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METHOD AND SYSTEM FOR NAME
RESOLUTION ACROSS HETEROGENEOUS

ARCHITECTURES

This invention was made with U.S. government support
under NAS2-03144.TO.030.10.MD.D awarded by National
Aeronautics and Space Administration (NASA) Ames
Research Center. The U.S. government has certain rights in
the invention.

BACKGROUND

Field
This disclosure is generally related to name resolutions in

networks. More specifically, this disclosure is related to a
method and a system that can provide a unifying framework
for name resolution across heterogeneous name-resolution
systems.

Related Art
Service discovery and name resolution are vital opera-

tions in any network. Users and applications often use
text-based strings, such as uniform resource locators
(URLs), rather than network addresses to indicate the con-
tent or services they require, and these names must then be
mapped to network addresses before communication is
possible. Such a name-resolution requirement applies to
today's and future networks and the Internet at large.

Unfortunately, current approaches to name resolution are
unable to support future networking environments that
include different types of network, each using a different
name-resolution protocol. This is because no single name-
resolution protocol has been devised that works well across
all types of network, and the different currently available
name-resolution protocols have not been designed to inter-
operate with one another. For example, consider the case in
which a user accidentally leaves her laptop at home and
wishes to access it from her office. The laptop most likely
uses multicast domain name system (mDNS) to name itself
on the home network, but the user has no way of resolving
this name outside of that home network environment and,
thus, cannot discover the laptop. As another example, nodes
in a mobile ad hoc network (MANET) may use a distributed
protocol to resolve each other's names, but there is no
protocol for them to extend this name resolution to the
Internet through the domain name system (DNS), despite the
presence of a network-layer gateway bridging the MANET
to the Internet.

Currently available systems for name resolution and ser-
vice discovery can be loosely categorized into client-server
systems, peer-to-peer systems, or systems based on overlay
networks. Additionally, there are hybrid systems employing
more than one of these architectures.
The most widely used system for name resolution today

is the domain name system (DNS). DNS relies on a hierar-
chy of servers that must be configured to forward a name
request to the appropriate server, which then resolves that
name request to an IP address. Through the use of this
hierarchy, load-balancing "secondary" servers, and caching,
DNS provides name resolution for the entire Internet today.
However, this scalability comes with a price. First, DNS
relies completely on these servers: if the authoritative DNS
server for a subdomain "example.com" is down, overloaded,
or configured incorrectly, then all DNS lookups for
"*.example.com" will fail and "www.example.com" is not
reachable, regardless of the state of the web server itself.
Second, the DNS relies on hosts to configure their IP
addresses with their DNS servers using out-of-bound com-

2
munications, which results in a static system that cannot
support dynamic networks. Dynamic DNS seeks to alleviate
these limitations by specifying an UPDATE record type;
however, it still requires that (1) the host knows the IP

5 address of its authoritative DNS server a priori, and (2) the
host successfully sends an update to the authoritative server
every single time its IP address changes.
Examples of peer-to-peer systems include mDNS, Simple

Service Discovery Protocol (SSDP), and Service Location
io Protocol (SLP). These peer-to-peer systems do not require a

central server to operate, and as a result, minimal configu-
ration is required. These zero configuration (zeroconf) sys-
tems are well suited for dynamic environments where hosts
come up, go down, and change IP addresses frequently, such

15 as home networks configured with Dynamic Host Configu-
ration Protocol (DHCP) or AutolP. Unfortunately, all peer-
to-peer systems currently share a heavy reliance on IP
multicast to propagate both name requests and service
announcements through the entire network. As a result, they

20 suffer from relatively high latency and cannot scale, which
restricts these protocols to local area networks (LANs)
where internal names are denoted by the top-level domain
(TLD), ".local."

It is also possible to deploy DNS over an overlay network
25 that uses a distributed hash table (DHT) to reduce the load

on individual servers and thus provide higher scalability and
better fault tolerance. DHTs serve to decouple the physical
location of an entry from its logical location. This architec-
ture helps with load-balancing, removes hot spots and

3o bottlenecks in the hierarchy, and creates a system that is
orders of magnitude harder to attack. These benefits are
typically achieved by enforcing a flat namespace, where all
records in the system are stored as equal objects in one giant
DHT. Unfortunately, these approaches rely on a network

35 environment in which the nodes of the overlay are static and
available with high uptime, the topology is connected, and
links have plenty of bandwidth. The performance of DHTs
degrades significantly in dynamic networks as a result of
excessive overhead resulting from topology-independent

40 overlay addresses, link failures, and node mobility.
SLP introduces the concept of an optional "Directory

Agent" (DA). In the SLP system, all nodes in a network must
contact the DA first if it is present. In the case of MANETs,
a virtual backbone of "Service Broker Nodes" (SBNs) forms

45 a dominating set in a MANET and proactively maintains
routes through the MANET to each other. These approaches
attempt to increase scalability by only allowing a select
subset of nodes to query the entire network, and requiring
that other nodes communicate with their closest directory

5o node. However, they all share the same drawback. More
specifically, in these systems communication between direc-
tory nodes is unstructured and accomplished by flooding a
name request to all other directory nodes, which scales as
poorly as the peer-to-peer systems. Multi-level distributed

55 hash table (MDHT) addresses this issue by proposing a
hierarchy of DHTs, but cannot scale to large numbers of
records because it requires the top-level DHT to contain
every record in the system.

