4,232 research outputs found

    Collaborative Delivery with Energy-Constrained Mobile Robots

    Full text link
    We consider the problem of collectively delivering some message from a specified source to a designated target location in a graph, using multiple mobile agents. Each agent has a limited energy which constrains the distance it can move. Hence multiple agents need to collaborate to move the message, each agent handing over the message to the next agent to carry it forward. Given the positions of the agents in the graph and their respective budgets, the problem of finding a feasible movement schedule for the agents can be challenging. We consider two variants of the problem: in non-returning delivery, the agents can stop anywhere; whereas in returning delivery, each agent needs to return to its starting location, a variant which has not been studied before. We first provide a polynomial-time algorithm for returning delivery on trees, which is in contrast to the known (weak) NP-hardness of the non-returning version. In addition, we give resource-augmented algorithms for returning delivery in general graphs. Finally, we give tight lower bounds on the required resource augmentation for both variants of the problem. In this sense, our results close the gap left by previous research.Comment: 19 pages. An extended abstract of this paper was published at the 23rd International Colloquium on Structural Information and Communication Complexity 2016, SIROCCO'1

    Brief Announcement: Energy Constrained Depth First Search

    Get PDF
    Depth first search is a natural algorithmic technique for constructing a closed route that visits all vertices of a graph. The length of such route equals, in an edge-weighted tree, twice the total weight of all edges of the tree and this is asymptotically optimal over all exploration strategies. This paper considers a variant of such search strategies where the length of each route is bounded by a positive integer B (e.g. due to limited energy resources of the searcher). The objective is to cover all the edges of a tree T using the minimum number of routes, each starting and ending at the root and each being of length at most B. To this end, we analyze the following natural greedy tree traversal process that is based on decomposing a depth first search traversal into a sequence of limited length routes. Given any arbitrary depth first search traversal R of the tree T, we cover R with routes R_1,...,R_l, each of length at most B such that: R_i starts at the root, reaches directly the farthest point of R visited by R_{i-1}, then R_i continues along the path R as far as possible, and finally R_i returns to the root. We call the above algorithm piecemeal-DFS and we prove that it achieves the asymptotically minimal number of routes l, regardless of the choice of R. Our analysis also shows that the total length of the traversal (and thus the traversal time) of piecemeal-DFS is asymptotically minimum over all energy-constrained exploration strategies. The fact that R can be chosen arbitrarily means that the exploration strategy can be constructed in an online fashion when the input tree T is not known in advance. Each route R_i can be constructed without any knowledge of the yet unvisited part of T. Surprisingly, our results show that depth first search is efficient for energy constrained exploration of trees, even though it is known that the same does not hold for energy constrained exploration of arbitrary graphs

    Constructing living buildings: a review of relevant technologies for a novel application of biohybrid robotics

    Get PDF
    Biohybrid robotics takes an engineering approach to the expansion and exploitation of biological behaviours for application to automated tasks. Here, we identify the construction of living buildings and infrastructure as a high-potential application domain for biohybrid robotics, and review technological advances relevant to its future development. Construction, civil infrastructure maintenance and building occupancy in the last decades have comprised a major portion of economic production, energy consumption and carbon emissions. Integrating biological organisms into automated construction tasks and permanent building components therefore has high potential for impact. Live materials can provide several advantages over standard synthetic construction materials, including self-repair of damage, increase rather than degradation of structural performance over time, resilience to corrosive environments, support of biodiversity, and mitigation of urban heat islands. Here, we review relevant technologies, which are currently disparate. They span robotics, self-organizing systems, artificial life, construction automation, structural engineering, architecture, bioengineering, biomaterials, and molecular and cellular biology. In these disciplines, developments relevant to biohybrid construction and living buildings are in the early stages, and typically are not exchanged between disciplines. We, therefore, consider this review useful to the future development of biohybrid engineering for this highly interdisciplinary application.publishe

    Minimizing the Cost of Team Exploration

    Full text link
    A group of mobile agents is given a task to explore an edge-weighted graph GG, i.e., every vertex of GG has to be visited by at least one agent. There is no centralized unit to coordinate their actions, but they can freely communicate with each other. The goal is to construct a deterministic strategy which allows agents to complete their task optimally. In this paper we are interested in a cost-optimal strategy, where the cost is understood as the total distance traversed by agents coupled with the cost of invoking them. Two graph classes are analyzed, rings and trees, in the off-line and on-line setting, i.e., when a structure of a graph is known and not known to agents in advance. We present algorithms that compute the optimal solutions for a given ring and tree of order nn, in O(n)O(n) time units. For rings in the on-line setting, we give the 22-competitive algorithm and prove the lower bound of 3/23/2 for the competitive ratio for any on-line strategy. For every strategy for trees in the on-line setting, we prove the competitive ratio to be no less than 22, which can be achieved by the DFSDFS algorithm.Comment: 25 pages, 4 figures, 5 pseudo-code

    Active SLAM: A Review On Last Decade

    Full text link
    This article presents a comprehensive review of the Active Simultaneous Localization and Mapping (A-SLAM) research conducted over the past decade. It explores the formulation, applications, and methodologies employed in A-SLAM, particularly in trajectory generation and control-action selection, drawing on concepts from Information Theory (IT) and the Theory of Optimal Experimental Design (TOED). This review includes both qualitative and quantitative analyses of various approaches, deployment scenarios, configurations, path-planning methods, and utility functions within A-SLAM research. Furthermore, this article introduces a novel analysis of Active Collaborative SLAM (AC-SLAM), focusing on collaborative aspects within SLAM systems. It includes a thorough examination of collaborative parameters and approaches, supported by both qualitative and statistical assessments. This study also identifies limitations in the existing literature and suggests potential avenues for future research. This survey serves as a valuable resource for researchers seeking insights into A-SLAM methods and techniques, offering a current overview of A-SLAM formulation.Comment: 34 pages, 8 figures, 6 table
    • …
    corecore