59,680 research outputs found

    User recommendation algorithm in social tagging system based on hybrid user trust

    Get PDF
    With the rapid growth of web 2.0 technologies, tagging become much more important today to facilitate personal organization and also provide a possibility for users to search information or discover new things with Collaborative Tagging Systems. However, the simplistic and user-centered design of this kind of systems cause the task of finding personally interesting users is becoming quite out of reach for the common user. Collaborative Filtering (CF) seems to be the most popular technique in recommender systems to deal with information overload issue but CF suffers from accuracy limitation. This is because CF always been attack by malicious users that will make it suffers in finding the truly interesting users. With this problem in mind, this study proposes a hybrid User Trust method to enhance CF in order to increase accuracy of user recommendation in social tagging system. This method is a combination of developing trust network based on user interest similarity and trust network from social network analysis. The user interest similarity is derived from personalized user tagging information. The hybrid User Trust method is able to find the most trusted users and selected as neighbours to generate recommendations. Experimental results show that the hybrid method outperforms the traditional CF algorithm. In addition, it indicated that the hybrid method give more accurate recommendation than the existing CF based on user trust

    Improving Ontology Recommendation and Reuse in WebCORE by Collaborative Assessments

    Get PDF
    In this work, we present an extension of CORE [8], a tool for Collaborative Ontology Reuse and Evaluation. The system receives an informal description of a specific semantic domain and determines which ontologies from a repository are the most appropriate to describe the given domain. For this task, the environment is divided into three modules. The first component receives the problem description as a set of terms, and allows the user to refine and enlarge it using WordNet. The second module applies multiple automatic criteria to evaluate the ontologies of the repository, and determines which ones fit best the problem description. A ranked list of ontologies is returned for each criterion, and the lists are combined by means of rank fusion techniques. Finally, the third component uses manual user evaluations in order to incorporate a human, collaborative assessment of the ontologies. The new version of the system incorporates several novelties, such as its implementation as a web application; the incorporation of a NLP module to manage the problem definitions; modifications on the automatic ontology retrieval strategies; and a collaborative framework to find potential relevant terms according to previous user queries. Finally, we present some early experiments on ontology retrieval and evaluation, showing the benefits of our system

    Discovering the Impact of Knowledge in Recommender Systems: A Comparative Study

    Get PDF
    Recommender systems engage user profiles and appropriate filtering techniques to assist users in finding more relevant information over the large volume of information. User profiles play an important role in the success of recommendation process since they model and represent the actual user needs. However, a comprehensive literature review of recommender systems has demonstrated no concrete study on the role and impact of knowledge in user profiling and filtering approache. In this paper, we review the most prominent recommender systems in the literature and examine the impression of knowledge extracted from different sources. We then come up with this finding that semantic information from the user context has substantial impact on the performance of knowledge based recommender systems. Finally, some new clues for improvement the knowledge-based profiles have been proposed.Comment: 14 pages, 3 tables; International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.3, August 201

    Enhanced information retrieval using domain-specific recommender models

    Get PDF
    The objective of an information retrieval (IR) system is to retrieve relevant items which meet a user information need. There is currently significant interest in personalized IR which seeks to improve IR effectiveness by incorporating a model of the user’s interests. However, in some situations there may be no opportunity to learn about the interests of a specific user on a certain topic. In our work, we propose an IR approach which combines a recommender algorithm with IR methods to improve retrieval for domains where the system has no opportunity to learn prior information about the user’s knowledge of a domain for which they have not previously entered a query. We use search data from other previous users interested in the same topic to build a recommender model for this topic. When a user enters a query on a topic, new to this user, an appropriate recommender model is selected and used to predict a ranking which the user may find interesting based on the behaviour of previous users with similar queries. The recommender output is integrated with a standard IR method in a weighted linear combination to provide a final result for the user. Experiments using the INEX 2009 data collection with a simulated recommender training set show that our approach can improve on a baseline IR system

    Improving the quality of the personalized electronic program guide

    Get PDF
    As Digital TV subscribers are offered more and more channels, it is becoming increasingly difficult for them to locate the right programme information at the right time. The personalized Electronic Programme Guide (pEPG) is one solution to this problem; it leverages artificial intelligence and user profiling techniques to learn about the viewing preferences of individual users in order to compile personalized viewing guides that fit their individual preferences. Very often the limited availability of profiling information is a key limiting factor in such personalized recommender systems. For example, it is well known that collaborative filtering approaches suffer significantly from the sparsity problem, which exists because the expected item-overlap between profiles is usually very low. In this article we address the sparsity problem in the Digital TV domain. We propose the use of data mining techniques as a way of supplementing meagre ratings-based profile knowledge with additional item-similarity knowledge that can be automatically discovered by mining user profiles. We argue that this new similarity knowledge can significantly enhance the performance of a recommender system in even the sparsest of profile spaces. Moreover, we provide an extensive evaluation of our approach using two large-scale, state-of-the-art online systems—PTVPlus, a personalized TV listings portal and Físchlár, an online digital video library system

    On content-based recommendation and user privacy in social-tagging systems

    Get PDF
    Recommendation systems and content filtering approaches based on annotations and ratings, essentially rely on users expressing their preferences and interests through their actions, in order to provide personalised content. This activity, in which users engage collectively has been named social tagging, and it is one of the most popular in which users engage online, and although it has opened new possibilities for application interoperability on the semantic web, it is also posing new privacy threats. It, in fact, consists of describing online or offline resources by using free-text labels (i.e. tags), therefore exposing the user profile and activity to privacy attacks. Users, as a result, may wish to adopt a privacy-enhancing strategy in order not to reveal their interests completely. Tag forgery is a privacy enhancing technology consisting of generating tags for categories or resources that do not reflect the user's actual preferences. By modifying their profile, tag forgery may have a negative impact on the quality of the recommendation system, thus protecting user privacy to a certain extent but at the expenses of utility loss. The impact of tag forgery on content-based recommendation is, therefore, investigated in a real-world application scenario where different forgery strategies are evaluated, and the consequent loss in utility is measured and compared.Peer ReviewedPostprint (author’s final draft
    corecore