Currently available name-resolution protocols lack
60 interoperability, meaning that the different protocols (such

as mDNS and DNS) cannot talk to each other, even though
mDNS might be best for home networks and DNS might be
best for the Internet. One way to support multiple protocols
is to designate some top-level domains or TLDs (such as

65 ".local") for certain protocols and to have the node gener-
ating a request use the TLD to decide which protocol should
be used. Other approaches have been limited to developing
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higher-layer application programming interfaces (APIs) that
mask implementation differences between protocols that
already share the same basic architecture, such as SSDP and
SLP. Another approach for interoperability across different
network architectures, both for routing and name resolution
is to divide networks into contexts and use interstitial
functions to translate between contexts, instead of requiring
all networks to use the same protocol. However, the latter
approach may still face problems of scalability and coher-
ency if the number of separate contexts becomes too high or
if entire contexts exhibit a high degree of mobility.

SUMMARY

One embodiment of the present invention provides a
system for resolving a name request in a network comprising
a plurality of groups that use different name-resolution
schemes. During operation, the system receives, at a first
group, the name request; identifies a parent group of the first
group, which is a member of the parent group; and in
response to failing to resolve the name request within the
first group, forwards the name request to the identified
parent group.

In a variation on this embodiment, in response to the
parent group not responding to the name request, the system
forwards the name request to a grandparent group of the first
group.

In a variation on this embodiment, the system receives a
response to the name request, which indicates a network
address of the requested name and a network address of an
intermediate node; caches the network address of the
requested name; determines, based on a hierarchy of the
groups, whether a hierarchy level of the intermediate node
is equal to or below the first group; and in response to the
hierarchy level of the intermediate node being equal to or
below the first group, caches the network address of the
intermediate node.

In a variation on this embodiment, the system determines
that a cached entry associated with the name request exists,
and forwards the name request or generates a response based
on the cached entry.

In a variation on this embodiment, the plurality of groups
include one or more of: a Domain Name System (DNS)
based group, a multicast DNS (mDNS) based group, and a
group that uses a distributed hash table (DHT) based name-
resolution scheme.

In a variation on this embodiment, the system responds
with an error message to the name request in response to
failing to forward the name request.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 presents a diagram illustrating an exemplary name
resolution group (NRG) hierarchy, in accordance with an
embodiment of the present invention.

FIG. 2 presents a diagram illustrating an exemplary
computer system using DNS and the request-forwarding
sequence for the DNS system.

FIG. 3A presents a table showing the pseudocode API for
the FERN name-resolution group, in accordance with an
embodiment of the present invention.

FIG. 3B presents a table listing a set of rules that govern
the behavior of NRGs in a FERN system, in accordance with
an embodiment of the present invention.

FIG. 4 presents a diagram illustrating the architecture of
an exemplary node in a FERN NRG, in accordance with an
embodiment of the present invention.

4
FIG. 5 presents a diagram illustrating a set of caching

rules, in accordance with an embodiment of the present
invention.

FIG. 6 presents a diagram illustrating an exemplary name
5 resolution tree (NRT).

FIG. 7 presents a flowchart illustrating an exemplary
name-resolution process, in accordance with an embodiment
of the present invention.
FIG. 8 illustrates an exemplary computer system for

10 unifying name resolution, in accordance with one embodi-
ment of the present invention.
In the figures, like reference numerals refer to the same

figure elements.

15 DETAILED DESCRIPTION

The following description is presented to enable any
person skilled in the art to make and use the embodiments,
and is provided in the context of a particular application and

20 its requirements. Various modifications to the disclosed
embodiments will be readily apparent to those skilled in the
art, and the general principles defined herein may be applied
to other embodiments and applications without departing
from the spirit and scope of the present disclosure. Thus, the

25 present invention is not limited to the embodiments shown,
but is to be accorded the widest scope consistent with the
principles and features disclosed herein.
Overview
Embodiments of the present invention provide a method

so and a system that provides a unified name-resolution frame-
work designed to enable efficient name resolution across
heterogeneous name-resolution systems operating in
dynamic or static networks. Under the unified name-reso-
lution framework, network nodes are organized into name-

35 resolution groups (NRGs), with each group being allowed to
perform name resolution independently in different ways.
The system arranges these NRGs into a hierarchy and allows
them to communicate efficiently, discover each other's pres-
ence, and resolve each other's names.

