12,005 research outputs found

    Package Delivery Using Drones with Restricted Movement Areas

    Get PDF
    For the problem of delivering a package from a source node to a destination node in a graph using a set of drones, we study the setting where the movements of each drone are restricted to a certain subgraph of the given graph. We consider the objectives of minimizing the delivery time (problem DDT) and of minimizing the total energy consumption (problem DDC). For general graphs, we show a strong inapproximability result and a matching approximation algorithm for DDT as well as NP-hardness and a 2-approximation algorithm for DDC. For the special case of a path, we show that DDT is NP-hard if the drones have different speeds. For trees, we give optimal algorithms under the assumption that all drones have the same speed or the same energy consumption rate. The results for trees extend to arbitrary graphs if the subgraph of each drone is isometric

    Collective Fast Delivery by Energy-Efficient Agents

    Get PDF
    We consider k mobile agents initially located at distinct nodes of an undirected graph (on n nodes, with edge lengths). The agents have to deliver a single item from a given source node s to a given target node t. The agents can move along the edges of the graph, starting at time 0, with respect to the following: Each agent i has a weight omega_i that defines the rate of energy consumption while travelling a distance in the graph, and a velocity upsilon_i with which it can move. We are interested in schedules (operating the k agents) that result in a small delivery time T (time when the item arrives at t), and small total energy consumption E. Concretely, we ask for a schedule that: either (i) Minimizes T, (ii) Minimizes lexicographically (T,E) (prioritizing fast delivery), or (iii) Minimizes epsilon * T + (1-epsilon)* E, for a given epsilon in (0,1). We show that (i) is solvable in polynomial time, and show that (ii) is polynomial-time solvable for uniform velocities and solvable in time O(n+k log k) for arbitrary velocities on paths, but in general is NP-hard even on planar graphs. As a corollary of our hardness result, (iii) is NP-hard, too. We show that there is a 2-approximation algorithm for (iii) using a single agent

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    Coverage Protocols for Wireless Sensor Networks: Review and Future Directions

    Full text link
    The coverage problem in wireless sensor networks (WSNs) can be generally defined as a measure of how effectively a network field is monitored by its sensor nodes. This problem has attracted a lot of interest over the years and as a result, many coverage protocols were proposed. In this survey, we first propose a taxonomy for classifying coverage protocols in WSNs. Then, we classify the coverage protocols into three categories (i.e. coverage aware deployment protocols, sleep scheduling protocols for flat networks, and cluster-based sleep scheduling protocols) based on the network stage where the coverage is optimized. For each category, relevant protocols are thoroughly reviewed and classified based on the adopted coverage techniques. Finally, we discuss open issues (and recommend future directions to resolve them) associated with the design of realistic coverage protocols. Issues such as realistic sensing models, realistic energy consumption models, realistic connectivity models and sensor localization are covered

    Improved search methods for assessing Delay-Tolerant Networks vulnerability to colluding strong heterogeneous attacks

    Get PDF
    Increasingly more digital communication is routed among wireless, mobile computers over ad-hoc, unsecured communication channels. In this paper, we design two stochastic search algorithms (a greedy heuristic, and an evolutionary algorithm) which automatically search for strong insider attack methods against a given ad-hoc, delay-tolerant communication protocol, and thus expose its weaknesses. To assess their performance, we apply the two algorithms to two simulated, large-scale mobile scenarios (of different route morphology) with 200 nodes having free range of movement. We investigate a choice of two standard attack strategies (dropping messages and flooding the network), and four delay-tolerant routing protocols: First Contact, Epidemic, Spray and Wait, and MaxProp. We find dramatic drops in performance: replicative protocols (Epidemic, Spray and Wait, MaxProp), formerly deemed resilient, are compromised to different degrees (delivery rates between 24% and 87%), while a forwarding protocol (First Contact) is shown to drop delivery rates to under 5% — in all cases by well-crafted attack strategies and with an attacker group of size less than 10% the total network size. Overall, we show that the two proposed methods combined constitute an effective means to discover (at design-time) and raise awareness about the weaknesses and strengths of existing ad-hoc, delay-tolerant communication protocols against potential malicious cyber-attacks

    Game Theory-Based Cooperation for Underwater Acoustic Sensor Networks: Taxonomy, Review, Research Challenges and Directions.

    Get PDF
    Exploring and monitoring the underwater world using underwater sensors is drawing a lot of attention these days. In this field cooperation between acoustic sensor nodes has been a critical problem due to the challenging features such as acoustic channel failure (sound signal), long propagation delay of acoustic signal, limited bandwidth and loss of connectivity. There are several proposed methods to improve cooperation between the nodes by incorporating information/game theory in the node's cooperation. However, there is a need to classify the existing works and demonstrate their performance in addressing the cooperation issue. In this paper, we have conducted a review to investigate various factors affecting cooperation in underwater acoustic sensor networks. We study various cooperation techniques used for underwater acoustic sensor networks from different perspectives, with a concentration on communication reliability, energy consumption, and security and present a taxonomy for underwater cooperation. Moreover, we further review how the game theory can be applied to make the nodes cooperate with each other. We further analyze different cooperative game methods, where their performance on different metrics is compared. Finally, open issues and future research direction in underwater acoustic sensor networks are highlighted

    Simulation and optimization of a multi-agent system on physical internet enabled interconnected urban logistics.

    Get PDF
    An urban logistics system is composed of multiple agents, e.g., shippers, carriers, and distribution centers, etc., and multi-modal networks. The structure of Physical Internet (PI) transportation network is different from current logistics practices, and simulation can effectively model a series of PI-approach scenarios. In addition to the baseline model, three more scenarios are enacted based on different characteristics: shared trucks, shared hubs, and shared flows with other less-than-truckload shipments passing through the urban area. Five performance measures, i.e., truck distance per container, mean truck time per container, lead time, CO2 emissions, and transport mean fill rate, are included in the proposed procedures using real data in an urban logistics case. The results show that PI enables a significant improvement of urban transportation efficiency and sustainability. Specifically, truck time per container reduces 26 percent from that of the Private Direct scenario. A 42 percent reduction of CO2 emissions is made from the current logistics practice. The fill rate of truckload is increased by almost 33 percent, whereas the relevant longer distance per container and the lead time has been increased by an acceptable range. Next, the dissertation applies an auction mechanism in the PI network. Within the auction-based transportation planning approach, a model is developed to match the requests and the transport services in transport marketplaces and maximize the carriers’ revenue. In such transportation planning under the protocol of PI, it is a critical system design problem for decision makers to understand how various parameters through interactions affect this multi-agent system. This study provides a comprehensive three-layer structure model, i.e. agent-based simulation, auction mechanism, and optimization via simulation. In term of simulation, a multi-agent model simulates a complex PI transportation network in the context of sharing economy. Then, an auction mechanism structure is developed to demonstrate a transport selection scheme. With regard of an optimization via simulation approach and sensitivity analysis, it has been provided with insights on effects of combination of decision variables (i.e. truck number and truck capacity) and parameters settings, where results can be drawn by using a case study in an urban freight transportation network. In the end, conclusions and discussions of the studies have been summarized. Additionally, some relevant areas are required for further elaborate research, e.g., operational research on airport gate assignment problems and the simulation modelling of air cargo transportation networks. Due to the complexity of integration with models, I relegate those for future independent research
    • …
    corecore