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Abstract
Depth first search is a natural algorithmic technique for constructing a closed route that visits
all vertices of a graph. The length of such route equals, in an edge-weighted tree, twice the total
weight of all edges of the tree and this is asymptotically optimal over all exploration strategies.
This paper considers a variant of such search strategies where the length of each route is bounded
by a positive integer B (e.g. due to limited energy resources of the searcher). The objective is
to cover all the edges of a tree T using the minimum number of routes, each starting and ending
at the root and each being of length at most B. To this end, we analyze the following natural
greedy tree traversal process that is based on decomposing a depth first search traversal into a
sequence of limited length routes. Given any arbitrary depth first search traversal R of the tree
T , we cover R with routes R1, . . . , Rl, each of length at most B such that: Ri starts at the root,
reaches directly the farthest point of R visited by Ri−1, then Ri continues along the path R as far
as possible, and finally Ri returns to the root. We call the above algorithm piecemeal-DFS and
we prove that it achieves the asymptotically minimal number of routes l, regardless of the choice
of R. Our analysis also shows that the total length of the traversal (and thus the traversal time)
of piecemeal-DFS is asymptotically minimum over all energy-constrained exploration strategies.
The fact that R can be chosen arbitrarily means that the exploration strategy can be constructed
in an online fashion when the input tree T is not known in advance. Each route Ri can be
constructed without any knowledge of the yet unvisited part of T . Surprisingly, our results show
that depth first search is efficient for energy constrained exploration of trees, even though it is
known that the same does not hold for energy constrained exploration of arbitrary graphs.
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1 Introduction

Consider a mobile robot (also called an agent) that needs to explore an initially unknown
edge-weighted tree, where the weight of each edge is its length. Starting from a single vertex
(the root), the robot must traverse all edges of and return to its initial location. Upon
visiting a vertex v for the first time, the robot discovers the edges incident to v and can
choose one of them to continue the exploration. Provided that the robot can remember
the visited vertices and edges, a simple depth first search (DFS) is an efficient algorithm
for exploring the tree, achieving the optimal cost of twice the sum of the lengths of edges
in the tree. In a more interesting scenario, the robot has a limited source of energy (e.g.
a battery) which allows it to traverse a path of length at most B (we say such a robot is
energy constrained). Naturally, we assume that each vertex of the tree is at distance at most
B/2 from the root, otherwise the tree cannot be fully explored. In this case, exploration is
possible if the robot can recharge its battery whenever it returns back to the initial location.
Thus, the exploration is a collection of routes of the robot, each of which starts and ends at
the root, and has length at most B. We are interested in minimizing the number of such
routes (i.e. the number of times the robot has to recharge) to completely explore the tree.

Related work. There exists extensive literature on graph traversal and exploration. We
refer interested reader to works on several models that do not consider any energy limitation
for the agents, including results on general graphs [22], trees [9, 17, 18, 19], lower bounds on
exploration time [9, 13, 14, 20, 21], or exploration with little memory [1, 12].

The energy constrained exploration problem was first studied under the name of Piecemeal
Graph Exploration [8], with the assumption that the route length B ≥ 2(1 + β)r, where r is
the furthest distance from the starting vertex to other vertices, and 0 < β < 1. That paper
provided exploration algorithms for a special class of grid graphs with ‘rectangular obstacles’.
Awerbuch et al. [4] showed that, for general graphs, there exists an energy constrained
exploration algorithm with a total cost of O(m+ n1+o(1)). This has been further improved
(by an algorithm that is a combination of DFS and BFS) to O(m+ n log2 n) in [5]. Finally
[15] provided an exploration algorithm for general unknown weighted graphs with total cost
asymptotic to the sum of edge weights of the graph. Note that, as mentioned, all the above
strategies require the length of each route to be strictly larger than the shortest path from
the starting vertex to the farthest vertex. In other words, these algorithms fail in the extreme
cases when the height of the explored tree (or the diameter of the graph) is equal to half of
the energy budget, which seem to be the most challenging ones. The off-line version of the
problem is NP-hard, see e.g. [18].

