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Background
In recent years, remotely sensed hyperspectral images have been widely used for vari-
ous applications ranging from civilian to military purposes (Somers and Delalieux 
2009; Settle and Drake 1993; Chang and Heinz 2000; Shimabukuro and Carvalho 1997), 
since they can provide abundant wavelength information of the land covers with spec-
tral resolution at the micron level (Shaw and Burke 2003). For example, the National 
Aeronautics and Space Administration (NASA) Hyperion sensor on Earth Observing-1 
(EO-1) satellite can provide hyperspectral images with 220 bands and a spectral resolu-
tion of the order of 10 nm. Despite high spectral resolution, the relatively low spatial 
resolution of hyperspectral images leads to mixed pixel problem, i.e., a single pixel usu-
ally contains several distinct materials. The existence of mixed pixels seriously restricts 
the application of hyperspectral images. To cope with mixed pixels, spectral unmixing 
(Keshava 2003; Bioucas-Dias and Plaza 2012; Meer 2012), which aims at decomposing 
the observed mixed pixel spectrum into a collection of pure substance spectra, namely 
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endmembers, and their corresponding fractional abundances, has been proposed and 
widely applied in hyperspectral remote sensing data analysis (Bioucas-Dias and Plaza 
2013).

For spectral unmixing, two kinds of models—the linear mixture model (LMM) 
(Singer  et  al. 1979) and the non-linear mixture model (NMM) (Hapke 1981)—have 
been proposed to characterize the mixed pixels. Although the LMM is not as accurate 
as the NMM to capture the mixing behavior of mixed pixels, it is more popular than 
the NMM for solving the spectral unmixing problem because of its simplicity and effi-
ciency in most cases (Fan et  al. 2009). In addition, the rapidly developed methods in 
classical signal processing field also provide effective tools to the solution of the LMM 
(Ma et al. 2014). Nevertheless, modeling the mixed pixels is a very complex and difficult 
task. In practice, we have to make a compromise between model accuracy and tractabil-
ity. Therefore, we here focus on the LMM in this study.

The standard LMM used for spectral unmixing assumes that each pixel spectrum is a 
linear combination of the endmembers present in the scene weighted by the correspond-
ing abundances. From the convex geometry point of view, the LMM forces the mixed 
pixels to belong to a simplex (or a convex hull), and the vertices of simplex correspond 
to the endmembers. Based on the geometrical interpretation, many spectral unmixing 
algorithms have been proposed for endmember extraction such as the N-FINDR (Win-
ter 1999), pixel purity index (PPI) (Boardman et  al. 1995), vertex component analysis 
(VCA) (Nascimento and Bioucas-Dias 2005), simplex growing algorithm (SGA) (Chang 
2006) and their variants (Chan et al. 2011; Liu and Zhang 2012; Chang et al. 2010), and 
for abundance estimation such as the fully constrained least squares (FCLS) (Heinz and 
Chang 2001), distance geometry-based abundance estimation (DGAE) (Pu et al. 2014), 
and so on. However, these geometrical-based algorithms are likely to fail when the pix-
els are highly mixed. As an alternative, the statistical algorithms have been developed 
by formulating the spectral unmixing as a statistical inference problem. Such algorithms 
include the dependent component analysis (DECA) (Nascimento and Bioucas-Dias 
2012), beta compositional model (BCM) (Zare et  al. 2013) and normal compositional 
model (NCM) (Stein 2003) methods. Although the statistical algorithms have a natural 
framework for incorporating various priors and endmember variability (Somers et  al. 
2011; Zare and Ho 2014), it is difficult to derive the close-form expressions of the infer-
ence parameters and thus they suffer from high computational complexity.