40 Unified Framework for Name Resolution
Embodiments of the present invention provide a frame-

work for interoperability among different name-resolutions
protocols, such as DNS, mDNS, SSDP, SLP, etc. Under this
unified name-resolution framework, also referred to as a

45 Federated Extensible Resolution of Names (FERN) system,
nodes that use common name-resolution schemes are
grouped together as a name-resolution group (NRG). The
framework also defines a protocol for intercommunication
between different NRGs, and organizes the NRGs into a

5o hierarchy.
Organizing nodes into NRGs provides several advan-

tages, including: (a) separating nodes that use different
name-resolution schemes; and (b) reflecting the natural
groupings that appear in the underlying network (i.e., sub-

55 nets), logical hierarchy (i.e., org charts), and users them-
selves (i.e., social groups). Each NRG supports a set of
operations, which may be implemented in various ways. In
addition, although the nodes within an NRG may run
different network-level protocols, all nodes in the NRG are

6o able to exchange messages at the application layer.
Organizing the NRGs into a naming hierarchy ensures

that the system resolves names deterministically, the name
requests do not traverse NRGs unnecessarily, and scalability
is preserved by enforcing an upper bound on the number of

65 other NRGs any one group must know.
FIG. 1 presents a diagram illustrating an exemplary name

resolution group (NRG) hierarchy, in accordance with an
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embodiment of the present invention. In the example shown
in FIG. 1, a unified name-resolution system (also referred to
as a FERN system in this disclosure) 100 includes a number
of NRGs, such as NRGs 102, 104, and 106. Each NRG
includes a number of nodes that use a common name- 5
resolution scheme. For example, NRG 102 includes a server
node 108, and uses a server-based name-resolution scheme
(such as DNS). NRG 104 includes a number of nodes, such
as a laptop computer 110 and a smartphone 112. All nodes
within NRG 104 rely on a request-flooding name-resolution io
scheme, such as mDNS. NRG 106 includes a number of
nodes, such as a laptop computer 114, a smartphone 116, and
a printer 118. All nodes within NRG 106 use DHT for name
resolution.

In a FERN system, NRGs are also organized into a 15
naming hierarchy, and a child NRG is a member of its
parent. In the example shown in FIG. 1, NRG 102 is the
parent of NRGs 104 and 106, and NRG 104 and 106 are
members of NRG 102. In some embodiments, this child-
parent relationship can be denoted using the same dot- 20
notation as in the DNS. For example, an NRG with the name
"abc.parc.usa" is a member of the NRG "parc.usa," which is
itself a member of "usa." This child-parent relationship
between NRGs creates a name resolution tree (NRT) as in
the DNS, with the root NRG "/" at the top, and this tree 25
powers the forwarding of requests among NRGs. More
specifically, the request forwarding is first up to the root of
the tree and then down to the specific branch. For example,
when a member of an NRG tries to resolve a name, it first
attempts to resolve the name within the same NRG, and only 30
forwards the request up to its parent when the name cannot
be resolved locally. When the request reaches the root of the
NRT, it will be forwarded down to the corresponding node.

In the example shown in FIG. 1, when smartphone 112
tries to resolve the address of printer 118, smartphone 112 35
floods the name-resolution request through NRG 104. Once
the request reaches laptop 110, which is capable of commu-
nicating with the parent NRG of NRG 104 (i.e., NRG 102),
it is forwarded to NRG 102. NRG 102 then tries to resolve
the name within itself and its members, including child 40
NRGs 104 and 106. As a result, the request is forwarded
down to NRG 106, which uses its DHT to resolve the
address of printer 118. The forwarding sequence of this
name-resolution request is shown by the circled numbers in
FIG. 1. Note that the request forwarding in the FERN system 45
is different from the DNS where a name request is sent
directly to a root DNS server which locates the server
authoritative for the TLD.

FIG. 2 presents a diagram illustrating an exemplary
computer system using DNS and the request-forwarding 50
sequence for the DNS system. In FIG. 2, a computer system
200 includes a root server 202 and a number of name groups
(subnets), including name groups 204, 206, and 208. Name
group 204 is the top-level domain of name groups 206 and
208. Each name group includes a number of nodes. For 55
example, name group 204 includes a name server 210, name
group 206 includes a smartphone 212, and name group 208
includes a printer 214 and a name server 216. All nodes in
computer system 200 use DNS. In the example shown in
FIG. 2, when smartphone 212 tries to resolve the address of 60
printer 214, it sends a request to root DNS server 202, which
returns the address of the TLD server (i.e., name server 210).
Smartphone 212 then sends the name request to name server
210, which returns the address of the name server in name
group 208. Subsequently, smartphone 212 sends the request 65
to name server 216 to resolve the address of printer 214. The
forwarding sequence of the DNS name-resolution request is

T
shown by the circled numbers in FIG. 2. From FIG. 2, one
can see that DNS requires that each name group be sup-
ported by an authoritative name server (e.g., name server
216 for name group 208). In addition, in DNS, name
resolution starts at the root server and descends the NRT, and
the name servers support iterative resolution, where the
resolver communicates with each name server in turn, as
shown by the number sequence.

