398 research outputs found

    Becoming Human with Humanoid

    Get PDF
    Nowadays, our expectations of robots have been significantly increases. The robot, which was initially only doing simple jobs, is now expected to be smarter and more dynamic. People want a robot that resembles a human (humanoid) has and has emotional intelligence that can perform action-reaction interactions. This book consists of two sections. The first section focuses on emotional intelligence, while the second section discusses the control of robotics. The contents of the book reveal the outcomes of research conducted by scholars in robotics fields to accommodate needs of society and industry

    Combining the functionality of multiple automatic cells by introducing a dual-arm robot station

    Get PDF
    The industrial revolution 4.0 is resulting in a shift of production and manufacturing processes to become more efficient and streamlined. This involves the refurnishing and upgrading of existing technology in production lines. Significant research done in the field of dual-arm robot manipulators shows us that anthropomorphic robots can be used interchangeably or replace humans, without major changes to the workplace, resulting in low cost, flexible automation and increased functionality. This thesis implementation aims to merge the functionalities of two automatic workstations by upgrading the elements of one of the workstations and removing the other workstation from the line. Based on the available resources and existent in-lab facilities, the prime objective is to determine the most efficient means to utilize a dual-arm manipulator to combine and update the functionalities of these two individual cells. And, how best to create exposure, by demonstrating the operations and features of the relatively unacquainted breed of industrial robots to new generations of students. This thesis focuses on the virtual implementation of the dual-arm station and the process flow is modelled and simulated, as proof of concept. The physical implementation would be carried out subsequently. Based on an extensive analysis of relevant literature, manipulator capabilities, in-house fabrication and purchasing feasibilities; the most efficient implementation was made after multiple iterative changes in cell and tooling design, and the process was created using the offline programming tool. The created dual-arm cell has replaced two individual robot manipulators and additional conveyor systems and acts as both, a production and an Automatic Storage and Retrieval System (AS/RS) unit, additionally it enables the intelligent production line (where the cell is being installed) to interact with other isolated intelligent systems in the laboratory. The introduced changes to the production line have increased its functionality, while removing obsolete equipment. The production efficiency is increased while reducing the space utilized and demonstrates the operation of a dual-arm industrial robots. Future works to improve the operations in the cell may include using anthropomorphic hands as tooling and utilizing intelligent vision systems to additionally handle deformable linear objects for the REMODEL project of the Horizon 2020 research and innovation programming, while still serving its originally intended purpose in the intelligent production line

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion

    An Omnidirectional Aerial Platform for Multi-Robot Manipulation

    Get PDF
    The objectives of this work were the modeling, control and prototyping of a new fully-actuated aerial platform. Commonly, the multirotor aerial platforms are under-actuated vehicles, since the total propellers thrust can not be directed in every direction without inferring a vehicle body rotation. The most common fully-actuated aerial platforms have tilted or tilting rotors that amplify the aerodynamic perturbations between the propellers, reducing the efficiency and the provided thrust. In order to overcome this limitation a novel platform, the ODQuad (OmniDirectional Quadrotor), has been proposed, which is composed by three main parts, the platform, the mobile and rotor frames, that are linked by means of two rotational joints, namely the roll and pitch joints. The ODQuad is able to orient the total thrust by moving only the propellers frame by means of the roll and pitch joints. Kinematic and dynamic models of the proposed multirotor have been derived using the Euler- Lagrange approach and a model-based controller has been designed. The latter is based on two control loops: an outer loop for vehicle position control and an inner one for vehicle orientation and roll-pitch joint control. The effectiveness of the controller has been tested by means of numerical simulations in the MATLAB c SimMechanics environment. In particular, tests in free motion and in object transportation tasks have been carried out. In the transportation task simulation, a momentum based observer is used to estimate the wrenches exchanged between the vehicle and the transported object. The ODQuad concept has been tested also in cooperative manipulation tasks. To this aim, a simulation model was considered, in which multiple ODQuads perform the manipulation of a bulky object with unknown inertial parameters which are identified in the first phase of the simulation. In order to reduce the mechanical stresses due to the manipulation and enhance the system robustness to the environment interactions, two admittance filters have been implemented: an external filter on the object motion and an internal one local for each multirotor. Finally, the prototyping process has been illustrated step by step. In particular, three CAD models have been designed. The ODQuad.01 has been used in the simulations and in a preliminary static analysis that investigated the torque values for a rough sizing of the roll-pitch joint actuators. Since in the ODQuad.01 the components specifications and the related manufacturing techniques have not been taken into account, a successive model, the ODQuad.02, has been designed. The ODQuad.02 design can be developed with aluminum or carbon fiber profiles and 3D printed parts, but each component must be custom manufactured. Finally, in order to shorten the prototype development time, the ODQuad.03 has been created, which includes some components of the off-the-shelf quadrotor Holybro X500 into a novel custom-built mechanical frame