Most of the spectral unmixing algorithms based on the standard LMM can not auto-
matically determine the number of endmembers present in the scene. In addition, some 
endmembers produced by these algorithms are not necessarily present in the image, 
producing the so-called virtual endmembers (Chen 2011). The virtual endmembers 
can compensate the approximation of the LMM but will result in unidentifiability of 
the materials. To tackle these problem, the standard LMM has been extended into a 
semisupervised version (Liu and Zhang 2014; Iordache et  al. 2012; Zhong and Zhang 
2014; Feng et al. 2014; Iordache et al. 2011), i.e., by assuming that the endmembers are 
known in advance. Typically, Iordache et al. (2011) have proposed the sparse regression 
(SR) model by assuming that the endmembers present in the scene belong to a subset of 
samples available a priori in a library. The unmixing based on SR is called sparse unmix-
ing. Experimental results have illustrated the potential of sparse unmixing in abundance 
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estimation. The success of sparse unmixing relies crucially on the availability of suitable 
hyperspectral libraries because the libraries are hardly acquired under the same condi-
tions of the remotely sensed images. Fortunately, this problem can be overcome by a 
delicate calibration procedure to adapt the library to the image or learning of the librar-
ies directly from the data set without other priori information (Charles et  al. 2011). 
The SR problem can be efficiently solved via the sparse unmixing algorithm via varia-
ble splitting and augmented Lagrangian (SUnSAL) (Iordache et  al. 2011; Bioucas-Dias 
and Figueiredo 2010) by exploiting the sparse prior induced by the ℓ1 norm. However, 
a high correlation of the spectral signatures limits the unmixing accuracy. To mitigate 
this limitation, Iordache et al. (2014a) have developed a collaborative SR (CSR) model by 
considering the structured sparsity, which exploits the fact that only a few spectral sig-
natures in the library are active, in other words, only a few lines of abundances collected 
in a matrix are nonzero. Some modifications of the CSR can be found in Iordache et al. 
(2014b), Tang et al. (2015). However, the improvements in Iordache et al. (2014b), Tang 
et al. (2015) are limited since only the spectral information is considered to estimated 
the abundances.

Generally, the size of spectral library is often large, while the number of endmembers 
present in the scene is very small. Therefore, the fractional abundances are more likely 
to reside on a low-dimensional submanifold of the high-dimensional ambient Euclidean 
space. However, existing sparse unmixing methods only consider the Euclidean struc-
ture of the data space while ignoring the intrinsic manifold structure of the hyperspec-
tral data. Many previous studies (Lu et  al. 2013; Zheng et  al. 2011; Guan et  al. 2011; 
Seung and Lee 2000; He and Niyogi 2004; Belkin et al. 2006) have shown that exploiting 
the local geometrical structure (i.e., the intrinsic manifold structure) is very important to 
the model learning and data representation. In this paper, we incorporate the manifold 
regularization (Belkin et al. 2006) to the CSR and develop a novel model, called manifold 
regularized collaborative sparse regression (MCSR) model. The manifold regularization 
is characterized by a Laplacian graph which captures the local geometrical structure of 
the data manifold such that nearby mixed pixels in the intrinsic geometry of the data 
space are likely to have similar fractional abundances. By adding an additional manifold 
structure learning term to CSR, our proposed MCSR model is expected to have higher 
unmixing accuracy than CSR. To solve the MCSR, an optimization algorithm based on 
alternating direction method of multipliers (ADMM) is developed. It should be noted 
that similar works of using the manifold regularization have also been introduced in Lu 
et al. (2013), Tong et al. (2014), but they are different with ours in the following two main 
aspects. First, the works in Lu et al. (2013), Tong et al. (2014) are based on the standard 
LMM while our model is an extension of the SR model. Second, multiplicative iterative 
algorithm is used to optimize the nonnegative matrix factorization model in Lu et  al. 
(2013), Tong et al. (2014), whereas the ADMM is used to cope with the proposed MCSR 
model.

Related work
In this section, we first describe the sparse unmixing problem and then briefly review 
the CSR model.



Page 4 of 27Liu et al. SpringerPlus  (2016) 5:2007 

Sparse unmixing

The standard LMM signors the intimate mixture and holds at a macroscopic level (Biou-
cas-Dias and Plaza 2012). For a pixel spectrum y ∈ R

l with l spectral bands, LMM 
assume that it is a linear combination of the endmembers present in the scene weighted 
by the corresponding abundances, i.e.,

where α = (α1, . . . ,αp)
T ∈ R

p is the abundance vector, M ∈ R
l×p is the endmember 

matrix with each column mi ∈ R
l being an endmember present in the scene, e ∈ R

l 
denotes the noise or error term, and p is the number of endmembers present in the 
scene. To be physically meaningful, the abundance vector is usually subject to (s.t.) the 
sum-to-one and nonnegativity constraints