Similar to DNS, the NRGs in a FERN system are respon-
sible for names that end in the NRG's fully qualified name.
For example, an NRG named "abc" (which is the shorthand
for "abc.parc.usa") is responsible for queries ending with
"abc," such as "printer.abc." Every node in the NRG must be
able to resolve names for which the group is responsible. To
facilitate these responsibilities, NRGs must provide a way
for their members to: (1) register names, (2) resolve names,
(3) join the NRG, and (4) leave the NRG. Unlike DNS, an
NRG in a FERN system must forward queries for which it
is not responsible. As previously explained, the FERN
system organizes the NRGs into a naming hierarchy and
allows NRGs themselves to be members of their parent
NRG.
FIG. 3A presents a table showing the pseudocode API for

the FERN name-resolution group, in accordance with an
embodiment of the present invention. FIG. 3B presents a
table listing a set of rules that govern the behavior of NRGs
in a FERN system, in accordance with an embodiment of the
present invention. From FIG. 313, one can see that a node in
a particular NRG can forward a name-resolution request that
the NRG is not responsible for without knowing the network
address of the name being requested. To do so, each NRG
only needs to know how to contact its child NRGs and
parent NRG. Note that in FIG. 3A, the port (UDP 53) has
been chosen for the sake of interoperability with DNS. In
addition, the FERN system may also use a traditional DNS
record format (such as A, CNAME, etc.). This choice means
that to support request forwarding along a branch in the
NRT, all an NRG has to store is the network address of the
other NRG. This results in an exceedingly simple interstitial
function, and means that intergroup resolution through the
entire hierarchy can be supported by simple recursion.
In a FERN system, each NRG is free to set its own

internal policies. There are no constraints on the number of
services or names an individual node may register, the nature
of these services, or the number of NRGs of which a node
may be a member simultaneously. It is left to individual
NRGs to implement and enforce rules such as restricting
group membership to certain nodes or restricting the names
that a particular node may register. NRGs may choose to
adopt and enforce certain naming conventions (similar to the
mDNS service registry), and these conventions may even be
standardized across different NRGs.
FERN treats group security the same way. NRGs in a

FERN system may choose to use encryption, MAC
addresses, or other out-of-bound information to authenti-
cate, authorize, and verify their members and names. They
may also decide to use name resolution to enforce other
security policies, such as only allowing certain nodes to
resolve the address of certain services. However, the admin-
istration and implementation of these policies are left to the
individual NRG, not the entire framework.

For a node to join an NRG with the joinGroup(args)
operation in the table shown in FIG. 3A, it must already
know the group architecture, any args the group requires,
and to whom to send this information. Though the mechan-
ics and specifics of joining an NRG should be handled by the
NRG itself, the process of group discovery and acquiring the
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information listed above can be standardized, because it is a
process that exists outside of any individual NRG and may
interact with other protocols and systems. There are several
protocols (e.g., DHCP and AutolP) used to help nodes join
a network by supporting discovery, authentication, and
address acquisition. They also bootstrap DNS resolution by
providing hosts with the address of a local DNS server to be
used. In some embodiments, the FERN system extends these
existing protocols by defining an extra FERN record to be
passed to a node when it joins the network. This record
contains the full name of the NRG, the structure of the NRG,
any group-specific arguments, and a fallback network
address to be used as a local DNS server if the node does not
recognize the value in the structure of the NRG or is
FERN-unaware.

FIG. 4 presents a diagram illustrating the architecture of
an exemplary node in a FERN NRG, in accordance with an
embodiment of the present invention. In FIG. 4, FERN node
400 includes a name-request receiving module 402, a local
name-resolution module 404, a cache 406, a parent-NRG
identification module 408, and a request forwarding module
410.

During operation, name-request receiving module 402 is
responsible for receiving name-resolution requests or que-
ries from other nodes, which may be a node in the same
NRG as node 400 or a node from a different NRG. Note that
depending on the name-resolution scheme used within the
NRG where node 400 resides, the name-resolution request
may have different formats. Also note that in the example
shown in FIG. 4, it is assumed that node 400 is the node that
receives the name-resolution request. For a DNS-based
NRG, node 400 can be the authoritative name server for the
NRG.

Local name-resolution module 404 is responsible for
resolving the name request locally within the boundary of
the NRG. Depending on the name-resolution scheme used
within the NRG where node 400 resides, local name-
resolution module 404 uses a corresponding name-resolu-
tion scheme to attempt to resolve the name request. If the
local name resolution fails, parent-NRG identification mod-
ule 408 is responsible for identifying the parent NRG and
resolving the address of the parent. Request forwarding
module 410 is responsible for forwarding the name request
to the parent NRG. Once the name is resolved and sent back
to node 400, cache 406 caches the resolved network address
of the requested name and/or network addresses of any
intermediate nodes. The cached entry can be used for any
future name requests.

