongside. Results show that we can increase the call outs for help by up to 66% and lower the dwelling time until issuing action. Learnings from the experiments can further be used to pinpoint course material to be improved and tailor content to be audience specific.Comment: 10 page

    Toward a New Framework of Recommender Memory Based System for MOOCs

    Get PDF
    MOOCs is the new wave of remote learning that has revolutionized it since its apparition, offering the possibility to teach a very big group of student, at the same time, in the same course, within all disciplines and without even gathering them in the same geographic location, or at the same time; Allowing the sharing of all type of media and document and providing tools to assessing student performance. To benefit from all this advantages, big universities are investing in MOOCs platforms to valorize their approach, which makes MOOC available in a multitude of languages and variety of disciplines. Elite universities have open their doors to student around the world without requesting tuition or claiming a college degree, however even with the major effort reaching to maximize students visits and hooking visitors to the platform, using recommending systems propose content likely to please learners, the dropout rate still very high and the number of users completing a course remains very low compared to those who have quit. In this paper we propose an architecture aiming to maximize users visits by exploiting users big data and combining it with data available from social networks

    Wide-Scale Automatic Analysis of 20 Years of ITS Research

    Get PDF
    The analysis of literature within a research domain can provide significant value during preliminary research. While literature reviews may provide an in-depth understanding of current studies within an area, they are limited by the number of studies which they take into account. Importantly, whilst publications in hot areas abound, it is not feasible for an individual or team to analyse a large volume of publications within a reasonable amount of time. Additionally, major publications which have gained a large number of citations are more likely to be included in a review, with recent or fringe publications receiving less inclusion. We provide thus an automatic methodology for the large-scale analysis of literature within the Intelligent Tutoring Systems (ITS) domain, with the aim of identifying trends and areas of research from a corpus of publications which is significantly larger than is typically presented in conventional literature reviews. We illustrate this by a novel analysis of 20 years of ITS research. The resulting analysis indicates a significant shift of the status quo of research in recent years with the advent of novel neural network architectures and the introduction of MOOCs

    Collaborative filtering recommendation system : a framework in massive open online courses

    Get PDF
    Massive open online courses (MOOCs) are growing relatively rapidly in the education environment. There is a need for MOOCs to move away from its one-size-fit-all mode. This framework will introduce an algorithm based recommendation system, which will use a collaborative filtering method (CFM). Collaborative filtering method (CFM) is the process of evaluating several items through the rating choices of the participants. Recommendation system is widely becoming popular in online study activities; we want to investigate its support to learning and encouragement to more effective participation. This research will be reviewing existing literature on recommender systems for online learning and its support to learners’ experiences. Our proposed recommendation system will be based on course components rating. The idea was for learners to rate the course and components they have studied in the platform between the scales of 1 – 5. After the rating, we then extract the values into a comma separated values (CSV) file then implement recommendation using Python programming based on learners with similar rating patterns. The aim was to recommend courses to different users in a text editor mode using Python programming. Collaborative filtering will act upon similar rating patterns to recommend courses to different learners, so as to enhance their learning experience and enthusiasm

    Computational Intelligence for the Micro Learning

    Get PDF
    The developments of the Web technology and the mobile devices have blurred the time and space boundaries of people’s daily activities, which enable people to work, entertain, and learn through the mobile device at almost anytime and anywhere. Together with the life-long learning requirement, such technology developments give birth to a new learning style, micro learning. Micro learning aims to effectively utilise learners’ fragmented spare time and carry out personalised learning activities. However, the massive volume of users and the online learning resources force the micro learning system deployed in the context of enormous and ubiquitous data. Hence, manually managing the online resources or user information by traditional methods are no longer feasible. How to utilise computational intelligence based solutions to automatically managing and process different types of massive information is the biggest research challenge for realising the micro learning service. As a result, to facilitate the micro learning service in the big data era efficiently, we need an intelligent system to manage the online learning resources and carry out different analysis tasks. To this end, an intelligent micro learning system is designed in this thesis. The design of this system is based on the service logic of the micro learning service. The micro learning system consists of three intelligent modules: learning material pre-processing module, learning resource delivery module and the intelligent assistant module. The pre-processing module interprets the content of the raw online learning resources and extracts key information from each resource. The pre-processing step makes the online resources ready to be used by other intelligent components of the system. The learning resources delivery module aims to recommend personalised learning resources to the target user base on his/her implicit and explicit user profiles. The goal of the intelligent assistant module is to provide some evaluation or assessment services (such as student dropout rate prediction and final grade prediction) to the educational resource providers or instructors. The educational resource providers can further refine or modify the learning materials based on these assessment results
    corecore