Over the past decades, lots of spectral unmixing algorithms (Keshava 2003; Bioucas-
Dias and Plaza 2012, 2013) have been developed based on the above LMM. However, 
the abundance estimation by these algorithms usually relies on the availability of pure 
spectral signatures in the input data or on their capacities of extracting endmembers. 
In addition, some algorithms perform unmixing by assuming all of the endmembers in 
M are present in the scene and by exploiting the sparsity prior of abundance α. If the 
abundance α is not sparse or sufficiently sparse, the results obtained by these algorithms 
will not be as accurate as we expect. To cope with these problems, sparse unmixing (Ior-
dache et al. 2011) has been introduced based on the assumption that the endmember 
set {m1,m2, . . . ,mp} present in the scene is contained in a spectral library denoted by 
{a1, a2, . . . , am} known in advance, i.e., {m1,m2, . . . ,mp} ⊂ {a1, a2, . . . , am}. With the 
ever-growing availability of spectral libraries, the number of endmembers present in the 
scene is much less than the total number of endmembers in spectral library; thus, we 
have p ≪ m. By this way, unmixing is to find the optimal subset of signatures for the 
mixed pixels in the spectral library. The sparse unmixing model can be written as

where A = [a1, a2, . . . , am] ∈ R
l×m is the spectral library, and x ∈ R

m is the abundance 
vector corresponding the spectral library A. Clearly, x is sparse. By exploiting the sparse 
prior of abundance x through the well-known ℓ1 norm, we can estimate abundance vec-
tor x by the following sparse regression (SR) problem:

(1)y =

p
∑

i=1

miαi + e

(2)= Mα + e,

(3)(sum-to-one) :

p
∑

i=1

αi = 1,

(4)(nonnegativity) : αi ≥ 0, i = 1, 2, . . . , p.

(5)y = Ax + e,

(6)min
x

1

2
�y− Ax�22 + �SR�x�1 s.t. x ≥ 0,
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where �x�1 =
∑m

i=1 |xi| and �SR > 0 is a sparse regularization parameter. It is worth to 
note that the sum-to-one constraint is no longer necessary since the nonnegativity con-
straint can automatically lead to the sum-to-one constraint as stated in Bioucas-Dias and 
Plaza (2012), Iordache et al. (2011). However, the high mutual coherence of the spectral 
library A limits the unmixing accuracy.

Collaborative sparse regression

In fact, sparse unmixing, as a semi-supervised model, is a typical underdetermined lin-
ear system. To solve it, sparsity prior for the fractional abundance of each individual 
pixel is imposed in (6). Although the high level of sparsity of fractional abundances can 
enhance the recovery ability of the ℓ1-minimization problem (6), the highly correlated 
samples in library still restrict the capability of model (6) to obtain a desirable solution. 
To tackle this problem, the CSR model has been recently proposed in Iordache et  al. 
(2014a). Unlike the ℓ1-minimization problem (6), the CSR model simultaneously (or col-
laboratively) imposes a sparsity to all pixels in the data set by exploiting the fact that pix-
els in a scene should share the same set of active endmembers, and thus only a few rows 
of the abundance matrix are nonzero.

Let Y = [y1, y2, . . . , yn] ∈ R
l×n be the n observed pixels arranged in a matrix, we can 

rewrite the sparse unmixing model (5) in the matrix form as

where E = [e1, e2, . . . , en] ∈ R
l×n is the noise matrix and X = [x1, x2, . . . , xn] ∈ R

m×n 
is the fractional abundance matrix. With the collaborative sparsity induced by the row-
sparsity regularizer ℓ2,1 norm, the CSR problem can be formulated as

where �X�2,1 =
∑m

i=1 �x
i�2, xi represents the ith row of abundance fraction matrix X 

and �CSR is a regularization parameter. An algorithm called collaborative sparse unmix-
ing via variable splitting and augmented Lagrangian (CLSUnSAL) is provided in 
Iordache et al. (2014a) and a number of experiments have shown that the imposed col-
laborative sparsity prior can significantly reduce the probability of recovery failure.

Methods
In this section, we introduce an enhanced CSR model, called manifold regularized CSR 
(MCSR) model, by incorporating a manifold regularization to CSR, and then an alternat-
ing direction method is developed to solve the resulting optimization problem.