Caching name responses and intermediate name referrals
significantly reduces latency and overall network load. It
changes the system performance and may even result in
different behavior. In the DNS, caching benefits stem pri-
marily from reducing the number of round-trips a query
takes. In a FERN system, benefits of caching come from
"short-circuiting" the group hierarchy. For instance, in the
example shown in FIG. 1, if NRG 104 has a cached network
address for NRG 106, it may skip the operation of contacting
NRG 102 entirely. Caching in FERN is enabled by allowing
a group to append an A record (e.g., a 32-bit IPv4 address)
for itself when it answers a query or recursively returns the
answer to a query. Hence, if a request originates at group A
and traverses groups B, C, and D before finishing at E, the
requesting node could end up caching the network addresses
of groups B through E if these groups elect to append their
network addresses to the response. Additionally, intermedi-

8
ate groups may also read these records, so in this example
group C could also learn the network addresses of groups D
and E.

Caching in the FERN system leads to behavior that
5 closely resembles a hybrid system. In the above example,

the bottom groups use architectures better suited for
dynamic networks. The first time a node in one of these
groups attempts to resolve a name outside of its group, it
must first call getParent (a function listed in the table shown

io in FIG. 3A) and use the group to resolve the address of its
parent. However, the resolving node may then cache this
address and send all future requests directly to its parent
group without needing to re-resolve its address. This behav-
ior is similar to the hybrid approaches, where local requests

15 stay local and system-wide requests are forwarded to the
appropriate SBN or DA. Compared with these aforemen-
tioned hybrid approaches, the FERN system enables this
behavior without the added protocol complexity of specify-
ing how it should be done, figuring out what constitutes a

20 local request, or forcing that system on all network sce-
narios. This behavior can also be compared to currently
available name-resolution systems, where requests are either
multicast over mDNS or sent to a local DNS server based on
the TLD of the name request. FERN exhibits very similar

25 behavior, yet accomplishes this without fragmenting the
namespace.
The caching in FERN is similar to yet different from the

caching in the DNS. In the DNS, caching can only occur
down the tree, and caching improves performance by reduc-

30 ing the load on top-level name servers and the number of
referrals. However, in FERN, caching can also occur up the
tree. While this is a feature aimed at improving performance,
it could make FERN perform much like DNS if nodes were
to use the address of the NRT root to resolve names. For

35 example, consider the case where a node" 
node 1. subgroup 1. example.usa" needs to resolve the name

"node2.subgroup2.example2.uk," and caching is enabled for
any NRG in the FERN NRT. Since the root of the NRT is the
closest common ancestor between the node and the name

40 that must be resolved, the node caches the network address
of the NRT root once resolution is complete. After that,
anytime the same node needs to resolve a name outside of
the "usa" name group, the closest-matching group will
always be the NRT root, and the node will contact the root

45 directly. To eliminate this problem, in some embodiments,
the FERN system enforces a set of caching rules. FIG. 5
presents a diagram illustrating a set of caching rules, in
accordance with an embodiment of the present invention.
The FERN caching rules shown in FIG. 5 significantly

5o reduce the load on nodes in NRGs that are higher in the
hierarchy and serve to create a much more distributed
system. To revisit the previous example, once
"node 1. subgroup 1.example.usa" resolves the address of
"node2.subgroup2.example2.uk," the name group "uV is

55 cached only by two groups: the "root' and "usa." Not only
does this help to reduce traffic on the top name servers, it
also helps provide cached information to other nodes. Now,
if the same node wishes to resolve a name in the TLD
"china," rather than query the root directly (and get a direct

6o response), it must go up the tree through the name group
"usa." This behavior ensures that now "usa" is on the
return-path and has the opportunity to cache the network
address for "china," which further reduces traffic on the root
group, since all subsequent requests from nodes in name

65 group "usa" for nodes in name group "china" would be able
to take advantage of the cache-hit in "usa." Together, the
FERN rules in FIG. 3B and FIG. 5 provide interoperability
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across different architectures while limiting the amount of
information that any one NRG must maintain.
The FERN process of forwarding requests up and then

down the NRT also affects the fault tolerance and resilience
of the system. In DNS, if a node is unable to contact the root 5
server, it is unable to perform any name resolution, as shown
in FIG. 2. This behavior makes the root server an attractive
target for attackers, and also restricts the usefulness of DNS
to nodes that can access a root name server, as opposed to
nodes in a private network or MANET. In contrast, FERN io
requests only travel up the NRT as far as necessary.

FIG. 6 presents a diagram illustrating an exemplary name
resolution tree (NRT). In FIG. 6, NRT 600 includes a root
node (the "global" node) and three branches below the root
node. The branch on the left-hand side includes a parent 15
NRG, "subgroupl," and two child NRGs, "nodel" and
"node2." The branch on the right-hand side includes a parent
NRG, "subgroup3," and two child NRGs, "node3" and
"node4." In the example shown in FIG. 6, based on the
FERN NRG rules and caching rules (see FIG. 3B and FIG. 20
5), the only queries that would reach the root NRG are
requests from NRG "subgroupl" to NRG "subgroup3" or
vice-versa. All other traffic stays within either NRG, and
thus would function normally independently of the ability of
either NRG to access the root NRG. 25

