7 research outputs found

    A native content discovery mechanism for the information-centric networks

    Get PDF
    Recent research has considered various approaches for discovering content in the cache-enabled nodes of an Autonomous System (AS) to reduce the costly inter-AS traffic. Such approaches include i) searching content opportunistically (on-path) along the default intra-AS path towards the content origin for limited gain, and ii) actively coordinate nodes when caching content for significantly higher gains, but also higher overhead. In this paper, we try to combine the merits of both worlds by using traditional opportunistic caching mechanisms enhanced with a lightweight content discovery approach. Particularly, a content retrieved through an inter-AS link is cached only once along the intra-AS delivery path to maximize network storage utilization, and ephemeral forwarding state to locate temporarily stored content is established opportunistically at each node along that path during the processing of Data packets. The ephemeral forwarding state either points to the arriving or the destination face of the Data packet depending on whether the content has already been cached along the path or not. The challenge in such an approach is to appropriately use and maintain the ephemeral forwarding state to minimize inter-AS content retrieval, while keeping retrieval latency and overhead at acceptable levels. We propose several forwarding strategies to use and manage ephemeral state and evaluate our mechanism using an ISP topology for various system parameters. Our results indicate that our opportunistic content discovery mechanism can achieve near-optimal performance and significantly reduce inter-AS traffic

    Method and System for Name Resolution Across Heterogeneous Architectures

    Get PDF
    One embodiment of the present invention provides a system for resolving a name request in a network comprising a plurality of groups that use different name-resolution schemes. During operation, the system receives, at a first group, the name request; identifies a parent group of the first group, which is a member of the parent group; and in response to failing to resolve the name request within the first group, forwards the name request to the identified parent group

    Collaborative Forwarding and Caching in Content Centric Networks

    No full text
    Part 1: Content-Centric NetworkingInternational audienceContent caching plays an important role in content-centric networks. The current design of content-centric networks adopts a limited, en-route hierarchical caching mechanism, and caching and forwarding are largely uncoordinated. In this paper, we propose a novel collaborative caching and forwarding design. In this design, collaboration is guided by content popularity ranking, based on which we introduce a collaborative forwarding table to allow coordination between caching and forwarding. We also propose a self-adaptive dual-segment cache division algorithm to deal with dynamic inconsistent content popularity. We evaluate our design via extensive simulations and demonstrate that our design improves content access cost and cache miss rate by at least 30% in a diverse network settings
    corecore