MCSR

As for CSR problem (8), the data fitting term �Y − AX�2F is useful for learning the Euclid-
ean structures in the hyperspectral data space. As we have previously mentioned, the 
size of spectral library is usually very large, while the number of endmembers present 
in the scene is very small. From a geometric viewpoint, the fractional abundances are 
more likely to reside on a low-dimensional submanifold of the high-dimensional ambient 
Euclidean space. Recent studies (Lu et al. 2013; Zheng et al. 2011; Guan et al. 2011; Seung 

(7)Y = AX + E,

(8)min
X

1

2
�Y − AX�2F + �CSR�X�2,1 s.t.X ≥ 0,



Page 6 of 27Liu et al. SpringerPlus  (2016) 5:2007 

and Lee 2000; He and Niyogi 2004; Belkin et al. 2006) have shown that intrinsic geometric 
structures on manifolds are very important to the data representation and many manifold 
learning methods (Tenenbaum et al. 2000; Roweis and Saul 2000; Donoho and Grimes 
2003; Belkin and Niyogi 2003; Lin and Zha 2008) have been proposed to recover the 
geometry of a data set. In the literature of spectral unmixing, many existing methods (Lu 
et al. 2013) only explore the Euclidean structure while fail to discover the intrinsic geom-
etry structure of the data manifold. Therefore, we want to explore the ability of the intrin-
sic geometry structure of the hyperspectral data in improving the unmixing accuracy.

To preserve the intrinsic geometry structure of the data, a natural assumption, referred to 
the manifold assumption (He and Niyogi 2004), is that nearby data points are also nearby 
points in their low-dimensional representations. However, modeling the global geometric 
structures of the data is a very big challenge due to the insufficient number of samples and 
the high dimensionality of the ambient space. In practice, a nearest neighbor graph on the 
data points is often used to characterize the underlying local geometric structures.

Given n data points {y1, y2, . . . , yn} ∈ R
l sampled from the underlying submanifold, 

we construct a nearest neighbor graph G with its ith node corresponding to the data 
point yi, i = 1, 2, . . . , n. For each node yi, one can put an edge between it and its k near-
est neighbors. Let Nk(yi) = {y1i , . . . , y

k
i } be the set of its k nearest neighbors. And we 

define the weight matrix W  on the graph G as

The weight wij is used to measure the similarity between data points yi and yj, other 
similarity measures can also be used to evaluate the similarity (Cai et al. 2011). For the 
manifold assumption, i.e., if two points yi and yj are close to each other, then their low-
dimensional representations xi and xj are close as well, a natural choice is to minimize 
the following manifold regularization T, defined by

where L = D −W  and D is a diagonal matrix with the ith diagonal element dii =
∑

j wij . 
The matrix L is usually called graph Laplacian (Cai et al. 2011; He et al. 2011). It is appar-
ent that minimizing the manifold regularization T imposes smoothness of the represen-
tation coefficients, or equally the prior assumption that if neighboring points yi and yj 
are similar (with a relatively bigger weight wij), their low-dimensional representations xi 
and xj should be very close. Therefore, minimizing (9) is an attempt to ensure the mani-
fold assumption.

By incorporating the above manifold regularization T into the CSR, we have the 
MCSR problem as

wij =

{

yTi yj

�yi�
2
2·�yj�

2
2

, if yi ∈ Nk(yj) or yj ∈ Nk(yi),

0, otherwise.

(9)

T =
1

2

n
∑

i=1

n
∑

j=1

wij�xi − xj�
2
2

= Tr(XLXT )

(10)

min
X

1

2
�Y − AX�2F + �CSR�X�2,1 +

1

2
�MRT

s.t. X ≥ 0,
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where �MR > 0 is a manifold regularization parameter. The problem (10) has the follow-
ing equivalent form

where ιR+
 is an indicator function, defined by

Application of ADMM to MCSR

In this subsection, we propose to apply the alternating direction method of multipliers 
(ADMM) (Afonso et al. 2011; Yang and Zhang 2011) method to the MCSR problem (10). 
The ADMM method has recently attracted more attention because it can decouple the 
variables, and it is usually used to solve the problems of a convex, non-smooth objective 
function with structured linear constraints.

Consider the following structured optimization problem with linear constraints:

where both f (x) and g(v) are convex functions, G is a known matrix with full column 
rank. For this problem, the augmented Lagrangian function is given by

where α is the Lagrange multipliers, µ > 0 is a penalty parameter, and d = −α/µ. 
ADMM alternately minimizes L (x, v,α) with respect to x and v in a Gauss–Seidel man-
ner. The general procedures of ADMM are summarized in Algorithm 1.

The convergence of ADMM is guaranteed by the following theorem given in Eckstein 
and Bertsekas (1992) (see Theorem 8).