By forwarding queries in the manner described above,
FERN reduces reliance on the top-level NRGs of the NRT
and improves resilience among lower level NRGs. If a root
or TLD server fails, or if an NRG is cut off from these
servers due to a network partition, internal resolution is 30
unaffected. As a result, name resolution in FERN is much
more distributed. Ideally, if an active route exists between
two hosts, they should be able to resolve each other's names
and communicate. Conversely, if no route exists between the
hosts, then name resolution is unimportant because even in 35
the event of successful resolution, no communication can
occur.
The FERN architecture ensures that some local FERN

request can still be resolved even in the presence of inter-
mediate failure points. Now consider the example shown in 40
FIG. 6 when the NRG "subgroup3" fails. In DNS, all nodes
(including nodes within the domain "subgroup3") would be
unable to resolve any names below domain "subgroup3" in
the tree, but are able to resolve all other names. In contrast,
in FERN, requests that stay inside NRGs "node3" or 45
"node4" would still succeed, but none of the nodes in these
NRGs would be able to resolve any names outside of
"subgroup3," unless the NRT is modified to reflect the
failure that took place.
FERN addresses this problem by allowing nodes to cache 50

the network address of other nodes in their ancestor NRGs
all the way up to the root of the NRT. Note that, in
accordance with the FERN caching rules shown in FIG. 5,
these network addresses cannot be used for the forwarding
of requests. The addresses are used solely for fault tolerance. 55
An NRG may use these addresses to forward requests to its
grandparent if and only if its parent is unresponsive. With
this rule in place, FERN may often do better than DNS (by
preserving internal resolution when possible) but it never
does worse, since it effectively reduces to DNS when 60
intermediate NRGs fail.

To reduce the risk of node failure, NRGs may also choose
to replicate records across K>1 separate nodes. Choosing a
proper value for K depends heavily on the underlying
network. In the Internet case, the DNS itself shows that 65
small values of K are sufficient. For example, over 80% of
DNS entries can be supported by just one or two name
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servers. In other network scenarios, such as MANETs, K=1
might be completely acceptable if the only node bridging
name requests is also the only node able to perform network
address translation (in which case its failure also partitions
the network). Ideally, K should be sufficiently large so that
name resolution reflects network connectivity.
The FERN NRG rules and caching rules shown in FIG.

3B and FIG. 5 can be used to formally prove that requests
processed in FERN deterministically terminate, do not loop,
and are resolved correctly.
Deployment Consideration
As discussed previously, in a FERN system, internal

group resolution can take many forms, including but not
limited to: DNS, mDNS, SSDP, SLP, DHT, MDHT, etc. As
a result, FERN can be used to bridge all existing name-
resolution protocols today without the need to modify them.
Supporting mDNS is trivial, and can be accomplished by
simply appending ".local" to the end of a name request
before sending it to an mDNS daemon. DNS integration is
equally straightforward, though it comes with one caveat:
given that the resolution of DNS queries starts at the root, if
the DNS is used to power a FERN NRG, the NRG must be
the highest group in the FERN NRT; otherwise, unnecessary
request-forwarding and group traversal can occur. However,
because the DNS is already well established, we believe that
FERN NRGs could exist "underneath" the current DNS
hierarchy, using the DNS for Internet resolution, while still
supporting other networks where the DNS is not appropri-
ate.

Another factor that may affect the system performance is
the internal communication within an NRG. The best choice
for internal group communication depends on both the
underlying network topology and the number of nodes in the
NRG. Though an NRG may specify that only a certain
number of nodes may join, the number of nodes in an NRG
is determined primarily by external factors, which in turn
determine group communication. These external factors
could be logical (the number of people in an organization),
hierarchical (an organization chart), or based on the under-
lying network topology (e.g., nodes in a MANET).

In the case of the Internet, a connected underlying net-
work with static addresses, the client-server architecture has
been shown by the DNS to be efficient and scalable, and
provides an attractive first choice. For fully connected
networks with dynamic network addresses (such as an
internal subnet or home network), a DHT may be a better
choice for both robustness and dynamic updating.
In addition, the height of the NRT may also affect the

performance of a FERN system. The current DNS hierarchy
is relatively shallow, with a typical height of three or four
levels, but is almost exclusively limited to naming Internet
servers. A full FERN NRT would be allowed to have more
levels, because part of the intent of FERN is to expand name
resolution to devices in different network environments. As
described above, the addition of NRGs in the NRT could be
the result of several logical or organizational factors, as well
as underlying network concerns (such as bridging resolution
across two MANETs). It can be shown that the latency
overhead of adding another logical group to the hierarchy is
minimal because FERN minimizes inter-group latency by
requiring groups to resolve name requests recursively and
organizing nodes in a hierarchy that reflects physical prox-
imity (i.e., assigning countries or physical regions to TLDs).
Note that this ensures that requests only traverse a particular
long-haul link (i.e., the Pacific Ocean) once.