See [6, 11, 16] for works on the tree exploration model we consider, with one difference:
each route, also of length at most B, starts at the root but may end at any vertex of the
tree. Distributed algorithms for energy constrained agents have been a subject of recent
investigation, see e.g. [2, 3, 7, 10].

2 Problem statement and DFS exploration

Let T = (V (T ), E(T ), ω : E(T ) → R+) be an edge-weighted tree with root r. We define a
route R = (v0, v1, . . . , vl) as a sequence of vertices that satisfies: (i) {vi, vi+1} ∈ E(T ) for
each i ∈ {0, . . . , l − 1}, and (ii) v0 = vl is the root r of T . Informally speaking, a route is a
sequence of vertices forming a walk in T that starts and ends at the root. We define the
length of R to be `(R) =

∑l
i=1 ω({vi−1, vi}). We say that a vertex v is visited by the route

if v = vi for some i ∈ {1, . . . , l}.
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Given a tree T and a real number B, we say that S = (R1, . . . , Rk) is a B-exploration
strategy for T if for each i ∈ {1, . . . , k}, Ri is a route in T of length at most B, and each
vertex of T is visited by some route in S. We write |S| to refer to the number of routes in S,
k = |S|. We formulate the combinatorial problem we study in this work as follows.
Energy Constrained Tree Exploration problem (ECTE)

Given a real number B > 1 and an edge-weighted rooted tree T of height at most B/2
what is the minimum integer k such that there exists a B-exploration strategy that
consists of k routes?

Our goal is to analyze a particular type of solution to this problem, namely, an exploration
strategy that behaves like a depth first search traversal but adopted to the fact that route
lengths are bounded by B. Let RDFS = (v0, v1, . . . , vl) be a route in T that covers the tree
T and performs a depth first search traversal of T . (Note that RDFS is a route and thus
we consider a depth first search traversal to have vertex repetitions.) For two vertices u
and v of T , d(u, v) denotes the distance between u and v understood as the sum of weights
of the edges of the path connecting these vertices. We refer by PDFS(T ) = (R1, . . . , Rk)
(Piecemeal Depth First Search) to the following B-exploration strategy constructed iteratively
for i := 1, . . . , k:
(i) let j0 = 0 i.e. vj0 = v0 = r,
(ii) Ri continues DFS exploration from where Ri−1 stopped making progress (from the

vertex vji−1) as long as for currently visited vp: d(r, vji−1) + `((vji−1 , vji−1+1, . . . , vp)) +
d(vp, r) ≤ B,

(iii) furthest vp (for p ≤ l) that satisfies condition from ii is denoted as vji
, the vertex where

Ri stopped making progress,
(iv) let Ri = Pi−1 ◦ (vji−1 , vji−1+1, . . . , vji−1, vji) ◦ PR

i , where Pi−1 is the path from r to
vji−1 , and PR

i is the path from vji
to r.

Such a strategy PDFS(T ) is called a DFS B-exploration.
We remark that different depth first search traversals RDFS may result in different values

of k (different number of routes) in the resulting DFS B-exploration, although for a particular
choice of RDFS the corresponding PDFS(T ) is unique. We point out that our results stated
below hold for an arbitrary choice of RDFS.

3 Our results

The following theorem provides the first main result of this work.

I Theorem 1. Let T be a tree and let the longest path from the root to a leaf in T be at
most B/2. It holds |PDFS(T )| ≤ 10 |R|, where R is a B-exploration strategy that consists of
the minimum number of routes.

The theorem refers to the number of routes in an exploration strategy. However, in order to
analyze the behavior of PDFS(T ), we introduce another parameter which turns out to be
simpler to analyze. For any B-exploration strategy S = (R1, . . . , Rk) of T we will denote by
ξ(S) the cost of S defined as ξ(S) =

∑k
i=1 `(Ri). Then, COPT(T ) is an optimal solution

with respect to the cost, that is, a B-exploration strategy whose cost is minimum over
all B-exploration strategies. Thus, in order to prove Theorem 1, we obtain, on route, the
following second main result of our work.

I Theorem 2. Let T be a tree and let B/2 be greater than or equal to the longest path from
the root to a leaf in T . It holds ξ(PDFS(T )) ≤ 10 · ξ(COPT(T )).
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