Theorem  1 Consider problem (13) with G having full columns rank and f,  g being 
closed, proper, convex functions. Then, for arbitrary µ > 0 and x0, v0, d0, if problem (13) 

(11)min
X

1

2
�Y − AX�2F + �CSR�X�2,1 +

1

2
�MRT + ιR+

(X)

(12)ιR+
(x) =

{

0, if x ≥ 0,
+∞, otherwise.

(13)min
x,v

f (x)+ g(v) s.t. Gx = v,

L (x, v,α) = f (x)+ g(v)+ αT (Gx − v)+
µ

2
�Gx − v�22

= f (x)+ g(v)+
µ

2
�Gx − v − d�22 + constant



Page 8 of 27Liu et al. SpringerPlus  (2016) 5:2007 

has a solution, the sequences {xt , vt , dt} generated by Algorithm 1 converges to it; other-
wise, at least one of the sequences {dt} and {(xt , vt)} diverges.

According to the above framework of ADMM, and let

where I is an identity matrix, and

we have the corresponding augmented Lagrangian function as

Then, we apply the alternating minimization idea to update the variables X ,V1,V2 and 
the Lagrange multipliers D1,D2. Given the current point Xt ,V t

1, V t
2, Dt

1,D
t
2, we get the 

next step of X by minimizing L with respect to X, i.e.,

which yields the following updating rule

where ζ t = V t
1 + V t

2 + Dt
1 + Dt

2. To update V1 and V2, we have the augmented Lagran-
gian subproblems

Before solving V1, we first define the well-known vector-soft thresholding (VST) operator 
Vτ of a matrix Q = [qT1 , q

T
2 , . . . , q

T
m]

T ∈ R
m×n as

(14)GX =

[

I
I

]

X =

[

V1

V2

]

= V ,

(15)f (X) =
1

2
�Y − AX�2F ,

(16)g(V ) = �CSR�V1�2,1 + ιR+
(V1)+

�MR

2
Tr

(

V2LV
T
2

)

,

L (X ,V1,V2,D1,D2)

= f (X)+ g(V )+
µ

2
�GX − V − D�2F

=
1

2
�Y − AX�2F + �CSR�V1�2,1 + ιR+

(V1)+
�MR

2
Tr

(

V2LV
T
2

)

+
µ

2
�X − V1 − D1�

2
F +

µ

2
�X − V2 − D2�

2
F .

Xt+1 ∈ arg min
X

f (X)+
µ

2

∥

∥GX − V t
1 − Dt

2

∥

∥

2

2

∈ arg min
X

1

2
�Y − AX�2F +

µ

2

∥

∥X − V t
1 − Dt

1

∥

∥

2

F
+

µ

2

∥

∥X − V t
2 − Dt

2

∥

∥

2

F
,

Xt+1 = (ATA+ 2µI)−1(ATY + µζ t),

V t+1
1 ∈ arg min

V1

�CSR�V1�2,1 +
µ

2

∥

∥

∥
Xt+1 − V1 − Dt

1

∥

∥

∥

2

F
+ ιR+

(V1)

V t+1
2 ∈ arg min

V2

�MR

2
Tr

(

V2LV
T
2

)

+
µ

2

∥

∥

∥
Xt+1 − V2 − Dt

2

∥

∥

∥

2

F
.

(17)Vτ (Q) = Q∗,
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where the ith row of Q∗ is q∗i , defined by

By the VST operator, it is easy to get the updating rule of V1 as

As for V2, we have

The Lagrangian multipliers D1,D2 can be updated as

Finally, the proposed manifold regularized collaborative sparse unmixing via ADMM 
(MCSUnADMM) algorithm for MCSR is summarized in Algorithm 2.

The convergence of Algorithm 2 is guaranteed by Theorem 1, since it can be expressed 
as an instance of problem (13). G is a full column rank matrix, and functions f,  g are 
closed, proper, convex. These meet the conditions in Theorem 1, and hence the conver-
gence of Algorithm 2 is guaranteed.

(18)q∗i =

{

�qi�−τ
�qi�

qi, if τ < �qi�,

0, otherwise.

(19)V t+1
1 = max

(

0,V�CSR/µ

(

Xt+1 − Dt
1

))

.

(20)V t+1
2 =

(

Xt+1 − Dt
2

)

(

�MR

µ
L+ I

)−1

.