    Modular soft pneumatic actuator system design for compliance matching

    Get PDF
    The future of robotics is personal. Never before has technology been as pervasive as it is today, with advanced mobile electronics hardware and multi-level network connectivity pushing âsmartâ devices deeper into our daily lives through home automation systems, virtual assistants, and wearable activity monitoring. As the suite of personal technology around us continues to grow in this way, augmenting and offloading the burden of routine activities of daily living, the notion that this trend will extend to robotics seems inevitable. Transitioning robots from their current principal domain of industrial factory settings to domestic, workplace, or public environments is not simply a matter of relocation or reprogramming, however. The key differences between âtraditionalâ types of robots and those which would best serve personal, proximal, human interactive applications demand a new approach to their design. Chief among these are requirements for safety, adaptability, reliability, reconfigurability, and to a more practical extent, usability. These properties frame the context and objectives of my thesis work, which seeks to provide solutions and answers to not only how these features might be achieved in personal robotic systems, but as well what benefits they can afford. I approach the investigation of these questions from a perspective of compliance matching of hardware systems to their applications, by providing methods to achieve mechanical attributes complimentary to their environment and end-use. These features are fundamental to the burgeoning field of Soft Robotics, wherein flexible, compliant materials are used as the basis for the structure, actuation, sensing, and control of complete robotic systems. Combined with pressurized air as a power source, soft pneumatic actuator (SPA) based systems offers new and novel methods of exploiting the intrinsic compliance of soft material components in robotic systems. While this strategy seems to answer many of the needs for human-safe robotic applications, it also brings new questions and challenges: What are the needs and applications personal robots may best serve? Are soft pneumatic actuators capable of these tasks, or âusefulâ work output and performance? How can SPA based systems be applied to provide complex functionality needed for operation in diverse, real-world environments? What are the theoretical and practical challenges in implementing scalable, multiple degrees of freedom systems, and how can they be overcome? I present solutions to these problems in my thesis work, elucidated through scientific design, testing and evaluation of robotic prototypes which leverage and demonstrate three key features: 1) Intrinsic compliance: provided by passive elastic and flexible component material properties, 2) Extrinsic compliance: rendered through high number of independent, controllable degrees of freedom, and 3) Complementary design: exhibited by modular, plug and play architectures which combine both attributes to achieve compliant systems. Through these core projects and others listed below I have been engaged in soft robotic technology, its application, and solutions to the challenges which are critical to providing a path forward within the soft robotics field, as well as for the future of personal robotics as a whole toward creating a better society

    Medical Robotics

    Get PDF
    The first generation of surgical robots are already being installed in a number of operating rooms around the world. Robotics is being introduced to medicine because it allows for unprecedented control and precision of surgical instruments in minimally invasive procedures. So far, robots have been used to position an endoscope, perform gallbladder surgery and correct gastroesophogeal reflux and heartburn. The ultimate goal of the robotic surgery field is to design a robot that can be used to perform closed-chest, beating-heart surgery. The use of robotics in surgery will expand over the next decades without any doubt. Minimally Invasive Surgery (MIS) is a revolutionary approach in surgery. In MIS, the operation is performed with instruments and viewing equipment inserted into the body through small incisions created by the surgeon, in contrast to open surgery with large incisions. This minimizes surgical trauma and damage to healthy tissue, resulting in shorter patient recovery time. The aim of this book is to provide an overview of the state-of-art, to present new ideas, original results and practical experiences in this expanding area. Nevertheless, many chapters in the book concern advanced research on this growing area. The book provides critical analysis of clinical trials, assessment of the benefits and risks of the application of these technologies. This book is certainly a small sample of the research activity on Medical Robotics going on around the globe as you read it, but it surely covers a good deal of what has been done in the field recently, and as such it works as a valuable source for researchers interested in the involved subjects, whether they are currently “medical roboticists” or not

    Fabricate

    Get PDF
    Bringing together pioneers in design and making within architecture, construction, engineering, manufacturing, materials technology and computation, Fabricate is a triennial international conference, now in its third year (ICD, University of Stuttgart, April 2017). Each year it produces a supporting publication, to date the only one of its kind specialising in Digital Fabrication. The 2017 edition features 32 illustrated articles on built projects and works in progress from academia and practice, including contributions from leading practices such as Foster + Partners, Zaha Hadid Architects, Arup, and Ron Arad, and from world-renowned institutions including ICD Stuttgart, Harvard, Yale, MIT, Princeton University, The Bartlett School of Architecture (UCL) and the Architectural Association

    A Framework and Process Library for Human-Robot Collaboration in Creative Design and Fabrication

    Get PDF
    In the last two decades, the increasing affordability of industrial robots, along with the growing maturity of computational design software, has led architects to integrate robots into their design process. Robots have exceptional capabilities that enable the fabrication of geometrically complicated components and assembly of complex structures. However, the robot control and motion programming tools currently being adopted by designers were all initially intended for engineering-based manufacturing industries. When using computer-controlled tools, designers cannot adapt their designs to the production process in real time. Current industrial robot control systems force the designer to envision and embed all of the required machining data in the digital model before the fabrication process begins. This requirement makes the process of design to fabrication a unidirectional workflow. In pursuit of a solution, a growing body of research is exploring various human-robot collaboration methods for architectural practices. However, many of these studies are project- based, targeting the ad hoc needs of a particular robotic application or fabrication process. Consequently, this dissertation investigates a generalizable framework for human-robot collaboration that is rooted in the principles of distributed cognition. As an essential part of the research argument, the role of the tools of production in the formation of a designer's cognitive system is considered. This framework, defined for a bi-directional design and fabrication workflow, relies on and integrates material and fabrication feedback into the design process. The framework has three main components: interactive design, adaptive control, and a design and fabrication library. While different aspects of these components have been studied to various extents by other researchers, this dissertation is the first to define them in an integrated manner. Next, the requirements for each of these elements are introduced and discussed in detail. This dissertation focuses in more detail on the library component of the framework because compared to the first two components, it is the least investigated solution to date. A structure for the library is proposed so that the tacit knowledge of makers could be structured, captured, and reused. At its core, the library is a process-centric database where each process is supported by a set of tools, instructions, materials, and geometries required for the transformation of a part into its final form. Finally, this study demonstrates the generalizability of the library concept through a series of experiments developed for different material systems and with various robotic operations.Ph.D
    corecore