96 research outputs found

    Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches

    Get PDF
    Imaging spectrometers measure electromagnetic energy scattered in their instantaneous field view in hundreds or thousands of spectral channels with higher spectral resolution than multispectral cameras. Imaging spectrometers are therefore often referred to as hyperspectral cameras (HSCs). Higher spectral resolution enables material identification via spectroscopic analysis, which facilitates countless applications that require identifying materials in scenarios unsuitable for classical spectroscopic analysis. Due to low spatial resolution of HSCs, microscopic material mixing, and multiple scattering, spectra measured by HSCs are mixtures of spectra of materials in a scene. Thus, accurate estimation requires unmixing. Pixels are assumed to be mixtures of a few materials, called endmembers. Unmixing involves estimating all or some of: the number of endmembers, their spectral signatures, and their abundances at each pixel. Unmixing is a challenging, ill-posed inverse problem because of model inaccuracies, observation noise, environmental conditions, endmember variability, and data set size. Researchers have devised and investigated many models searching for robust, stable, tractable, and accurate unmixing algorithms. This paper presents an overview of unmixing methods from the time of Keshava and Mustard's unmixing tutorial [1] to the present. Mixing models are first discussed. Signal-subspace, geometrical, statistical, sparsity-based, and spatial-contextual unmixing algorithms are described. Mathematical problems and potential solutions are described. Algorithm characteristics are illustrated experimentally.Comment: This work has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensin

    Endmember Extraction From Hyperspectral Imagery Based on Probabilistic Tensor Moments

    Get PDF
    This letter presents a novel hyperspectral endmember extraction approach that integrates a tensor-based decomposition scheme with a probabilistic framework in order to take advantage of both technologies when uncovering the signatures of pure spectral constituents in the scene. On the one hand, statistical unmixing models are generally able to provide accurate endmember estimates by means of rather complex optimization algorithms. On the other hand, tensor decomposition techniques are very effective factorization tools which are often constrained by the lack of physical interpretation within the remote sensing field. In this context, this letter develops a new hybrid endmember extraction approach based on the decomposition of the probabilistic tensor moments of the hyperspectral data. Initially, the input image reflectance values are modeled as a collection of multinomial distributions provided by a family of Dirichlet generalized functions. Then, the unmixing process is effectively conducted by the tensor decomposition of the thirdorder probabilistic tensor moments of the multivariate data. Our experiments, conducted over four hyperspectral data sets, reveal that the proposed approach is able to provide efficient and competitive results when compared to different state-of-the-art endmember extraction methods

    Image Processing and Machine Learning for Hyperspectral Unmixing: An Overview and the HySUPP Python Package

    Full text link
    Spectral pixels are often a mixture of the pure spectra of the materials, called endmembers, due to the low spatial resolution of hyperspectral sensors, double scattering, and intimate mixtures of materials in the scenes. Unmixing estimates the fractional abundances of the endmembers within the pixel. Depending on the prior knowledge of endmembers, linear unmixing can be divided into three main groups: supervised, semi-supervised, and unsupervised (blind) linear unmixing. Advances in Image processing and machine learning substantially affected unmixing. This paper provides an overview of advanced and conventional unmixing approaches. Additionally, we draw a critical comparison between advanced and conventional techniques from the three categories. We compare the performance of the unmixing techniques on three simulated and two real datasets. The experimental results reveal the advantages of different unmixing categories for different unmixing scenarios. Moreover, we provide an open-source Python-based package available at https://github.com/BehnoodRasti/HySUPP to reproduce the results

    Collaborative sparse regression using spatially correlated supports - Application to hyperspectral unmixing

    Get PDF
    This paper presents a new Bayesian collaborative sparse regression method for linear unmixing of hyperspectral images. Our contribution is twofold; first, we propose a new Bayesian model for structured sparse regression in which the supports of the sparse abundance vectors are a priori spatially correlated across pixels (i.e., materials are spatially organised rather than randomly distributed at a pixel level). This prior information is encoded in the model through a truncated multivariate Ising Markov random field, which also takes into consideration the facts that pixels cannot be empty (i.e, there is at least one material present in each pixel), and that different materials may exhibit different degrees of spatial regularity. Secondly, we propose an advanced Markov chain Monte Carlo algorithm to estimate the posterior probabilities that materials are present or absent in each pixel, and, conditionally to the maximum marginal a posteriori configuration of the support, compute the MMSE estimates of the abundance vectors. A remarkable property of this algorithm is that it self-adjusts the values of the parameters of the Markov random field, thus relieving practitioners from setting regularisation parameters by cross-validation. The performance of the proposed methodology is finally demonstrated through a series of experiments with synthetic and real data and comparisons with other algorithms from the literature

    Interpretable Hyperspectral AI: When Non-Convex Modeling meets Hyperspectral Remote Sensing

    Full text link
    Hyperspectral imaging, also known as image spectrometry, is a landmark technique in geoscience and remote sensing (RS). In the past decade, enormous efforts have been made to process and analyze these hyperspectral (HS) products mainly by means of seasoned experts. However, with the ever-growing volume of data, the bulk of costs in manpower and material resources poses new challenges on reducing the burden of manual labor and improving efficiency. For this reason, it is, therefore, urgent to develop more intelligent and automatic approaches for various HS RS applications. Machine learning (ML) tools with convex optimization have successfully undertaken the tasks of numerous artificial intelligence (AI)-related applications. However, their ability in handling complex practical problems remains limited, particularly for HS data, due to the effects of various spectral variabilities in the process of HS imaging and the complexity and redundancy of higher dimensional HS signals. Compared to the convex models, non-convex modeling, which is capable of characterizing more complex real scenes and providing the model interpretability technically and theoretically, has been proven to be a feasible solution to reduce the gap between challenging HS vision tasks and currently advanced intelligent data processing models

    Self-Dictionary Sparse Regression for Hyperspectral Unmixing: Greedy Pursuit and Pure Pixel Search are Related

    Full text link
    This paper considers a recently emerged hyperspectral unmixing formulation based on sparse regression of a self-dictionary multiple measurement vector (SD-MMV) model, wherein the measured hyperspectral pixels are used as the dictionary. Operating under the pure pixel assumption, this SD-MMV formalism is special in that it allows simultaneous identification of the endmember spectral signatures and the number of endmembers. Previous SD-MMV studies mainly focus on convex relaxations. In this study, we explore the alternative of greedy pursuit, which generally provides efficient and simple algorithms. In particular, we design a greedy SD-MMV algorithm using simultaneous orthogonal matching pursuit. Intriguingly, the proposed greedy algorithm is shown to be closely related to some existing pure pixel search algorithms, especially, the successive projection algorithm (SPA). Thus, a link between SD-MMV and pure pixel search is revealed. We then perform exact recovery analyses, and prove that the proposed greedy algorithm is robust to noise---including its identification of the (unknown) number of endmembers---under a sufficiently low noise level. The identification performance of the proposed greedy algorithm is demonstrated through both synthetic and real-data experiments

    DAEN: Deep Autoencoder Networks for Hyperspectral Unmixing

    Get PDF
    corecore