Dt+1
1 = Dt

1 −
(

Xt+1 − V t+1
1

)

,

Dt+1
2 = Dt

2 −
(

Xt+1 − V t+1
2

)

.
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Experiments
In this section, we evaluate the performance of our proposed MCSUnADD algorithm, 
and compare it with the CLSUnSAL algorithm (Iordache et  al. 2014a) for the CSR 
problem (8), the SUnSAL algorithm (Iordache et al. 2011) for the SR problem (6), and 
the total variation regularized SUnSAL (TVSUnSAL) algorithm (Iordache et al. 2012). 
Experiments are carried out on two simulated hyperspectral data sets and one real 
hyperspectral data set, and the accuracy assessment of all the experiments is made by 
computing the signal to reconstruction error (SRE) (Iordache et al. 2011), defined by

where E(x) is the expectation of x and x̂ is the corresponding reconstructed abundance 
vector. The higher the SRE, the better the reconstruction. In our experiments, the regu-
larization parameters �SR, �CSR and �MR are selected from

to obtain the best unmixing accuracy. As for stopping criterion, we set as the maximum 
iteration number and the Frobenius norm of reconstruction errors of the pixels, i.e. 
�Y − AX�2F, less than τ = 1e−4.

Synthetic image experiments

Our experiments are first performed on two synthetic images, which were generated 
from the USGS library A ∈ R

224×445 that contains 445 materials with each having 224 
spectral bands that uniformly distribute in the interval 0.4–2.5 μm.

Synthetic Image 1 (SI-1) This synthetic image of size 80× 80 is produced by a hyper-
spectral imagery synthesis tools, which is developed by the computational intelligence 
group of the Basque Country University. Five endmembers as shown in Fig.  1a are 

(21)SRE =
E(�x�22)

E
(

�x − x̂�22
)

{1e−4, 5e−4, 1e−3, 5e−3, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1}

50 100 150 200
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R
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Fig. 1 Five randomly selected endmember spectra to generate SI-1 and the corresponding simulated image 
with band 50. a Five endmember spectra and b synthetic image with band 50
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randomly selected from the spectral library A to generate the synthetic image, as shown 
in Fig.  1b. In this image, the fractional abundances are created by the Gaussian fields 
method with spheric type (refer to Boris 1999 for more details) to model the natural 
scene such as the distribution of forest, and satisfy the LMM, together with the non-
negative and sum-to-one constraints.

Synthetic Image 2 (SI-2) This synthetic image is to simulate a scene with land covers 
arranged in discrete patches, and was designed in Miao and Qi (2007). In the image, 
seven endmembers, randomly selected from the spectral library A and as shown in 
Fig. 2a, are used to produce a hyperspectral image with 100× 100 pixels. The image is 
first divided into several 10 pixels× 10 pixels regions with each initialized with one of 
the seven endmember spectra, and then a 8 pixels× 8 pixels spatial low-pass filter is 
used to generate the mixed pixels. In order to model the scene without pure pixels, all 
of the pixels whose abundances are larger than 0.8 are replaced with a mixture of all 
endmembers with equal abundances. By this way, the produced fractional abundances 
naturally satisfy the LMM with the nonnegative and sum-to-one constraints.

Results
To test the performances of algorithms influenced by the noises, zero-mean Gaussian 
noises are added to the above two synthetic images to achieve different signal-to-noise 
ratios (SNRs) of 15, 25, 35, and 45 dB. The results with SREs obtained by the MCSU-
nADMM, CLSUnSAL, TVSUnSAL, and SUnSAL algorithms for these two synthetic 
images with different noise levels are reported in Table 1. As we can see, our proposed 
MCSUnADMM algorithm achieved the best unmixing accuracy than both SUnSAL and 
CLSUnSAL algorithms in two different simulated scenarios, and CLSUnSAL performs 
a little better than the SUnSAL algorithm. The TVSUnSAL algorithm has a little bet-
ter performances for the SI-1 scene than that for the SI-2 scene. This may be because 
the two simulated scenes have different spatial characteristics (e.g., SI-1 are with a 
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Fig. 2 Seven randomly selected endmember spectra to generate SI-2 and the corresponding simulated 
images with band 50. a Seven endmember spectra and b synthetic image with band 50
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heterogeneous background while SI-2 has a relatively homogeneous background) while 
the TVSUnSAL algorithm aims at exploiting the spatial homogeneity to improve the 
unmixing accuracy. The improvement of MCSUnADMM demonstrates that the mani-
fold regularization term is capable of enhancing the unmixing performance.