FIG. 7 presents a flowchart illustrating an exemplary
name-resolution process, in accordance with an embodiment
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of the present invention. During operation, an NRG in the
FERN system receives a name request (operation 702). Note
that depending on the type of NRG, the name request may
be in a different format and may be sent to a name server or
every node within the NRG. The NRG then attempts to 5

resolve the name request locally (operation 704). If the name
is resolved locally, a response is sent back to the originating
node (operation 706). Otherwise, a cache is checked to
determine whether one or more cached entries that are
associated with the name exist (operation 708). If so, the io
system determines whether the cached entry is an exact hit
(i.e., the cached network address is the requested address)
(operation 710). If so, a response is generated based on the
exact cache hit (operation 712). If not, the system performs
a longest-prefix-matching among the cached entries to iden- 15
tify the network address of the NRG or the parent NRG to
which the name belongs (operation 714), and forwards the
name request to the identified NRG or the identified parent
NRG (operation 716).

In response to not finding a cached entry for the address, 20
the NRG identifies its own parent NRG (operation 718). In
some embodiments, the parent NRG can be identified by
calling the getParent( ) function as shown in FIG. 3A. Note
that in some cases, the address of the parent NRG may exist
in the cache. Once the parent NRG is identified, the name 25
request is forwarded to the parent NRG (operation 720). For
fault tolerance purposes, if the parent NRG is unresponsive,
the NRG may optionally forward the name request to its
grandparent NRG (operation 722). In one embodiment, the
NRG will forward the name request to its grandparent NRG 30
if no response is received from its parent NRG after a
predetermined waiting period. This process can be iterative
until the root NRG is reached. Note that, if the forwarding
of the name request fails (e.g., the NRG failed to identify its
parent), the NRG will respond to the requesting node with 35
an error message.

Subsequently, the NRG receives a response to the name
request (operation 724), caches the network address of the
name, and/or network address of any intermediate nodes
(operation 726), and sends the response to the originating 40
node (operation 706).

In general, FERN provides a robust framework for name
resolution and service discovery. It provides one global
namespace and supports both global and local name reso-
lution, yet does so without the previous constraints on both 45
namespaces. By supporting different name-resolution archi-
tectures, FERN paves the way for optimization of name-
resolution protocols for their corresponding networks and
serves as an important stepping-stone for interoperability
between heterogeneous networks, such as wireless sensor 50
networks and N ANETs, home "Internet-of-Things" net-
works, and the general Internet.
Computer System

FIG. 8 illustrates an exemplary computer system for
unifying name resolution, in accordance with one embodi- 55
ment of the present invention. In one embodiment, a com-
puter and communication system 800 includes a processor
802, a memory 804, and a storage device 806. Storage
device 806 stores a unified name-resolution application 808,
as well as other applications, such as applications 810 and 60
812. During operation, unified name-resolution application
808 is loaded from storage device 806 into memory 804 and
then executed by processor 802. While executing the pro-
gram, processor 802 performs the aforementioned functions.
Computer and communication system 800 is coupled to an 65
optional display 814, keyboard 816, and pointing device
818.
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The data structures and code described in this detailed

description are typically stored on a computer-readable
storage medium, which may be any device or medium that
can store code and/or data for use by a computer system. The
computer-readable storage medium includes, but is not
limited to, volatile memory, non-volatile memory, magnetic
and optical storage devices such as disk drives, magnetic
tape, CDs (compact discs), DVDs (digital versatile discs or
digital video discs), or other media capable of storing
computer-readable media now known.
The methods and processes described in the detailed

description section can be embodied as code and/or data,
which can be stored in a computer-readable storage medium
as described above. When a computer system reads and
executes the code and/or data stored on the computer-
readable storage medium, the computer system performs the
methods and processes embodied as data structures and code
and stored within the computer-readable storage medium.

Furthermore, methods and processes described herein can
be included in hardware modules or apparatus. These mod-
ules or apparatus may include, but are not limited to, an
application-specific integrated circuit (ASIC) chip, a field-
programmable gate array (FPGA), a dedicated or shared
processor that executes a particular software module or a
piece of code at a particular time, and/or other program-
mable-logic devices now known or later developed. When
the hardware modules or apparatus are activated, they per-
form the methods and processes included within them.
The foregoing descriptions of various embodiments have

been presented only for purposes of illustration and descrip-
tion. They are not intended to be exhaustive or to limit the
present invention to the forms disclosed. Accordingly, many
modifications and variations will be apparent to practitioners
skilled in the art. Additionally, the above disclosure is not
intended to limit the present invention.

What is claimed is:
1. A method for resolving a name request in a network,

comprising:
receiving the name request by a network node of a first

group of network nodes that are operating under a first
name resolution scheme, wherein the name request is
for a node of a second group;

identifying, by the network node of the first group, a
parent group of the first group in a hierarchy of name
resolution groups, wherein the first group is lower in
the hierarchy than the parent group, and the parent
group operates under a name resolution scheme that is
different from the first name resolution scheme;

in response to failing to resolve the name request within
the first group using the first name resolution scheme,
forwarding the name request to the identified parent
group;

receiving, by the network node through the parent group,
a first response to the name request, wherein the parent
group is higher in the hierarchy than both the first group
and the second group, and the first response indicates a
network address of a requested name of the name
request and a network address of an intermediate node;

caching the network address of the requested name;
determining, based on the hierarchy of name resolution

groups, whether a hierarchy level of the intermediate
node is equal to or below the first group;

in response to the hierarchy level of the intermediate node
being equal to or below the first group, caching the
network address of the intermediate node, wherein a
name request to a node can be sent immediately to the
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cached network address of the intermediate node
bypassing the parent group; and

sending a second response to the name request based on
the first response.