Table 2 reports the times of the MCSUnADMM, CLSUnSAL, TVSUnSAL, and SUn-
SAL algorithms for these two synthetic experiments with different SNRs when the stop-
ping criterion (i.e., the maximum iteration number or the Frobenius norm of the pixel 
reconstruction errors, i.e. �Y − AX�2F, less than τ = 1e−4) is reached. As can been see 
from this table, the proposed MCSUnADMM algorithm converges faster than the other 
three algorithms to reach the minima of the objective function �Y − AX�2F because of 
the use of the locally geometrical structure of the hyperspectral data introduced by the 
manifold regularization. Note that a proper and efficient regularization introduced to 
the model will benefit the descending of the objective function. However, it must be 
pointed out that the computational complexity of solving model (10) is a little higher 
than solving the models (6) and (8) in theory. Table 3 gives the computational times for 
the SI-1 and SI-2 experiments by all of the four algorithms when setting the maximum 
iteration number (to be 2000) as the stopping criterion. According to this table, we can 

Table 1 SREs obtained by  the MCSUnADMM, CLSUnSAl, TVSUnSAL, and  SUnSAL algo-
rithms on different SNRs

Best results are  shown in italic

SNR (dB) 15 25 35 45

SI-1

SUnSAL 2.302 4.262 8.851 16.035

CLSUnSAL 4.595 10.419 14.411 16.598

TVSUnSAL 2.104 4.212 8.564 15.091

MCSUnADMM 6.519 13.924 19.763 21.144

SI-2

SUnSAL 1.516 2.415 5.184 13.032

CLSUnSAL 2.234 4.748 10.253 35.193

TVSUnSAL 2.670 6.115 15.926 38.323

MCSUnADMM 2.673 6.095 16.023 38.517

Table 2 Times in  second for  the MCSUnADMM, CLSUnSAl, TVSUnSAL, and  SUnSAL algo-
rithms on different SNRs

Best results are  shown in italic

Time (s) 15 25 35 45

SI-1

SUnSAL 677 405 194 133

CLSUnSAL 575 225 213 203

TVSUnSAL 763 556 334 256

MCSUnADMM 208 192 195 194

SI-2

SUnSAL 1136 1168 1091 1322

CLSUnSAL 1092 1136 1066 1916

TVSUnSAL 645 618 523 642

MCSUnADMM 531 504 487 467
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see that the SUnSAL and CLSUnSAL algorithms need almost the same computational 
times, while the TVSUnSAL and the MCSUnADMM algorithms have almost the same 
computational times, which are higher than that of the SUnSAL and CLSUnSAL algo-
rithms. This is consistent with the theoretical analysis of the complexity (Iordache et al. 
2012, 2014a). In addition, Fig. 3 plots the evolution of the objective function (10) versus 
time in the SI-1 experiments with SNR = 25 dB to illustrate the convergence of the pro-
posed MCSUnADMM algorithm.

Additionally, the estimated fractional abundances obtained by the three algorithms, 
along with the ground-truth abundances, are shown in Figs. 4, 5, 6, 7, 8, 9, 10, 11, 12 
and 13. For space consideration, only the fractional abundance maps of SI-1 with the 
lowest SNR of 15 dB and the fractional abundance maps of SI-2 with the highest SNR 
of 45 dB are reported. By visual comparisons of these fractional abundance maps, it can 
be seen that our proposed MCSUnADMM algorithm based on MCS model outper-
forms the other two algorithms for SR and CSR models and the incorporated manifold 
regularization can impose spatial consistency such that the spatially similar pixels have 
similar abundances as shown in Figs. 5, 6, 7, 8, 9 and 10. From Fig. 7, we can see that the 
results obtained by the TVSUnSAL algorithm exhibits more spatial homogeneity due to 
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Fig. 3 Evolution of the objective function (10) for SI-1 with SNR = 25 dB by using MCSUnADMM algorithm

Table 3 Times in second for the SI-1 and SI-2 experiments by the MCSUnADMM, CLSUnSAl, 
TVSUnSAL, and  SUnSAL algorithms when  setting the maximum iteration number as  the 
stopping criterion