2. The method of claim 1, further comprising: 5

in response to the parent group not responding to the name
request, forwarding the name request to a grandparent
group of the first group.

3. The method of claim 1, further comprising:
determining that a cached entry associated with the name l0

request exists; and
forwarding the name request or generating a response

based on the cached entry.
4. The method of claim 1, wherein the hierarchy of name 15

resolution groups uses a plurality of name-resolution
approaches, including one or more of:
Domain Name System (DNS);
multicast DNS (mDNS); and
distributed hash table (DHT) based name-resolution 20

scheme.
5. The method of claim 1, further comprising:
responding with an error message to the name request in

response to failing to forward the name request.
6. A non-transitory computer-readable storage medium 25

storing instructions that, when executed by a computer,
cause the computer to perform a method for resolving a
name request in a network, the method comprising:

receiving the name request by a network node of a first
group of network nodes that are operating under a first 30
name resolution scheme, wherein the name request is
for a node of a second group;

identifying, by the network node of the first group, a
parent group of the first group in a hierarchy of name
resolution groups, wherein the first group is lower in 35
the hierarchy than the parent group, and the parent
group operates under a name resolution scheme that is
different from the first name resolution scheme;

in response to failing to resolve the name request within
the first group using the first name resolution scheme, 40
forwarding the name request to the identified parent
group;

receiving, through the parent group, a first response to the
name request, wherein the parent group is higher in the
hierarchy than both the first group and the second 45
group, and the first response indicates a network
address of a requested name of the name request and a
network address of an intermediate node;

caching the network address of the requested name;
determining, based on the hierarchy of name resolution 50

groups, whether a hierarchy level of the intermediate
node is equal to or below the first group;

in response to the hierarchy level of the intermediate node
being equal to or below the first group, caching the
network address of the intermediate node, wherein a 55
name request to a node can be sent immediately to the
cached network address of the intermediate node
bypassing the parent group; and

sending a second response to the name request based on
the first response. 60

7. The computer-readable storage medium of claim 6,
wherein the method further comprises:

in response to the parent group not responding to the name
request, forwarding the name request to a grandparent
group of the group. 65

8. The computer-readable storage medium of claim 6,
wherein the method further comprises:
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determining that a cached entry associated with the name

request exists; and
forwarding the name request or generating a response

based on the cached entry.
9. The computer-readable storage medium of claim 6,

wherein the hierarchy of name resolution groups uses a
plurality of name-resolution approaches, including one or
more of:
Domain Name System (DNS);
multicast DNS (mDNS); and
distributed hash table (DHT) based name-resolution

scheme.
10. The computer-readable storage medium of claim 6,

wherein the method further comprises:
responding with an error message to the name request in

response to failing to forward the name request.
11. A system comprising:
a plurality of groups of network nodes that operate under

different name-resolution schemes, wherein a node of a
first group of the plurality of groups of network nodes
is a computing device with one or more processors and
a memory and is configured for receiving a name
request, for a node of a second group of the plurality of
groups of network nodes, and the node is configured to:

identify, by the one or more processors, a parent group of
the first group in a hierarchy of name resolution groups,
wherein the first group is lower in the hierarchy than the
parent group, and the parent group operates under a
name resolution scheme that is different from a first
name resolution scheme of the first group;

in response to failing to resolve the name request within
the first group using the first name resolution scheme,
forward the name request to the identified parent group;

receive, through the parent group, a first response to the
name request, wherein the parent group is higher in the
hierarchy than both the first group and the second
group, and the first response indicates a network
address of a requested name of the name request and a
network address of an intermediate node;

cache the network address of the requested name;
determine, based on the hierarchy of name resolution

groups, whether a hierarchy level of the intermediate
node is equal to or below the first group;

in response to the hierarchy level of the intermediate node
being equal to or below the first group, cache the
network address of the intermediate node, wherein a
name request to a node can be sent immediately to the
cached network address of the intermediate node
bypassing the parent group; and

send a second response to the name request based on the
first response.

12. The system of claim 11, wherein the node is further
configured to, in response to the parent group not responding
to the name request, forward the name request to a grand-
parent group of the first group.

13. The system of claim 11, wherein the node is further
configured to:

determine that a cached entry associated with the name
request exists; and

forward the name request or generate a response based on
the cached entry.

14. The system of claim 11, wherein the hierarchy of
name resolution groups uses a plurality of name-resolution
approaches, including one or more of:
Domain Name System (DNS);
multicast DNS (mDNS); and
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distributed hash table (DHT) based name-resolution
scheme.

15. The system of claim 11, wherein the node is further
configured to respond with an error message to the name
request in response to failing to forward the name request. 5
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