SUnSAL CLSUnSAL TVSUnSAL MCSUnADMM

SI-1 436 439 4242 4749

SI-2 754 763 20,496 20,512
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Fig. 4 The ground-truth fractional abundance maps for SI-1. a Endmember 1, b Endmember 2, c Endmem-
ber 3, d Endmember 4, e Endmember 5
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Fig. 5 The recovered fractional abundance maps for SI-1 by the MCSUnADMM algorithm. a Endmember 1,  
b Endmember 2, c Endmember 3, d Endmember 4, e Endmember 5
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Fig. 6 The recovered fractional abundance maps for SI-1 by the CLSUnSAL algorithm. a Endmember 1,  
b Endmember 2, c Endmember 3, d Endmember 4, e Endmember 5
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Fig. 7 The recovered fractional abundance maps for SI-1 by the TVSUnSAL algorithm. a Endmember 1,  
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the total variation regularization. However, the proposed MCSUnADMM algorithm can 
deal with the pixels in the transaction areas, as shown in Fig. 5, since its incorporated 
manifold regularization has applied different weights (9) for different pixels.

Real hyperspectral image experiments
In this section, we apply the proposed MCSUnADMM algorithm to real hyperspectral 
data collected by the Airborne Visible/InfRared Imaging Spectrometer (AVIRIS). The 
AVIRIS instrument can cover a spectral region from 0.41 to 2.45 μm in 224 bands with a 
10 nm bandwidth.
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Data sets

The studied real hyperspectral image is collected by AVIRIS over the Cuprite mining 
site, Nevada, on June 19, 1997 and is publicly available online. The Cuprite data con-
tains some exposed minerals included in the above used USGS spectral library A, and 
is well understood mineralogically. The mineral map produced by USGS is shown in 
Fig. 14. It should be noted that we only exhibit this figure as a reference to visually com-
pare the results obtained by different methods, since the mineral map was produced in 
1995 while the Cuprite data was collected in 1997 (Iordache et  al. 2014a). This scene 
is often used for the assessment of the abundance maps obtained by spectral unmixing 
algorithms (Iordache et al. 2012).
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Fig. 10 The recovered fractional abundance maps of endmember 1, 3, 5 and 7 for SI-2 by the MCSUnADMM 
algorithm. a Endmember 1, b Endmember 3, c Endmember 5, d Endmember 7



Page 21 of 27Liu et al. SpringerPlus  (2016) 5:2007 

Results analysis

We conduct our experiment on a subscene with a size of 250× 190 pixels and 224 bands. 
However, the bands 1–2, 104–113, 148–167, and 221–224 were removed due to water 
absorption and noise, and thus only a total of 188 bands were used in the experiment. 
In addition, the corresponding water absorption and noise bands are also removed from 
the spectral library A.

The fractional abundance maps of three typical minerals estimated by the MCSUn-
ADMM, CLSUnSAL, and SUnSAL methods are shown in Fig. 15. By visually compari-
son, we can find that the abundance maps obtained by our proposed MCSUnADMM 
method are more sparse and have less outliers than that of the CLSUnSAL and SUnSAL 
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Fig. 11 The recovered fractional abundance maps of endmember 1, 3, 5 and 7 for SI-2 by the CLSUnSAL 
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methods, this may be due to the incorporated manifold regularization can consider the 
geometric structure of the dataset such that the performances of the MCSUnADMM 
method exhibit good spatial consistency.

Conclusions
This paper presents a novel sparse unmixing model, which incorporate the manifold 
regularization into the collaborative sparse regression. The manifold regularization is 
induced by a Laplacian graph, which can characterize the locally geometrical structure 
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of the hyperspectral data. In this way, the proposed manifold regularized collaborative 
sparse (MCS) model can consider both the Euclidean structures and underlying manifold 
structures. To solve the proposed model, an efficient algorithm based on ADMM, called 
MCSUnADMM, has been developed. And the convergence of the proposed MCSUn-
ADMM algorithm can be guaranteed based on the framework of ADMM. Experimental 
results with both simulated and real hyperspectral datasets demonstrate the effective-
ness of the proposed model and algorithm. However, the efficiency of the proposed 
MCSUnADMM algorithm is affected by two regularization parameters. Therefore, our 
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Fig. 13 The recovered fractional abundance maps of endmember 1, 3, 5 and 7 for SI-2 by the SUnSAL algo-
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future work will focus on designing a strategy to adaptively set these parameters. In 
addition, further experiments with different scenes of real hyperspectral images are need 
to investigate the performances of our proposed model and method.

Fig. 14 The mineral abundance map of the Cuprite mining site produced in 1995 by USGS
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